Math 1451: Definite Integration by Substitution

In these examples, we will explore two different ways to evaluate definite integrals using substitution. Recall that indefinite integration by substitution is defined as follows:

If we are given a composite function $f(x)=g(u(x))$ and if G is an antiderivative of g, then

$$
\int f(x) d x=\int g(u) \frac{d u}{d x} d x=\int g(u) d u=G(u)+C
$$

Let's look at the example $\int(4 x-5)^{3} d x$.

$$
\underline{\text { 1. Identify } f(x), g(x) \text {, and } u(x) \quad \text { 2. Differentiate } u(x) \quad \text { 3. Rewrite and integrate }}
$$

Now, the process changes slightly for definite integrals: Let's look at the example $\int_{1}^{2}(4 x-5)^{3} d x$. The first two steps are the same as above, but now we much make a choice in how to rewrite the integral. We can either change the bounds using $u(x)$ or use substitution on an indefinite integral and then evaluate using the original bounds on x.

