Take-Home Final, MATH5382

Due: 12/10/2025 Wednesday.

- 1. Using the definition of conditional expectation,
- (1) Prove that $\mathbb{E}(\xi|\mathcal{G}) = \xi$ if ξ is \mathcal{G} -measurable.
- (2) Prove that $\mathbb{E}(\xi|\mathcal{G}) = \mathbb{E}\xi$ if ξ and \mathcal{G} are independent.
- (3) Find $\mathbb{E}[\xi|I_A]$.
- 2. Given the joint density of (X,Y) by f, find the $\mathbb{E}[X|Y]$.
- 3. Let X_n be a sequence of random variables with $\sup_n \mathbb{E}|X_n| < \infty$. Is such a sequence uniform integrable? Is such a sequence tight?
 - 4. Present an example that $X_n \Longrightarrow X$ but $F_n(x) \to F(x)$ fails for some x.
 - 5. Prove that $X_n \to a$ in probability if and only if $X_n \Longrightarrow a$.
- 6. Let X_n be an i.i.d sequence random variables with mean m. Let T be a \mathbb{N} -valued random variable independent of $\{X_n\}$. Find the $\mathbb{E}\sum_{n=1}^T X_n$.
 - 7. Prove that $\mathbb{E}|X| < \infty$ iff $\sum_{n=1}^{\infty} \mathbb{P}(|X| > n) < \infty$.