Homework 2

Due 10/13/2023 Friday

1. Suppose f and g are two measurable functions on (Ω, \mathcal{F}) . Prove that f+g is also measurable.

Answer: Suppose f_n and g_n are simple functions with limits f and g respectively. Then it is easy to see that $f_n + g_n$ has the limit f + g. Therefore it suffices to show that $f_n + g_n$ is also measurable. This is obvious because f_n and g_n are both simple functions.

2. State Fatou's lemma. Give an example that Fatou's lemma fails if $f_n \geq 0$ is not satisfied.

Answer: Consider $f_n(x) = -1 \times I(x \in (n, n+1))$. It is easy to see that $f_n \to 0$ a.s. While

$$\int f_n dx = -1 < \int f dx = 0,$$

which violates the Fatou's lemma.

3. State the dominant convergence theorem. Give an example that the theorem fails if g is not integrable.

Answer: Consider $f_n(x) = -1 \times I(x \in (n, n+1))$. It is easy to see that $f_n \to 0$ a.s. with $|f_n| \le 1$, While $\int 1 dx = \infty$.

$$\int f_n dx = -1 < \int f dx = 0,$$

which violates the dominant convergence theorem.

4. In the probability measure space (Ω, \mathcal{F}, P) (i.e. $P(\Omega = 1)$). Prove that if $X_n \to X$ in probability and $|X_n|$ is uniformly bounded, the $\mathbb{E}X_n \to \mathbb{E}X$.

Answer: Note that for any $\varepsilon > 0$,

$$\mathbb{E}|X_n - X| = \mathbb{E}|X_n - X|I(|X_n - X| \ge \varepsilon) + \mathbb{E}|X_n - X|I(|X_n - X| \le \varepsilon)$$

$$\le K\mathbb{P}(|X_n - X| \ge \varepsilon) + \varepsilon$$

By the convergence in probability, we have

$$\limsup_{n\to\infty} \mathbb{E}|X_n - X| \le \varepsilon.$$

By the arbitrariness of $\varepsilon > 0$, we know $\mathbb{E}|X_n - X| \to 0$. Consequently, $\mathbb{E}X_n \to \mathbb{E}X$.

5. Suppose X_n is a uniformly bounded sequence of real-valued random variables. If $X_n \Longrightarrow X$, then $\mathbb{E} X_n \to \mathbb{E} X$.

Answer: Without loss of generality, we suppose $X_n, X \ge 0$. Otherwise, we work with $X_n + M$ for some large M > 0.

In this case, for some M > 0, (we select such that $F_n(M) = F(M) = 1$)),

$$\mathbb{E}X_n = \int_0^\infty (1 - F_n(x)) dx = \int_0^M (1 - F_n(x)) dx$$

Since $F_n(x)$ converges to F(x) on the continuous points of F(x) and F has at most countable many discontinuous points, $F_n \to F$ a.s. (with respect Lebesgue measure). Note that $|1 - F_n| \le 1$ and $\int_0^M 1 dx < \infty$, dominant convergence theorem yields that

$$\mathbb{E}X_n = \int_0^M (1 - F_n(x)) dx \to \int_0^M (1 - F(x)) dx = \mathbb{E}X.$$

The proof is complete.

6. Present an example that $\{f_n\}$ is uniformly integrable, while $\{f_n\}$ can not be bounded by an integrable function.

Let $s_n = \sum_{k=1}^{n-1} \frac{1}{k^2}$ and $f_n(x) = nI(x \in [s_n, s_n + \frac{1}{n^2}])$. Because

$$\int f_n^2(x)ds = 1$$

for all n, f_n is uniformly integrable. While $g = \sup_n f_n = \sum_n f_n$ with

$$\int g dx = \sum \int f_n dx = \sum \frac{1}{n} = \infty.$$

7. Prove that if $X_n \to^P X$ and $Y_n \Longrightarrow Y$, then $X_n + Y_n \Longrightarrow X + Y$. The problem has a typo. The original problem has the following counter example.

Let X be a standard normal ε_1 and $X_n = \varepsilon_1$. It is obvious that $X_n \to X$ in probability. Let $Y_n = -\varepsilon_1$ for n being odd and $Y_n = \varepsilon_2$ for n being even. Then $X_n + Y_n = 0$ for n being odd and $X_n + Y_n$ is $\varepsilon_1 + \varepsilon_2$ which is a normal distribution with mean 0 and variance 2. Such a sequence has no limit in distribution.

7. Prove that if $X_n \to^P a$ and $Y_n \Longrightarrow Y$, then $X_n + Y_n \Longrightarrow a + Y$.

The above is the so-called Slutsky's theorem

$$\limsup_{n} \mathbb{P}(X_{n} + Y_{n} \leq z) = \limsup_{n} \left(\mathbb{P}(X_{n} + Y_{n} \leq z, |X_{n} - a| \leq \varepsilon) + \mathbb{P}(X_{n} + Y_{n} \leq z, |X_{n} - a| > \varepsilon) \right)$$

$$\leq \limsup_{n} \mathbb{P}(|X_{n} - a| \leq \varepsilon) + \limsup_{n} \mathbb{P}(Y_{n} \leq z - a + \varepsilon) \leq \mathbb{P}(Y \leq z + a + \varepsilon)$$

Here we note that $(-\infty, z + a]$ is a closed set.

$$\liminf_{n} \mathbb{P}(X_n + Y_n > z) - \liminf_{n} \left(\mathbb{P}(X_n + Y_n > z, |X_n - a| \le \varepsilon) + \mathbb{P}(X_n + Y_n > z, |X_n - a| > \varepsilon) \right)$$

$$\geq \liminf_{n} \mathbb{P}(Y_n > z - a - \varepsilon) \geq \mathbb{P}(Y > z - a - \varepsilon)$$

Here we note that $(z - a - \varepsilon, \infty)$ is an open set.

When z - a is a continuous point of the distribution of Y (i.e. z is a continuous point of the distribution function of Y + a). we have

$$\lim_{n} \mathbb{P}(X_n + Y_n \le z) = \mathbb{P}(Y + a \le z).$$

The proof is complete

8. Provide an example that $X_n \Longrightarrow X$ and $Y_n \Longrightarrow Y$, while $X_n + Y_n \Longrightarrow X + Y$ fails. Solution: Suppose ε_i are i.i.d standard normal variable.

Let $X_i = \varepsilon_1$ and $Y_i = \varepsilon_2$. $X = Y = \varepsilon_3$. $X_i + Y_i$ is N(0,2) while $X + Y = 2\varepsilon_3$ is N(0,4).