Chapter 3 Elementary Number Theory

The expression lcm(m,n) stands for the least integer which is a multiple of both the integers m and n. The expression gcd(m,n) stands for the biggest integer that divides both m and n.

Exercise. Find **lcm** and **gcd** in the TI-86 CATALOG and place them into your custom catalog.

Following the procedures of the first Chapter 1, compute each of the following integers.

	B&P	SGC	CAS	Comments
1. $gcd(6,8)$				
2. lcm(6,8)				
3. gcd(6,8)lcm(6,8)				
4. gcd(140,429)				
5. lcm(140,429)				
6. #4 * #5				
7. 140*429				

Exercise. Experiment with several different pairs of integers m and n computing gcd(m,n)*lcm(m,n) and m*n. What relationship is suggested by your experiment?

Let's drop the pencil calculations for the time being, OK?

	SGC	CAS	Comments
8. $gcd(101+45,36^2)$			
9. $lcm(5(1+4^3), 2^5)$			
10. 36/gcd(36,16)			
11. lcm(38,100)/gcd(38,100)			
13 lcm(1524 5587)			
13. lem(1524,5567)	[
14. lcm(1524,5588)			

Notice that #13 and #14 show us that bigger integers don't necessarily yield bigger lcm's. 15. gcd(10¹³,1050)

16. lcm	$(14^6, 15^{15})$)
---------	-------------------	---

17. gcd(your ss#,a friends' ss#

18. lcm(your ss#,same friends' ss#)

Two integers are said to be <u>relatively prime</u> if the biggest integer that divides both of them is 1.

Exercise. List all pairs of integers from 100 to 105 that are relatively prime.

An integer is said to be <u>prime</u> if its only divisors are 1 and itself, otherwise it is called <u>composite</u>. For example 2,3,5,&7 are the only primes less than 10. What are the primes between 10 and 20?

The MAPLE command "isprime" determines whether or not a given integer is prime. Use it to see if the following numbers are prime. In each case circle P if prime and C if composite.

* You might find the programs and the end of this chapter to be interesting. The **FUNDAMENTAL THEOREM OF ARITHMETIC** states that every integer can be factored in a unique way into a product of powers of primes.

Exercise. Use paper and pencil, aided by the TI-86 if necessary, to write each of the following numbers as a product of powers of primes:

The MAPLE command "ifactor" does this automatically. Now use it to compute the prime factorization for each of the following:

(Notice how just adding 1 to 10! reduced the number of prime factors.)

For two integers m & n with n > m we say the remainder of n divided by m is r if n = qm + r, for integers q &r with 0 < r < m. In MAPLE this remainder is denoted by "n mod m". In the TI-86 CATALOG it is denoted by "mod(n,m)".

Exercise Use P&B, SGC, and CAS to compute the following remainders:

Compute each of the following remainders using the TI-86 first and MAPLE next, as usual.

		SGC	CAS	_
19.	13200 mod 134			
20.	$(12^3+53) \mod 26$]
21.	400*23 mod 19]
22.	1321 mod (5*7)]
23.	45 ¹⁶ mod 2]
]

Exercise. Which answer in number 23 do you think is correct?

Exercise. Explain why an integer n is even exactly when n mod 2 = 0, and n is odd exactly when n mod 2 = 1.

Recall the statement of the **BINOMIAL THEOREM.**

 $(m + n)^k =$

and

Exercise. Use the binomial theorem to explicitly expand, (ie. compute the binomial coefficients)

i. $(x + y)^3 =$ ii. $(n + 1)^4 =$

Exercise. Explain why every power of an odd integer must be an odd integer also.

You should be able to compute each of the following **using brain only**. Do so and then check your answer using both technologies. Record your results in the appropriate places.

		Brain	SGC	CAS	Comments
24.	1342 mod 2				
25.	(10!+1) mod 2				
26.	$17^9 \mod 2$				
27.	17 ¹¹ mod 2				
28.	$17^{12} \mod 2$				
-				1 = 12 ·	

Exercise. Explain why the TI-86 thinks 17¹² is even, when we, and MAPLE, know better.

Reflection:

1. What are the main things you learned from Chapter 3?

2. What=s the hardest thing to understand from Chapter 3?

* Look at the following MAPLE programs. Try to determine what they should do and then execute them to see if you were correct. (To move from a line of MAPLE input to another line without MAPLE wanting to execute something, hold down the shift key as you press the enter key.)

```
Program I
> for i from 1 to 100
do
 if
  isprime(i)=true
    then print(i)
 fi;
od;
Program II
> for i from 100 to 105
  do
    for j from i to 105
       do
         if
           gcd(i,j)=1
            then print(i,j);
         fi;
       od;
   od;
```