Math 1452: Integration by Parts

What is integration by parts? Let's recall the definition of integration by parts:
If $u(x)$ and $v(x)$ are functions with continuous derivatives, then

$$
\int u d v=u v-\int v d u
$$

How do I know which part of my integral is the u and which is the $d v$? Once you identify that an integral will use integration by parts, there is a heirarchy we can use to identify which part of our integral is the u :

```
L ogarithm
I nverse Trig
P olynomial
E xponential
T rig
```

To identify u, we go down the list and check if our integrand has that type of function. If so, we set that function to be u and the rest of the integrand becomes $d v$. In the following examples, we identify u and $d v$ for the integrals listed:

$\int x e^{x} d x$	$\int x^{2} \ln (x) d x$	$\int \arcsin (x) d x$	$\int x \sin (x) d x$
$u=x$ polynomial	$u=\ln (x) \operatorname{logarithm}$	$u=\arcsin (x)$ inverse trig	$u=x$ polynomial
$d v=e^{x} d x$ exponential	$d v=x d x$ polynomial	$d v=d x$	$d v=\sin (x) d x$ trig

In each of the examples above, we can integrate the identified $d v$ using an antidifferentiation rule. This is called basic integration by parts and is one of three types of integration by parts, listed below:

1. Basic: use antidifferentiation on $\int v d u$
2. Repeated: use integration by parts on $\int v d u$
3. Circular: use integration by parts on $\int v d u$ and return to the original integral $\int u d v$

We work an example of each type of integration by parts and then go on to discuss how to apply integration by parts to a definite integral.

Basic Integration by Parts:
Example 1. Evaluate the integral $\int x \sin (x) d x$ using integration by parts.

$$
\begin{array}{rlrl}
u & =x & d v & =\sin (x) d x \\
d u & =d x & \int d v & =\int \sin (x) d x \\
v & =-\cos (x) & \int x \sin (x) d x & =u v-\int v d u \\
& & & =-x \cos (x)-\int-\cos (x) d x \\
& & & =-x \cos (x)+\int \cos (x) d x \\
& & & \\
& & & \sin (x)+C
\end{array}
$$

Repeated Integration by Parts:
Example 2. Evaluate the integral $\int x^{2} \sin (x) d x$ using integration by parts.

$$
\begin{array}{rlrl}
u & =x^{2} & d v & =\sin (x) d x \\
d u & =2 x d x & \int d v & =\int \sin (x) d x \\
v & =-\cos (x)
\end{array}
$$

Now we use integration by parts again.

$$
\begin{array}{rlrl}
u & =2 x & d v & =\cos (x) d x \\
d u & =2 d x & \int d v & =\int \cos (x) d x \\
v & =\sin (x)
\end{array}
$$

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int x^{2} \sin (x) d x & =-x^{2} \cos (x)-\int-2 x \cos (x) d x \\
& =-x^{2} \cos (x)+\int 2 x \cos (x) d x
\end{aligned}
$$

$$
\begin{aligned}
\int u d v & =u v-\int v d u \\
\int 2 x \cos (x) d x & =2 x \sin (x)-\int 2 \sin (x) d x \\
& =2 x \sin (x)-(-2 \cos (x))+C \\
& =2 x \sin (x)+2 \cos (x)+C
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\int x^{2} \sin (x) d x & =-x^{2} \cos (x)+\int 2 x \cos (x) d x \\
& =-x^{2} \cos (x)+2 x \sin (x)+2 \cos (x)+C \\
& =2 x \sin (x)+\left(2-x^{2}\right) \cos (x)+C
\end{aligned}
$$

Circular Integration by Parts:

Example 3. Evaluate the integral $\int e^{x} \sin (x) d x$ using integration by parts.

$$
\begin{array}{rlrl}
u & =e^{x} & d v & =\sin (x) d x \\
d u & =e^{x} d x & \int d v & =\int \sin (x) d x \\
v & =-\cos (x) & \int e^{x} \sin (x) d x & =-e^{x} \cos (x)-\int v d u \\
& & =-e^{x} \cos (x)+\int e^{x} \cos (x) d x
\end{array}
$$

Now we use integration by parts again.

$$
\begin{array}{rlrl}
u & =e^{x} & d v & =\cos (x) d x \\
d u & =e^{x} d x & \int d v & =\int \cos (x) d x \\
v & =\sin (x) & \int e^{x} \cos (x) d x & =e^{x} \sin (x)-\int e^{x} \sin (x) d x
\end{array}
$$

We have arrived back at our original integral, so the rest of this question is solved using algebra.

$$
\begin{aligned}
\int e^{x} \sin (x) d x & =-e^{x} \cos (x)+e^{x} \sin (x) \\
+\int e^{x} \sin (x) d x & +\int e^{x} \sin (x) d x+C \\
2 \int e^{x} \sin (x) d x & =-e^{x} \cos (x)+e^{x} \sin (x) d x+C \\
\int e^{x} \sin (x) d x & =\frac{-e^{x} \cos (x)+e^{x} \sin (x)}{2}+C
\end{aligned}
$$

