Math 1451: The Second Fundamental Theorem of Calculus

What is the second fundamental theorem of calculus? This is a result that allows us to quickly take the derivative of an integral. Differentiating and integrating are mathematical inverses of each other (like addition \& subtraction, multiplication \& division, etc.), which means they cancel each other out and we get back the function that we started with. Formally, this is stated as:

Let $f(t)$ be continuous on the interval $[a, b]$ and define the function F by the integral equation

$$
F(x)=\int_{a}^{x} f(t) d t
$$

for $a \leq x \leq b$. Then F is an antiderivative of f on $[a, b]$; that is,

$$
F^{\prime}(x)=\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

In practice, this means that if we are asked to take the derivative of an integral with an x as the upper bound, we just replace the integrand with x and that is our answer. For example, if we define $F(x)=\int_{7}^{x}(2 t-3) d t$, then $F^{\prime}(x)=2 x-3$, obtained by replacing t in the integrand with x.
What if the integral looks different? We explore four different options below:
Ex. Differentiate $F(x)=\int_{7}^{x}(2 t-3) d t$.

Solution:

$$
\begin{aligned}
\frac{d}{d x}(F(x)) & =\frac{d}{d x}\left(\int_{7}^{x}(2 t-3) d t\right) \\
F^{\prime}(x) & =2 x-3
\end{aligned}
$$

Ex. Differentiate $F(x)=\int_{x}^{7}(2 t-3) d t$.

Solution:

$$
\begin{aligned}
\frac{d}{d x}(F(x)) & =\frac{d}{d x}\left(\int_{x}^{7}(2 t-3) d t\right) \\
F^{\prime}(x) & =\frac{d}{d x}\left(-\int_{7}^{x}(2 t-3) d t\right) \\
F^{\prime}(x) & =-\frac{d}{d x}\left(\int_{7}^{x}(2 t-3) d t\right) \\
F^{\prime}(x) & =-(2 x-3) \\
F^{\prime}(x) & =-2 x+3
\end{aligned}
$$

Ex. Differentiate $F(x)=\int_{7}^{x^{2}}(2 t-3) d t$.
Solution:

$$
\begin{aligned}
\frac{d}{d x}(F(x)) & =\frac{d}{d x}\left(\int_{7}^{x^{2}}(2 t-3) d t\right) \\
F^{\prime}(x) & =\left(2\left(x^{2}\right)-3\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
F^{\prime}(x) & =\left(2 x^{2}-3\right) \cdot 2 x \\
F^{\prime}(x) & =4 x^{3}-6 x
\end{aligned}
$$

Ex. Differentiate $F(x)=\int_{x^{2}}^{7}(2 t-3) d t$.
Solution:

$$
\begin{aligned}
\frac{d}{d x}(F(x)) & =\frac{d}{d x}\left(\int_{7}^{x^{2}}(2 t-3) d t\right) \\
F^{\prime}(x) & =\frac{d}{d x}\left(-\int_{x^{2}}^{7}(2 t-3) d t\right) \\
F^{\prime}(x) & =-\frac{d}{d x}\left(\int_{x^{2}}^{7}(2 t-3) d t\right) \\
F^{\prime}(x) & =-\left(2\left(x^{2}\right)-3\right) \cdot \frac{d}{d x}\left(x^{2}\right) \\
F^{\prime}(x) & =-\left(2 x^{2}-3\right) \cdot 2 x \\
F^{\prime}(x) & =-4 x^{3}+6 x
\end{aligned}
$$

