Chapter 2

Floating point versus exact arithmetic

Compute each of the following expressions following the same procedures as in Chapter 1. Only now we can forget about " P " in $\mathrm{P} \& \mathrm{~B}$ but let's try to still use " B ".

Comments, especially with respect to

10. $1 / 6$!

12. $1 / 8!$		
13. $1+1 / 6!$		
14. $(1+1 / 6!) 10$		
15. $(1+1 / 6!) 100$		
16.		
$\frac{1}{50!}$		

Exercise. Explain the difference between the TI-86 answer in number 2 and in number 3 above.
\square
Exercise. Why does the TI-86 answer in number 5 agree with the MAPLE answer, while the TI-86 answer in number 6 differs from the MAPLE answer?

Exercise. Why does the TI-86 answer in number 8 agree with the MAPLE answer, while the TI-86 answer in number 9 differs from the MAPLE answer?

Exercise. In numbers 10-17 use the $>$ Frac command in the TI- 86 to try to obtain the MAPLE answers. Conversely use the evalf command in MAPLE to try to obtain the TI-86 answers. For which numbers does this work, for which does it not work, and why?

TI ans $>$ Frac \rightarrow	MAPLE ans evalf \rightarrow
10.	
11.	
12.	
13.	
14.	
15.	
16.	
17.	

17.

Exercise. Explain the meaning of the term "floating point arithmetic." (Look at 13-15)
\square
Exercise. What do you think the " f " stands for in the evalf command in MAPLE?
\square

Exercise. Experiment with different integers to see if you can determine which of the following expressions is "usually" the bigger. Show some of your calculations.
\square
\square
$(\mathrm{n}!)^{2}$ or $\left(\mathrm{n}^{2}\right)!$ \square
n^{n} or n ! \square
2^{n} or $\mathrm{n}!$

The MAPLE command convert(expression,fraction); converts the expression to fraction form. Try the following MAPLE sequence:
sqrt (2) =evalf(sqrt (2)); sqrt (2) =convert (evalf(sqrt (2)), fraction) ; What is the result?
\square
Why is this very misleading? What do you think is going on here?
\square
With the TI-86 compute sqrt(2) and then >Frac. What is the result?
\square

Does this mean the TI-86 actually knows about rational versus irrational numbers while MAPLE doesn't? What do you think is going on.? (Hint: Find a finite decimal that the TI can not convert to fraction form.)
\square
Experiment with both machines to determine whether or not the conversion from decimal to fraction form is an exact operation in either machine. (Hint: see if you can find two different decimals that convert to the same fraction.) Also find a finite decimal that neither machine can convert to a fraction form.
\square
Reflection: What are the main points the author wants you to get from the exercises in Chapter 2?

