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Abstract 

This study was situated in a semester-long classroom teaching experiment examining 

prospective teachers’ understanding of number concepts and operations. The purpose of 

this paper is to describe the learning goals, tasks, and tools used to cultivate prospective 

teachers’ understanding of addition and subtraction with whole numbers. Research 

regarding children’s understanding of whole number concepts and operations was used 

in developing learning goals, pathways for learning, and instructional tasks for the 

prospective teachers. Furthermore, prior research regarding prospective teachers’ whole 

number development supported the expectation that all of the instructional tasks were 

reasoned solely in base-eight. Classroom episodes indicate that base-eight allows 

prospective teachers to reason about addition and subtraction with whole numbers in 

similar ways that elementary aged students’ reason in base-ten. 
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Introduction 

Whole number concepts and operations are part of the core mathematics content of 

elementary schools in the United States (National Council of Teachers of Mathematics, 2000; 

National Governors Association Center for Best Practices & Council of Chief State School 

Officers, 2010). Yet research has shown that some elementary teachers lack conceptual 

understanding of these fundamental concepts (Ma, 1999). Beliefs held by many prospective 

elementary teachers include the notion that learning mathematics is no more than following a 

set of rules or predetermined steps, a view that is in direct conflict with a more conceptual 

approach to mathematics teaching and learning (Philipp, et al., 2007). Additionally, some 

prospective teachers (PSTs) believe that if they do not already know an elementary 

mathematical concept and they are in college, then the children they instruct will not be 

expected to know it (Phillip et al., 2007). These beliefs neglect the specialized knowledge 

necessary to successfully teach mathematics (Hill, Schilling, & Ball, 2004; Ma, 2009). 

Similar to previous research (Andreasen, 2006; McClain, 2003; Yackel, Underwood, & Elias, 

2007), this study was guided by research regarding elementary aged children’s understanding 

of addition and subtraction with whole numbers. 

 

Children’s Understandings of Addition and Subtraction with Whole Numbers 

Research has shown that elementary aged children develop a variety of strategies when 

reasoning with whole number addition and subtraction context problems (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999; Carpenter, Hiebert, & Moser, 1983). Initially, 

when given context problems, many children attempt to directly model the action or 

relationship with physical objects or drawings that exists in a problem. As their thinking 

matures, children eventually transition from direct modeling strategies, using physical 
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objects, to counting strategies without direct modeling (Carpenter & Moser, 1984). These 

counting strategies include counting-on from the first addend and counting-on from the larger 

addend. Finally, children begin to represent solutions to problems that are not consistent with 

the structure of the problem (Carroll & Porter, 1998). At this point, children develop flexible 

procedures relying more on recalled and derived number facts and less on the established 

computational algorithms taught in most elementary classes (Carpenter & Moser, 1984).   

When children are encouraged to develop their own meaningful computational strategies 

prior to algorithms being introduced, they demonstrate their mathematical understanding 

rooted in number sense and place value (Beishuizen, 1993; Kamii & Joseph, 1988; Madell, 

1985; Selter, 2002; Thompson, 1994). After interviewing elementary students, Carroll and 

Porter (1997) concluded that the students’ idiosyncratic tendencies often do not fit the 

standard algorithms taught in U.S. schools. Carroll and Porter (1998) also noted that it is 

frequently beneficial to allow students to derive their own algorithms because different 

problems are better suited to work with certain numbers. This point of view is supported by 

Thompson (1994) who reported that elementary aged students preferred adding from left to 

right. When doing so, the children developed both a partial sums strategy where students 

would add according to the addends place value and a cumulative sums strategy where the 

students would calculate a running sum when adding portions of a decomposed second 

addend. Similarly, Beishuizen (1993) identified analogous left to right mental strategies for 

addition. Among the strategies were a split strategy where addends are added according to 

place values, and a jumping strategy where a collective sum is amassed. Finally, Selter (2002) 

described three-digit number strategies. Among these number strategies rooted in place value 

was a hundreds, tens, units strategy where children would perform the operation in pieces 

according the place value; and the stepwise strategy in which a child would add or subtract 

the second number portion by portion beginning with the hundreds portion of the number and 

ending with the ones portion of the number.  

Moreover, these findings document that elementary aged students are able to achieve 

computational flexibility by using a variety of procedures or strategies. As Ma (1999) 

emphasized, “being able to calculate in multiple ways means that one has transcended the 

formality of the algorithm and reached the essence of the numerical operations—the 

underlying mathematical ideas and principles” (p. 112). Since this flexibility demands more 

of children than simply following steps to compute, methods and procedures should be tools 

to solve problems rather than the goals of mathematics instruction (National Research 

Council, 2001). Consequently, when children are allowed to invent addition and subtraction 

strategies, they strengthen their mathematical connections between place value, estimation, 

number sense, and properties of operations (Beishuizen, 1993; Carroll & Porter, 1998; 

Huinker, Freckman, & Steinmeyer, 2003; Kamii, Livingston, & Lewis, 1993; Madell, 1985; 

Selter, 2002; Thompson, 1994). Given that children’s strategies for whole number addition 

and subtraction can be complex and varied, PSTs must possess mathematical understandings 

equally complex and varied.  

 

Prospective Teachers’ Explorations of Addition and Subtraction with Whole Numbers 

In order to teach children in the future, a PST should possess more than the ability to 

perform an algorithm (Thanheiser, 2009), especially since some believe learning mathematics 

is no more than following a set of rules in a predetermined systematic fashion (Philipp et al., 

2007). However, their familiarity with base-ten can prevent them from deeply exploring some 

whole number concepts they should have learned as children (Hopkins & Cady, 2007). One 

method used by mathematics educators to circumvent this familiarity and to create cognitive 

dissonance is to situate whole number tasks in numeration systems other than base-ten; these 

number systems include base-five, base-eight and base-twenty (Andreasen, 2006; Cady, 
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Hopkins, & Hodges, 2008; McClain, 2003; Thanheiser & Rhoads, 2009; Yackel, Underwood, 

& Elias, 2007). Although the PSTs are not experiencing whole number concepts and 

operations for the first time as children would be, by exploring whole number concepts in this 

manner, prospective teachers are expected to explore developmental pathways that are similar 

to ones elementary children experience. 

As in previous research (Andreasen, 2006; McClain, 2003; Yackel, Underwood, & Elias, 

2007) base-eight was leveraged in this study primarily because it was unfamiliar to 

prospective teachers while still mimicking number patterns that occur in base-ten. However, 

results from previous studies cautioned that a potential reliance on base-ten could surface 

(Andreasen, 2006; Cady, Hopkins, & Hodges, 2008; McClain, 2003).  As PSTs teachers 

solved problems in these studies, they developed tricks using base-ten to solve problems 

posed in other bases. As a result, they manipulated symbols rather than attempting to 

understand the numerical quantities and mathematical connections when solving problems 

(Cady, Hopkins, & Hodges, 2008; McClain, 2003). To avoid this type of symbolic 

manipulation, all of the whole number instructional tasks described in this paper were posed 

in base-eight with the explicit expectation that the PSTs solve the problems solely using base-

eight, and not convert from base-eight to base-ten and then back to base-eight.  

 

Method 

The whole number learning goals in this part of study were based upon the big ideas 

through which elementary aged children progress when developing proficiency with respect 

to whole number concepts and operations.  The tasks in the instructional sequence were 

grouped into three phases around the mathematical concepts shown in Table 1. 

 

Table 1 
Initial Instructional Sequence for Whole Number Concepts 

Phase Learning goal 

One Count and unitize objects efficiently 

Two Flexible representations of numbers 

Three Computational Strategies 

 

 At each phase of the instructional sequence, the course instructor engaged PSTs in 

instructional tasks needed to develop the prospective teachers’ understanding of whole 

numbers. To aid in this mathematical development, the course instructor introduced various 

pedagogical content tools (Rasmussen & Marrongelle, 2006). A pedagogical content tool is a 

notation, diagram, or graphical representation of one’s thinking that can be used to answer 

new problems. These tools allowed PSTs to describe their mathematical thinking and 

simultaneously allowed the instructor to emphasize learning goals. The focus of this paper is 

to describe the learning goals, tasks, and tools used to cultivate prospective PSTs’ 

understanding of addition and subtraction with whole numbers.  

 

Setting and Participants 

This study was situated within a classroom teaching experiment in an elementary 

education mathematics content course taught in a college of education at a major university 

located in the southeastern United States. Participants in the study included 33 female PSTs 

in their junior or senior academic year majoring in elementary education or exceptional 

education. Class sessions were held twice per week; each session was one hour and fifty 

minutes long. Ten class sessions were devoted to the whole number concepts and operations 

instructional unit (for details regarding complete whole number instructional sequence see 
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Roy, 2008); of these ten class sessions, six were devoted to counting, addition, and 

subtraction whereas the other four sessions were devoted to multiplication and division. 

During each class session of the whole number concepts and operations instructional unit, 

the PSTs were posed with mathematical tasks in three phases. First, the instructor launched a 

task by presenting a base-eight mathematical scenario in the form of a word problem, picture, 

or both.  Next, the prospective teachers solved the problems in ways that made sense to them 

mathematically. The prospective teachers worked either individually or in groups of two to 

four individuals.  Finally, the course instructor facilitated whole-class discussions in order to 

allow the PSTs an opportunity to examine different solutions and strategies. 

 

Data Collection/Analysis 
Each of the ten class sessions were videotaped to record the whole class dialogue that 

occurred between the instructor and the PSTs, and between the PSTs themselves. These video 

records were then transcribed for analysis. The transcripts were then independently coded by 

at least two members of the research team to identify and verify classroom episodes 

according to the mathematical tasks. The episodes were identified by the instructional task 

with which the PSTs were engaged. These episodes were then compared to previous and 

subsequent episodes to ascertain normative lines of reasoning. The findings illustrate a 

synthesized overview documenting the PSTs’ collective thinking about whole number 

addition and subtraction. This methodology is consistent with the four-stage constant 

comparative method described by Glasser and Strauss (1967) and the methodology used for 

conducting longitudinal analysis described by Cobb and Whitenack (1996).  

 

Findings 
Since the PSTs were unfamiliar with base-eight, initial tasks were created to support 

familiarity of base-eight through counting. To accomplish this, context problems were 

assigned with the expectation that the PSTs’ solutions were completely reasoned using base-

eight.  

In order to aid prospective teachers in maintaining this expectation, names of base-eight 

numbers were developed to differentiate between the base-eight and base-ten number 

systems. When introducing base-eight nomenclature, the instructor had the prospective 

teachers count and skip count. When doing so the PSTs were confronted with 108 and 1008. 

For example, when counting by 18 beginning with 768 and counting to 1028, the prospective 

teachers would say sevenee-six (768), sevenee-seven (778), one-hundree (1008), one hundree-

one (1018), one-hundree-two (1028). When reading this paper all base-eight numbers should 

be understood to follow this terminology.  

Furthermore, the instructor and prospective teachers negotiated social norms such as 

explaining and justifying a solution, and making sense of a peer’s solution, and the 

sociomathematical norms: acceptable and different solutions (Cobb & Yackel, 1996; Roy, 

Tobias, Safi, & Dixon, 2010). In the end these norms were vital in creating the mathematical 

climate needed to address the learning goals of the instructional sequence. 

 

Counting Strategies in Context 
To assist the PSTs in describing their counting strategies in base-eight, the instructor 

introduced an empty number line (Gravemeijer, 1994; Klein, Beishuizen, & Treffers, 1998; 

Treffers, 1991). The empty number line begins without any numbers recorded on it; as an 

individual records their thinking, they fill in numbers on the number line. Two unique ways 

of counting surfaced when using the empty number line: (a) counting by 18; and (b) counting 

by groups of 108 and 18. The dialogue that follows documents each of the ways PSTs 

reasoned using the empty number line.  
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Counting by 18. In the following episode, Cordelia articulated the method in which she 

reasoned to solve the following join-result unknown context problem type (Carpenter, 

Fennema, et al., 1999). 

 

Marc had 128 roses. He bought 378 more. How many did he buy altogether? 
 

As Cordelia described her reasoning, the instructor simultaneously recorded her thinking 

on the whiteboard completing the empty number line shown in Figure 1. 

 

Figure 1:  

Cordelia’s representation of solving 128 + 378. 

 
Cordelia: I counted from the 378, 408, 418, 428…  

Instructor: So you counted by ones on this.  

Cordelia: … 458, 468, 478 …  

 

When using a counting by 18 strategy to solve the context probem, Cordelia begins with 

the greater of the two addends and counts on each individual rose until she arrives at her 

result, 518. This counting on from the greater addend strategy allowed Cordelia to easily 

accumulate the start value in the problem, 128, from the change, 378, value while crossing the 

decade numbers 408 and 508. PSTs identified and described solution processes including the 

counting strategies counting up by 18, and counting on from the larger described by Baroody 

(1987) in his study with kindergarten children. 

 

Counting by Groups of 108 and 18. Other PSTs utilized more efficient counting 

strategies when solving the problem. For example, Claire represented her thinking by 

counting by 108 and 18 on the empty number line as shown in Figure 2. 

Figure 2: 

 Claire’s representation of 128 + 378 

 
Claire:  378 plus 28. 

Instructor:  Okay, so if I do 378 plus 28. 

Claire: It is 418, then you add 108, and it would be 518.  

 

In her explanation, Claire found it easier to decompose 128 by place value into 28 and 108, 

and then add each of the decomposed parts to 378 to find the unknown result. In Claire’s 

strategy, she did not find it necessary to add units individually as Cordelia did in the 

previously presented strategy. As such, Claire provided the class with a different and more 
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sophisticated jumping or cumulative sums or stepwise strategy that children use to solve 

problems in base-ten (Beishuizen, 1993; Bobis, 2007; Selter, 2002; Thompson, 1994).  

As the PSTs became more comfortable solving base-eight context problems, their 

solution strategies using groups of 108 and 18 became more inventive. In the following 

episode, the PSTs discussed solution strategies to the following separate context problem 

where the result is unknown (Carpenter, Fennema, et al., 1999). 

 

There were 518 seagulls on the beach, and 228 flew away. How many are still on the 

 beach?  

 

As with previously presented counting strategies, a common practice for members of the 

class was to use the empty number line to represent and support their reasoning, see Figure 3. 

 

Figure 3:  

Cordelia’s representation of 518 − 228 

 
Cordelia:  Well I started with just 228 and I went plus 208 to get 428 and then I 

   went 438, 448, 458, 468, 478, 508, 518 and I counted my lines, 18, 28, 38, 

   48, 58, 68, 78, and I added 78 to my 208, 278. 

 

As Cordelia communicated her thought process, her own reasoning in base-eight evolved 

and was quite different from the “counting by 18” strategy she presented when solving the 

previous problem [Figure 1]. Initially, the dissimilarity was subtle as Cordelia also drew a 

number line that accounted for two groups of 108 and seven 18s. However, instead of placing 

518 on the number line and finding the difference between the numbers by using subtraction, 

she instead counted up from 228 to 518. Cordelia’s counting on strategy exhibited 

mathematical connections between the inverse operations of addition and subtraction, this 

type of counting on strategy to find the difference became one that many of the PSTs 

employed when solving subtraction problems. 

 Another strategy emerged as Edith described her reasoning about the same problem, 

shown in Figure 4. 

Figure 4:  

Edith’s representation of 518 − 228 

 
Edith:   I saw that it was 518 seagulls minus 228. And I realized that, if I added 

   one to 518 I could easily from that number subtract 308 to get 228. So 

   then all I did was take 308 minus the 18 that I added originally and got 

   278.  
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To start the problem, Edith placed both 228 and 518 on the number line realizing that the 

difference was the amount between both numbers. Edith then used her understanding of 

inverse properties and part whole relationships to add 18 to the number of seagulls on the 

beach to solve the problem “more easily.” Edith finalized her thinking by subtracting 18 at the 

end of the problem in order to obtain the distance between 518 and 228. This type of 

compensation subtraction strategy (Bobis, 2007) became one used by several other members 

of the class.  

In the presented counting strategies and their empty number line representations, 

prospective teachers used mathematical connections between composition of numbers and 

properties of numbers to solve various addition and subtraction context problems; this is in 

contrast to previously conducted research, where some prospective teachers missed these 

connections by only focusing on the ability to perform an algorithm or used tricks to solve 

computational problems (McClain, 2003).  

 

Strategies Emphasizing Unitizing 

Although it appeared PSTs made place value connections in their counting strategies 

using the empty number line, it was unclear to the research team if they were unitizing 

quantities when using 108 in their reasoning. More specifically, from their reasoning there 

was no evidence that the PSTs simultaneously viewed 108 as one group and as 108 individual 

units (Cobb & Wheatley, 1988; National Council of Teachers of Mathematics, 2000) when 

using the empty number line. As a result, during the second phase of the instructional 

sequence, the instructor introduced instructional tasks emphasizing PSTs’ ability to flexibly 

represent a number. The instructor did so by having them investigate equivalence through 

transformation tasks (Yackel, Underwood, & Elias, 2007) that supported regrouping. In order 

to support this mathematical development, the instructor introduced a Candy Shop Scenario 

previously used with children (Cobb, Boufi, McClain, & Whitenack, 1997; Cobb, Yackel, & 

Wood, 1992; Wood, 1999). Prospective teachers were asked to package candy in Boxes, 

Rolls, and Pieces as shown in Figure 5; 108 pieces = 18 roll and 108 rolls = 18 box. 

 

Figure 5: 

 Candy Shop Package Types 

 
 

The PSTs in the class used their understanding of unitizing and the 108 to 18 relationship 

to compose or decompose equivalent quantities. This is important because the mathematical 

emphasis was on not only the package type, but also the quantity that the package contained. 

Three strategies using boxes, rolls, and pieces emerged as students solved the following 

separate-change unknown context problem (Carpenter, Fennema, et al., 1999). 

 

There were 628 lemon candies in the candy shop. After a customer bought some 

 there were only 258 lemon candies in the shop. How many lemon candies did the 

 customer buy? 

 

In the following solution presented, Claire used Candy Shop terminology as she described 

using rolls and pieces to solve the presented transaction task (Yackel, Underwood, & Elias, 

2007). The instructor recorded her thinking and drew the picture represented in Figure 6. 
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Figure 6:  

Claire’s solution 

 
Claire:  I drew 68 rolls and 28 pieces. And then to find out how many  

   there were I took away 258, so I had to convert 18 of the rolls to pieces.  

Instructor:  So you didn’t draw 258 here, you just took it away from here? 

Claire:  I made that 18 roll into pieces, and then I took away 28 rolls. 

Instructor:  So you took the rolls away first. 

Claire:  Yeah, and then I crossed out 58 pieces. And that left me with 358.  

 

In her explanation, Claire implemented a strategy that was based on finding equivalent 

amounts of candy. Because Claire was unable to remove 258 candies from 628 without 

regrouping, she converted 18 roll into pieces. Claire then performed the operation by 

addressing the larger portion of the result when she subtracted the 28 rolls followed by 58 

pieces from the decomposed total 58 rolls and 128 pieces to arrive at her solution, 358.  

Edith also described using rolls and pieces to solve the context problem; however, instead 

of decomposing a roll into pieces, Edith composed 628 as 58 rolls and 128 pieces. The picture 

Edith used is represented in Figure 7.  

Figure 7:  

Edith’s solution 

 
Edith:   I started out, I knew that if I drew, 6 rolls I would have to break them 

   down, like break one apart to get the 58 pieces for 258, so I just drew 58 

   rolls and 128 pieces, and then I took away the 58 pieces and then took 

   the 28 rolls.  

Instructor:  So what was different about how Edith solved the problem? Jane. 

Jane:   She did pieces first.  

Instructor:  She did, she took away her pieces first. What else is different? Jackie. 

Jackie:  She didn’t draw the 68 rolls and then convert 18 into pieces. She just 

   kind of did that in her mind, she drew 58 rolls to start with.  
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The roots of each of these flexible transaction strategies can be traced back to counting by 

108 and 18 using the empty number line, and flexibly representing equivalent quantities using 

boxes, rolls and pieces found in the Candy Shop.  

 

Conceptual Addition and Subtraction Algorithms 
The final learning goal of the instructional sequence was to assist the prospective teachers 

in developing procedural fluency or efficient, flexible, and accurate strategies for computing 

(National Council of Teachers of Mathematics, 2000, National Research Council, 2001). The 

instructor introduced an Inventory Form, shown in Figure 8 as a more efficient way to record 

and support learning. This tool was used to document transactions as candy totals change 

(Yackel, Underwood, & Elias, 2007) as in the following join-result unknown context problem 

(Carpenter, Fennema, et al., 1999). 

 

Figure 8: 

 Join-result unknown context problem 

 
 

The introduction of the Inventory Form led PSTs to an algorithmic approach to solving 

the context problems; for example, Claire demonstrated her reasoning in the representation 

shown in Figure 9. 

 

Figure 9: 

 Claire’s addition algorithm 

 
Instructor:  And then you said you converted them; to keep track of them? Okay. 

   … Is that the order you did it? 

Claire:  Well I guess, okay, no, okay, and then I turned into numbers and then I 

   worked with the numbers, so I had the 148 pieces, the 78 rolls and the 

   38 boxes, and then I did what we did with the Inventory Forms, and I 

   put the pieces to rolls, and rolls to boxes. 

 

In her solution, Claire provided a mathematical justification, “I put the pieces to rolls, and 

rolls to boxes,” connecting her method of solving the problem, and as a result described the 

computation conceptually. Although, she did not realize it, Claire invented her own column 

procedure to add the numbers (Kammii & Joseph, 1988; Madell, 1985). Claire’s process was 

followed by Caroline’s solution process using Inventory Forms shown in Figure 10.  
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Figure 10:  

Caroline’s addition algorithm 

 
Caroline:  I wrote 28 for the boxes, 38 for the rolls, 68 for the pieces. 18 for the 

   boxes, 48 for the rolls, 68 for the pieces, and I added starting from the 

   pieces. 

Instructor:  What did you write down here? 

Caroline: I wrote 48 pieces, and I added a roll.  

Instructor:  So you never wrote the 18 here [referring to the sum in the pieces]? 

Caroline: No; I just added 18 onto the rolls.  

Instructor:  Okay. 

Caroline:  And then I got 108 rolls, so I just wrote 0, and put 18 for the boxes. 

… 
Caroline:  So yeah. And it’s okay to carry those over because 108 pieces equals 18 

   roll, and so instead of writing the 148, I wrote 18 roll and 48 pieces. The 

   same thing with the rolls to boxes, I converted them. 

 

In each of the presented solution methods, the students described conceptual ways of 

solving the problem using place value. Claire described how she added in columns prior to 

regrouping her boxes, rolls, or pieces, while Caroline described a traditional addition 

algorithm method utilized in the United States using conceptually appropriate language 

emphasizing unitizing. 

These conceptual justifications were exhibited even when explaining non-context 

problems, like the one shown in Figure 11. 

Figure 11: 

 4178  2538 in an Inventory Form 

 
Olympia:  Okay. Oh, since we started out with 78; it was a little easier I guess. I 

   know 38 from 78 is 48, and then …  

Instructor:  Put the 48 here [indicated the pieces column]? 

Olympia:  Yes. I know I can’t take away 58 from 18 so I have to break up a box. 

And when you break down the box, you take away 18 box, cause 

you’re breaking down 18 box, so now you are left with 38 in the box 

column, and it becomes 108 rolls in the rolls column, no it doesn’t, 

you, you bring 108 rolls over so now it becomes 118 rolls. And now, 

you take the 58 rolls from the 118 rolls, that becomes 48, and 28 boxes 

from 38 boxes is 18. And now I checked it with addition, and I did 28 

boxes, 58` rolls, 38 pieces plus 18 box, 48 rolls, 48 pieces. I know 38 plus 

48 is 78, and 58 plus 48 is 118, and I know 28 boxes plus 18 box is 38, 

and … I added the 18 in the, the first one, with the 38, and I got 48 so it 

becomes 48 boxes, 18 roll, 78 pieces.  
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In the presented dialogue, Olympia determined the accuracy of her answer to a 

subtraction problem with addition. In her “check,” Olympia described the addition steps she 

used to arrive at the minuend, 4178. As PSTs’ reasoned with Inventory Forms, their addition 

or subtraction strategies folded back to counting strategies such as counting on by groups 

using an empty number line and flexibly representing numbers using boxes, rolls, and pieces.  

 

Discussion 
The development of PSTs’ understanding of whole number concepts and operations was 

emphasized in this study for two reasons. First, since it is a core component of elementary 

school mathematics, its importance is inherent to future mathematics learning (National 

Council of Teachers of Mathematics, 2000; National Governors Association Center for Best 

Practices & Council of Chief State School Officers, 2010). Second, PSTs are entering the 

profession lacking the depth of knowledge necessary to support the unique understandings 

children have of whole number concepts and operations (Ball, 1990).  

The addition and subtraction strategies presented in this paper document the maturation 

and flexibility in which PSTs’ reason conceptually about context problems in base-eight. The 

expectation that all participants reason in base-eight allowed them to experience mathematics 

in ways similar to how children experience learning whole number concepts and operations 

in base-ten. In the presented study, many PSTs reasoned in base-eight in ways similar to how 

children reason in base-ten (Beishuizen, 1993; Carroll & Porter, 1998; Huinker, Freckman, & 

Steinmeyer, 2003; Kamii, Livingston, & Lewis, 1993; Madell, 1985; Selter, 2002; 

Thompson, 1994). For example, the solutions that the PSTs presented were less procedural 

and were supported using a deep conceptual understanding of addition and subtraction. This 

conceptual understanding may assist these future teachers in understanding children’s varied 

and unique ways of thinking about whole number addition and subtraction. In the end, the 

PSTs came to a surprising conclusion about their experience in base-eight and how it is 

similar to base-ten, as exemplified by the following classroom exchange: 

 

Katie:   I thought a lot about this on many nights that I can’t sleep; base-ten. 

Instructor:  Okay, how many of you are thinking about this class outside of class? 

[most of the students raise their hands]  I’m happy. 

Katie:   When you first said that we were going to learn base-eight, I thought it 

  was going to be something it isn’t, base-eight and base-ten aren’t really 

  different, they’re alike, I don’t really know how to explain it, they’re 

  like the same thing, just missing, they’re not different … [Laughing] 

  Does anybody know what I’m talking about? They’re not like … 

Sarah:  They’re the same process; they’re exactly the same for both. 
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