Gary A. Harris Department of Mathematics Texas Tech University Lubbock, Texas g.harris@ttu.edu

Propose: To introduce the students who are preparing to teach K-4 to the basic algebraic manipulation capabilities and procedures of the TI-85.

Target: Ability, and confidence, to use the TI-85 for algebraic manipulations and reinforcement of basic algebra manipulation skills.

The so-called *super graphing calculators* like the TI-85, henceforth referred to as IT are having a revolutionary impact on mathematics education at all levels, both in terms of content and pedagogy. As a future teacher it is imperative that you become familiar with the capabilities of this modern and ever changing technology. But don't be alarmed, you don't have to learn it all at once.

We will begin by learning some very basic algebraic operations. Turn the machine on by pressing the **on** button from the keyboard. Turn it off by pressing first the **2nd** button then **off** ("under **on"**) from the keyboard. Notice, yellow button first accesses the "yellow commands" from the keyboard.

Turn your machine on and press **CLEAR** from the keyboard. What happens?_____

Next press 1 divide by 2 from the keyboard. What happens?______ What happens?______ Now press ENTER from the keyboard. What happens?______ Notice that the expression ,in usual algebraic form, and IT's calculation of the result, both appear on the same screen. This will turn out to be a nice feature of these machines.

In each of the following, first compute the result by hand (just the way you would expect your students to do it), then "input" the expression into IT just as given, with the expression on the screen press ENTER to compute the result. Record the answers in the appropriate places.

(The third column is to be filled in after doing exercise #13.)

	by hand	with IT	via exercise 13
1. 1/3			
2. + 1/3	· .		
3. 2/3 + 1/6			

4. 2(2 + 3)

in 2370.)

What happens if you leave off () and enter only 2*2 + 3?_____ 5. 2*3+2*4 6. 2(1/4). _____ 7. (1/4-2/3)3_____ _____ 8. ()6 ______ . . . _____ 9. ()5 _____ 10. (1+3)/2What happens if you leave off () and enter only 1 + 3 / 2? 11. (-1/3)(3/5) _____ (Here you must distinguish between the operation of subtraction and that of negation. To enter the negative of 1/3 you must press (-) 1 divided by 3 on the keyboard.) 12. ()(5/4 +1/4) _____ Notice, when asked to calculate the expression, IT gives a decimal representation (approximation) to the number. Wouldn't it be nice if IT could give the "exact" fractional representation of the expression that we expect our students to be able to obtain. For example in #3 we know that 2/3 + 1/6 = 5/6"exactly." Well, IT does have some limited "exact arithmetic" capabilities. Computer algebra systems like MAPLE have much

Open IT's CATALOG of built-in commands by pressing **2nd** then **CATALOG** on the keyboard. The menu that appears across the bottom of the screen will henceforth be referred to as the *bar menu*. A command in the bar menu is accessed by pressing the "F key" directly under it. For example, pressing the F1 key should invoke the command **PAGE** arrow down. What is the result of this command?

greater exact arithmetic capabilities. (You may see some of these

Keep using this command until you see the command >Frac. This is the command for converting a decimal to a fraction form. Boy is there a lot of stuff in the CATALOG, fortunately we will not need to use very much of it in this course. In fact, let's start building a *CUSTOM CATALOG* containing only those commands we plan to use. To do this use the *down arrow* in the upper right hand portion of the keyboard to "designate the command >Frac on the CATALOG screen." This done, choose **CUSTM** from the bar menu (press F3). We will load this command into our custom catalog by pressing the F-key under a blank spot in the new active bar menu. Unless you have already done such customization, pressing F1 will suffice. (Warning, if something is already in the F1 position this will replace it with >Frac.)

Now let's use our new command.

13. Redo IT's calculations for each of the expressions in 1 - 12 above, except now after IT computes each decimal representation, press CUSTOM on the keyboard and choose >Frac from the bar menu. What happens?______ Now press ENTER and record the results in the third column above.

_____Try the >Frac command on this last result. What did you get?_____Calculate the fraction by hand. Did you get the same result?_____

Two other editing features of IT are handy. The keyboard command INS is an abbreviation for the verb "insert," and the command DEL is short for "delete." Experiment with these commands to edit an expression like above.

The operations of squaring and square root are relatively obvious keyboard key strokes; however, more general exponent calculations

require what has become a common symbolism in computer/calculator jargon. Complete the following exercises as done in 1 -13 above:					
14. 2^2					
15. 2^3					
16. ()^4					
What happens if we leave off () and input only	^4 ?				
17. 4^()					
18. (2^2)^3					
19. (3^4)/(3^2)					
20. (3^2)/(3^4)					
21. (6^2)/(3)					
22. (2/3)^2					
23. (2+1)^2					
24. (-1)^()					

Now let's practice our new TI computation and editing skills on some more interesting commonly occurring expressions.

In each of the following exercises input the appropriate expression, using the given specific data, onto the screen and press ENTER one time to calculate it. To calculate the next number simply edit the expression on the screen appropriately. (Use 2nd ENTRY to recall the expression to the screen.)

Exercise A. Use the quadratic formula to find the two roots of each of the following polynomials:

If $a*x^2 + b*x + c = 0$ then

x =

_____ or

i. If $2x^{2}-5x-3 = 0$ then

x = ii. If $2x^2-1 = 0$ then	or
x = iii. If $x^2+x+1 = 0$ then	or
x =	or

Exercise B. The monthly mortgage payments are given by the formula

 $p = iA/(1-(1+i)^{(-n)}),$

where A is the amount borrowed, i is the interest per month (APR/12), and n is the total number of payment periods (12*number of years). What are the monthly payments if 100,000 is borrowed at 9% APR for each of the following time periods:

i. 30 years?

ii. 20 years?

iii. 10 years?

In each of the above cases what is the total amount, TA, paid back at the end of the loan period?

Exercise C.

i. 3	30 years?	
ii.	20 years?	
iii.	10 years?	
	· · · ·	

In each of the above cases what is the total amount, TA, paid back at the end of the loan period?

	TA =	
i.		
ii.		
iii.		