MAPLE Practice Quiz 7

1. Solve the following linear system by using row reduction and back substitution on its augmented matrix:

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}+6 x_{5}+7 x_{6}=8 \\
& 3 x_{1}+3 x_{2}+4 x_{3}+5 x_{4}+6 x_{5}+7 x_{6}=11 \\
& 4 x_{1}+4 x_{2}+4 x_{3}+5 x_{4}+6 x_{5}+7 x_{6}=37 \\
& 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+6 x_{5}+7 x_{6}=32
\end{aligned}
$$

Repeat the exercise with the rhs all equal 0 .
2. Find the values of a and b for which the system of equations has
i. a unique solution
ii. an infinite number of solutions
iii. no solution

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=6 \\
x_{1}+2 x_{2}+3 x_{3}=10 \\
x_{1}+2 x_{2}+a x_{3}=b
\end{gathered}
$$

3. Find the values of b for which the system of equations has a solution. Then solve the system for each value of b.

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=1 \\
x_{1}+2 x_{2}+4 x_{3}=b \\
x_{1}+4 x_{2}+10 x_{3}=b^{2}
\end{gathered}
$$

