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Submanifolds ...

@ An isometric immersion x: M — [E™ of a submanifold M in
Euclidean m-space is called finite type, if x identified with the
position vector field of M in IE™ can be expressed as a finite sum of
eigenvectors of the Laplacian A of M, i.e., x = xg + Zf-‘zl X;, where
Xp is a constant map, xi, X2, ..., Xx hon-constant maps, and
Ax=Aixi, A e R, i=1,2,..., k.
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@ An isometric immersion x: M — [E™ of a submanifold M in
Euclidean m-space is called finite type, if x identified with the
position vector field of M in IE™ can be expressed as a finite sum of
eigenvectors of the Laplacian A of M, i.e., x = xg + Zf-‘zl X;, where
Xp is a constant map, xi, X2, ..., Xx hon-constant maps, and
Ax=Aixi, A e R, i=1,2,..., k.

o If A; are different, M is called k-type. See [9] for details.
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Submanifolds ...

@ An isometric immersion x: M — [E™ of a submanifold M in
Euclidean m-space is called finite type, if x identified with the
position vector field of M in IE™ can be expressed as a finite sum of
eigenvectors of the Laplacian A of M, i.e., x = xg + Zf-‘zl X;, where
Xp is a constant map, xi, X2, ..., Xx hon-constant maps, and
Ax=Aixi, A e R, i=1,2,..., k.

o If A; are different, M is called k-type. See [9] for details.

o Referring to Chen [8 — 11], geometers have been studying finite type
submanifolds, whose immersion into Euclidean space E™ (or
pseudo-Euclidean space [E]') is achieved using a finite number of
eigenfunctions of their Laplacian, for nearly half a century.
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Submanifolds ...

@ A Gauss map G is called 1-type if it satisfies AG = AG, where A is
the Laplace—Beltrami operator and A is a constant.
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Submanifolds ...

@ A Gauss map G is called 1-type if it satisfies AG = AG, where A is
the Laplace—Beltrami operator and A is a constant.

@ A Gauss map G is called 2-type if it satisfies AG = A;G, where A is
the Laplace—Beltrami operator, A1,A, are different constants.
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Submanifolds ...

@ Takahashi [40] demonstrated that a connected Euclidean submanifold
is of 1-type if and only if it is either minimal in IE™ or minimal in
some hypersphere of [E™.
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Submanifolds ...

@ Takahashi [40] demonstrated that a connected Euclidean submanifold
is of 1-type if and only if it is either minimal in IE™ or minimal in
some hypersphere of [E™.

@ The simplest submanifolds of finite type, next to the minimal ones,
are 2-type spherical submanifolds (where "spherical" indicates
immersion into a sphere).
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@ Takahashi [40] demonstrated that a connected Euclidean submanifold
is of 1-type if and only if it is either minimal in IE™ or minimal in
some hypersphere of [E™.

@ The simplest submanifolds of finite type, next to the minimal ones,
are 2-type spherical submanifolds (where "spherical" indicates
immersion into a sphere).

@ Some key results on 2-type spherical closed submanifolds were
obtained by Barros and Chen [5], Barros and Garay [6], Chen [9].
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Submanifolds ...

Takahashi [40] demonstrated that a connected Euclidean submanifold
is of 1-type if and only if it is either minimal in IE™ or minimal in
some hypersphere of [E™.

The simplest submanifolds of finite type, next to the minimal ones,
are 2-type spherical submanifolds (where "spherical" indicates
immersion into a sphere).

Some key results on 2-type spherical closed submanifolds were
obtained by Barros and Chen [5], Barros and Garay [6], Chen [9].

Garay [24] served an extended Takahashi's theorem in E™.
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Submanifolds ...

@ Cheng and Yau [15] worked on hypersurfaces with constant scalar
curvature, while Chen and Piccinni [13] studied submanifolds with
finite type Gauss maps in [E™.
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Submanifolds ...

@ Cheng and Yau [15] worked on hypersurfaces with constant scalar
curvature, while Chen and Piccinni [13] studied submanifolds with
finite type Gauss maps in [E™.

@ Dursun [19] focused on hypersurfaces with pointwise 1-type Gauss
maps in E"*1 (A submanifold of a Euclidean space is called pointwise
1-type Gauss map if its Gauss map satisfies AG = f (G+C) for
some smooth function f on M and some constant vector C.).
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Submanifolds ...

@ Cheng and Yau [15] worked on hypersurfaces with constant scalar
curvature, while Chen and Piccinni [13] studied submanifolds with
finite type Gauss maps in [E™.

@ Dursun [19] focused on hypersurfaces with pointwise 1-type Gauss
maps in E"*1 (A submanifold of a Euclidean space is called pointwise
1-type Gauss map if its Gauss map satisfies AG = f (G+C) for
some smooth function f on M and some constant vector C.).

@ Chen et al. [12] provided a survey on the developments of 1-type
submanifolds and those with 1-type Gauss maps.
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Submanifolds ...

o In [E3, Takahashi [40] asserted that minimal surfaces and spheres are
the only surfaces that satisfy the condition Ar = Ar, where A € R.
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Submanifolds ...

o In [E3, Takahashi [40] asserted that minimal surfaces and spheres are
the only surfaces that satisfy the condition Ar = Ar, where A € R.

@ Ferrandez et al. [21] proved that surfaces satisfying AH = AH, where
A€ I\/Iat(3, 3), are either minimal, or an open piece of a sphere or a
right circular cylinder.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024 6 /54



Submanifolds ...

o In [E3, Takahashi [40] asserted that minimal surfaces and spheres are
the only surfaces that satisfy the condition Ar = Ar, where A € R.

@ Ferrandez et al. [21] proved that surfaces satisfying AH = AH, where
A€ I\/Iat(3, 3), are either minimal, or an open piece of a sphere or a
right circular cylinder.

e Choi and Kim [16] characterized the minimal helicoid by its pointwise
1-type Gauss map of the first kind.
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Submanifolds ...

o In [E3, Takahashi [40] asserted that minimal surfaces and spheres are
the only surfaces that satisfy the condition Ar = Ar, where A € R.

@ Ferrandez et al. [21] proved that surfaces satisfying AH = AH, where
A€ I\/Iat(3, 3), are either minimal, or an open piece of a sphere or a
right circular cylinder.

e Choi and Kim [16] characterized the minimal helicoid by its pointwise
1-type Gauss map of the first kind.

e Garay [23] studied a specific class of finite type surfaces of revolution.
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Submanifolds ...

@ Dillen et al. [17] demonstrated that the only surfaces satisfying
Ar = Ar + B, where A € Mat(3,3), B € Mat(3,1), are the minimal
surfaces, spheres, and circular cylinders.
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Brief History of Submanifolds

Submanifolds ...

@ Dillen et al. [17] demonstrated that the only surfaces satisfying
Ar = Ar + B, where A € Mat(3,3), B € Mat(3,1), are the minimal
surfaces, spheres, and circular cylinders.

e Stamatakis and Zoubi [39] investigated surfaces of revolution that

satisfy ATy = Ax.
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Submanifolds ...

@ Dillen et al. [17] demonstrated that the only surfaces satisfying
Ar = Ar + B, where A € Mat(3,3), B € Mat(3,1), are the minimal
surfaces, spheres, and circular cylinders.

e Stamatakis and Zoubi [39] investigated surfaces of revolution that
satisfy ATy = Ax.

@ Senoussi and Bekkar [38] explored helicoidal surfaces that are of finite
type with respect to the fundamental forms I, Il and III, where their

position vector field r(u, v) satisfies the condition A’r = Ar,
J = 1,11, I, where A € Mat(3,3).
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Submanifolds ...

@ Dillen et al. [17] demonstrated that the only surfaces satisfying
Ar = Ar + B, where A € Mat(3,3), B € Mat(3,1), are the minimal
surfaces, spheres, and circular cylinders.

e Stamatakis and Zoubi [39] investigated surfaces of revolution that
satisfy ATy = Ax.

@ Senoussi and Bekkar [38] explored helicoidal surfaces that are of finite
type with respect to the fundamental forms I, Il and III, where their
position vector field r(u, v) satisfies the condition A’r = Ar,

J = 1,11, I, where A € Mat(3,3).

e Kim et al. [32] focused on the Cheng—Yau operator and the Gauss

map of surfaces of revolution.
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Submanifolds ...

@ General rotational surfaces in 4-space were first introduced by Moore
[36, 37].
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Submanifolds ...

@ General rotational surfaces in 4-space were first introduced by Moore
[36, 37].

e Focusing on [E*, Hasanis and Vlachos [29] examined hypersurfaces
with harmonic mean curvature vector fields.
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with harmonic mean curvature vector fields.
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constant mean curvature (CMC).
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e Focusing on [E*, Hasanis and Vlachos [29] examined hypersurfaces
with harmonic mean curvature vector fields.

@ Cheng and Wan [14] investigated complete hypersurfaces with
constant mean curvature (CMC).
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Submanifolds ...

@ General rotational surfaces in 4-space were first introduced by Moore
[36, 37].

e Focusing on [E*, Hasanis and Vlachos [29] examined hypersurfaces
with harmonic mean curvature vector fields.

@ Cheng and Wan [14] investigated complete hypersurfaces with
constant mean curvature (CMC).

e Kim and Turgay [33] explored surfaces with Li-pointwise 1-type
Gauss maps.

@ In recent years, the definition of L-finite type hypersurface has been

given by changing the Laplace operator A in the definition of finite
type hypersurfaces with the sequence of operators Lg, Ly, ..., Lp—1,
such that Lg = —A.
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Submanifolds ...

@ Arslan et al. [2] studied Vranceanu surfaces M parametrized by
V(s,t) = (r(s)cosscost, r(s)cosssint, r(s)sinscost, r(s)sinssint)

with pointwise 1-type Gauss maps.
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with pointwise 1-type Gauss maps.

e Kahraman Aksoyak and Yayli [30] introduced flat rotational surfaces
with pointwise 1-type Gauss maps.
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@ Arslan et al. [2] studied Vranceanu surfaces M parametrized by
V(s,t) = (r(s)cosscost, r(s)cosssint, r(s)sinscost, r(s)sinssint)

with pointwise 1-type Gauss maps.

e Kahraman Aksoyak and Yayli [30] introduced flat rotational surfaces
with pointwise 1-type Gauss maps.

o Giiler, Magid, and Yayl [27] focused on helicoidal hypersurfaces.
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@ Arslan et al. [2] studied Vranceanu surfaces M parametrized by
V(s,t) = (r(s)cosscost, r(s)cosssint, r(s)sinscost, r(s)sinssint)

with pointwise 1-type Gauss maps.

e Kahraman Aksoyak and Yayli [30] introduced flat rotational surfaces
with pointwise 1-type Gauss maps.

o Giiler, Magid, and Yayl [27] focused on helicoidal hypersurfaces.

o Giiler, Hacisalihoglu, and Kim [26] analyzed the Gauss map and the
third Laplace—Beltrami operator of rotational hypersurfaces (RHSs).
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@ Arslan et al. [2] studied Vranceanu surfaces M parametrized by
V(s,t) = (r(s)cosscost, r(s)cosssint, r(s)sinscost, r(s)sinssint)

with pointwise 1-type Gauss maps.

e Kahraman Aksoyak and Yayli [30] introduced flat rotational surfaces
with pointwise 1-type Gauss maps.

o Giiler, Magid, and Yayl [27] focused on helicoidal hypersurfaces.

o Giiler, Hacisalihoglu, and Kim [26] analyzed the Gauss map and the
third Laplace—Beltrami operator of rotational hypersurfaces (RHSs).

e Giiler and Turgay [28] introduced the Cheng—Yau operator and Gauss
map of RHSs.
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Submanifolds ...

@ Arslan et al. [2] studied Vranceanu surfaces M parametrized by
V(s,t) = (r(s)cosscost, r(s)cosssint, r(s)sinscost, r(s)sinssint)

with pointwise 1-type Gauss maps.

Kahraman Aksoyak and Yayl [30] introduced flat rotational surfaces
with pointwise 1-type Gauss maps.

Giiler, Magid, and Yayli [27] focused on helicoidal hypersurfaces.

o Giiler, Hacisalihoglu, and Kim [26] analyzed the Gauss map and the
third Laplace—Beltrami operator of rotational hypersurfaces (RHSs).

e Giiler and Turgay [28] introduced the Cheng—Yau operator and Gauss
map of RHSs.

Giiler [25] specifically studied RHSs satisfying ATR = AR, where

A€ Mat(4,4).
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Submanifolds ...

@ In Minkowski 4-space [E, Ganchev and Milousheva [22] considered
analogue of surfaces of Moore [36, 37],
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@ In Minkowski 4-space [E, Ganchev and Milousheva [22] considered
analogue of surfaces of Moore [36, 37],

e Arvanitoyeorgos, Kaimakamais, and Magid [4] showed that if the
mean curvature vector field of M; satisfies the equation AH = aH («
a constant), then I\/Il3 has CMC,
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analogue of surfaces of Moore [36, 37],

e Arvanitoyeorgos, Kaimakamais, and Magid [4] showed that if the
mean curvature vector field of M; satisfies the equation AH = aH («
a constant), then I\/Il3 has CMC,

@ Arslan and Milousheva [3] worked meridian surfaces of elliptic or
hyperbolic type with pointwise 1-type Gauss map,
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Submanifolds ...

@ In Minkowski 4-space [E, Ganchev and Milousheva [22] considered
analogue of surfaces of Moore [36, 37],
Arvanitoyeorgos, Kaimakamais, and Magid [4] showed that if the

mean curvature vector field of M; satisfies the equation AH = aH («
a constant), then I\/Il3 has CMC,

Arslan and Milousheva [3] worked meridian surfaces of elliptic or
hyperbolic type with pointwise 1-type Gauss map,

Turgay [41] gave some classifications of Lorentzian surfaces with
finite type Gauss map,
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Submanifolds ...

@ In Minkowski 4-space [E, Ganchev and Milousheva [22] considered
analogue of surfaces of Moore [36, 37],

Arvanitoyeorgos, Kaimakamais, and Magid [4] showed that if the
mean curvature vector field of M; satisfies the equation AH = aH («
a constant), then I\/Il3 has CMC,

Arslan and Milousheva [3] worked meridian surfaces of elliptic or
hyperbolic type with pointwise 1-type Gauss map,

Turgay [41] gave some classifications of Lorentzian surfaces with
finite type Gauss map,

@ Dursun and Turgay [20] studied space-like surfaces in with pointwise
1-type Gauss map.
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Submanifolds ...

@ On the other hand, Kahraman Aksoyak and Yayli [31] focused general
rotational surfaces with pointwise 1-type Gauss map in IE3.
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Brief History of Submanifolds

Submanifolds ...

@ On the other hand, Kahraman Aksoyak and Yayli [31] focused general
rotational surfaces with pointwise 1-type Gauss map in IE3.

@ Bektas, Canfes, and Dursun [7] classified surfaces in a pseudo-sphere
with 2-type pseudo-spherical Gauss map in [E3.
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Brief History of Submanifolds

Summary

@ In this talk, we present the fourth fundamental form TV and formulas
of the curvatures €; for hypersurfaces in four-dimensional Euclidean
space E*.
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Summary

@ In this talk, we present the fourth fundamental form TV and formulas
of the curvatures €; for hypersurfaces in four-dimensional Euclidean
space E*.

@ We introduce the fundamental concepts of four-dimensional Euclidean
geometry.
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Brief History of Submanifolds

Summary

@ In this talk, we present the fourth fundamental form TV and formulas
of the curvatures €; for hypersurfaces in four-dimensional Euclidean
space E*.

@ We introduce the fundamental concepts of four-dimensional Euclidean
geometry.

@ Next, we define the fourth fundamental form and the curvatures for

hypersurfaces, and calculate €; and the fourth fundamental form for
RHS.
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Brief History of Submanifolds

Summary

@ In this talk, we present the fourth fundamental form TV and formulas
of the curvatures €; for hypersurfaces in four-dimensional Euclidean
space E*.

@ We introduce the fundamental concepts of four-dimensional Euclidean
geometry.

@ Next, we define the fourth fundamental form and the curvatures for

hypersurfaces, and calculate €; and the fourth fundamental form for
RHS.

o Finally, we investigate the RHS that satisfies
a 4 X 4 matrix.

AVx = Ax, where A is
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Notions of Euclidean Geometry

@ We introduce some basic facts and definitions and describe the
notations used throughout the talk.
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Notions of Euclidean Geometry

@ We introduce some basic facts and definitions and describe the
notations used throughout the talk.
o Let [E™ represent Euclidean m-space with the canonical Euclidean
m
metric tensor defined by g = (, ) = Y. dx?, where (x1,x2, ..., Xm)

i=1
is a rectangular coordinate system in [E™.
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notations used throughout the talk.

o Let [E™ represent Euclidean m-space with the canonical Euclidean
m
metric tensor defined by g = (, ) = Y. dx?, where (x1,x2, ..., Xm)
i=1
is a rectangular coordinate system in [E™.

@ Consider an n-dimensional Riemannian submanifold M within E™.
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Notions of Euclidean Geometry

@ We introduce some basic facts and definitions and describe the
notations used throughout the talk.

o Let [E™ represent Euclidean m-space with the canonical Euclidean

m
metric tensor defined by g = (, ) = Y. dx?, where (x1,x2, ..., Xm)
i=1
is a rectangular coordinate system in [E™.
@ Consider an n-dimensional Riemannian submanifold M within IE™.

o letp: M — M be an isometric immersion. The Levi-Civita
connections M and M of E™ are denoted by V and V, respectively.
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Notions of Euclidean Geometry

@ We introduce some basic facts and definitions and describe the
notations used throughout the talk.

o Let [E™ represent Euclidean m-space with the canonical Euclidean
metric tensor defined by g = (, ) = f‘, dx?, where (x1, X, ..., Xm)
is a rectangular coordinate system in IIE_’}’

@ Consider an n-dimensional Riemannian submanifold M within IE™.

o letp: M — M be an isometric immersion. The Levi-Civita

connections M and M of E™ are denoted by V and Vv, respectively.

@ We use the letters X, Y, Z, W to denote vector fields tangent to M,
and ¢, 1 to denote vector fields normal to M.
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Gauss and Weingarten

@ The Gauss and Weingarten formulas are given, respectively, by

VxY = VxY+h(X,Y), (1)
Vx& = —AeX + Dx¢, (2)

where X, Y indicate the vector fields, h, D and A represent the
second fundamental form, the normal connection, and the shape
operator of M, respectively.
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Gauss and Weingarten

@ The Gauss and Weingarten formulas are given, respectively, by

VxY = VxY+h(X,Y), (1)
Vx& = —AeX + Dx¢, (2)

where X, Y indicate the vector fields, h, D and A represent the
second fundamental form, the normal connection, and the shape
operator of M, respectively.

@ Foreach ¢ € TPLM, the shape operator Az is a symmetric
endomorphism (is a map T : V — V is a linear transformation
between a vector space V and itself.) of the tangent space T,M at a
point p € M.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024 14 / 54



Gauss and Codazzi

@ The relationship between the shape operator A and the second
fundamental form h is given by

(h(X.¥),5) = (AX,Y).
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Gauss and Codazzi

@ The relationship between the shape operator A and the second
fundamental form h is given by

(h(X.¥),5) = (AX,Y).

@ The relationship between the shape operator and the second
fundamental form is described by the Gauss and Codazzi equations,
which are as follows:

(RIX,Y)Z W) = (h(Y,Z),h(X W)) (3)
—(h(X,Z),h(Y, W)),
Vxh(Y,Z) = Vyh(X,2), (4)

where R represents the curvature tensor associated with connection

V.
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Notions ...

o Now, let M be an oriented hypersurface in the Euclidean space E"*!,
S its shape operator, and x its position vector.
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Notions ...

o Now, let M be an oriented hypersurface in the Euclidean space E"*!,
S its shape operator, and x its position vector.

@ We consider a local orthonormal frame field {e;, e, ..., e,} of
consisting of principal directions of M corresponding from the
principal curvature k; for i = 1,2,...,n.
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Notions ...

o Now, let M be an oriented hypersurface in the Euclidean space E"*!,

S its shape operator, and x its position vector.

@ We consider a local orthonormal frame field {e;, e, ..., e,} of
consisting of principal directions of M corresponding from the
principal curvature k; for i = 1,2,...,n.

o Let the dual basis of this frame field be {0%,6% ...,0"}.
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Notions ...

@ Then, the first structural equation of Cartan is given by
. n . .
do' =) ¢ Aw!, i j=12,....n (5)
j=1

where w;; denotes the connection forms corresponding to the chosen
frame field.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024 17 / 54



Notions ...

@ Then, the first structural equation of Cartan is given by
. n . .
do' =) ¢ Aw!, i j=12,....n (5)
j=1

where w;; denotes the connection forms corresponding to the chosen
frame field.

@ We denote the Levi—Civita connection of M and M of E"*1 by V and
V, respectively.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024 17 / 54



ithparuriEes o Eueliiken Speee
Notions ...

@ Then, from the Codazzi equation (4), we have
ei(k) = wile)(ki— k),
wi(e) (ki — k) = wiley)(ki — ki)
for distinct /,j,/=1,2,..., n.
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Notions ...

@ Then, from the Codazzi equation (4), we have
ei(k) = wile)(ki— k),
wij(er) (ki — ky) wi(e) (ki — ki)
for distinct /,j,/ =1,2,...,n.

(6)
(7)

@ The two equations derived from the Codazzi equation describe how

the principal curvatures k; change with respect to the Levi—Civita

connection on the manifold:
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Notions ...

@ Then, from the Codazzi equation (4), we have
ei(k) = wile)(ki— k),
wij(er) (ki — ky) wi(e) (ki — ki)
for distinct /,j,/ =1,2,...,n.

(6)
(7)

@ The two equations derived from the Codazzi equation describe how

the principal curvatures k; change with respect to the Levi—Civita

connection on the manifold:

@ The first equation relates the derivative of a principal curvature k; in

the direction of a vector field ¢; to the difference between two
curvatures, scaled by a connection 1-form (or covector field on a

differentiable manifold is a differential form of degree one, that is, a

smooth section of the cotangent bundle.).
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Notions ...

@ Then, from the Codazzi equation (4), we have
ei(k) = wi(e)(ki—k), (6)
wij(er) (ki — ki) wj(e)) (ki — ki) (7)
for distinct /,j,/ =1,2,...,n.

@ The two equations derived from the Codazzi equation describe how
the principal curvatures k; change with respect to the Levi—Civita
connection on the manifold:

@ The first equation relates the derivative of a principal curvature k; in
the direction of a vector field ¢; to the difference between two
curvatures, scaled by a connection 1-form (or covector field on a
differentiable manifold is a differential form of degree one, that is, a
smooth section of the cotangent bundle.).

@ The second equation generalizes this relationship to three distinct
directions, showing how the connection 1-forms and curvature

differences interact between different indices.
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Notions ...

@ Then, from the Codazzi equation (4), we have
ei(k) = wi(e)(ki—k), (6)
wij(er) (ki — ki) wj(e)) (ki — ki) (7)
for distinct /,j,/ =1,2,...,n.

@ The two equations derived from the Codazzi equation describe how
the principal curvatures k; change with respect to the Levi—Civita
connection on the manifold:

@ The first equation relates the derivative of a principal curvature k; in
the direction of a vector field ¢; to the difference between two
curvatures, scaled by a connection 1-form (or covector field on a
differentiable manifold is a differential form of degree one, that is, a
smooth section of the cotangent bundle.).

@ The second equation generalizes this relationship to three distinct
directions, showing how the connection 1-forms and curvature

differences interact between different indices.
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ithparuriEes o Eueliiken Speee
Notions ...

o We put s; = 0j(ki, ko, ..., kn), where 0} is the j-th elementary
symmetric function given by

aj(al,ag,...,an): Z a,-la,-z...a,-j.
1<ih <ip<...<ij<n
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Notions ...

o We put s; = 0j(ki, ko, ..., kn), where 0} is the j-th elementary
symmetric function given by

aj(al,ag,...,an): Z a,-la,-z...a,-j.
1<ih <ip<...<ij<n

@ We use following notation

r{ = U'J'(kl,kg,...,k,'_l, k,'+1, ki+2,...,k,,).

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024

19 / 54



Notions ...

o We put s; = 0j(ki, ko, ..., kn), where 0} is the j-th elementary
symmetric function given by

aj(al,ag,...,an): Z a,-la,-2...a,-j.
1<ih <ip<...<ij<n

@ We use following notation

r{ = U'J'(kl,kg,...,k,'_l, k,'+1, ki+2,...,k,,).

@ By the definition, we have r,-0 =1land sp41 =Sp42 =---=0. We
call the function s, as the k-th mean curvature of M.
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Notions ...

o We put s; = 0j(ki, ko, ..., kn), where 0} is the j-th elementary
symmetric function given by

aj(al,ag,...,an): Z apdip .. dj.
1<ih <ip<...<ij<n

@ We use following notation

r{ = U'J'(kl,kg,...,k,'_l, k,‘+1, ki+2,...,k,,).

@ By the definition, we have rlo =1land sp41 =Sp42 =---=0. We

call the function s, as the k-th mean curvature of M.

@ We would like to note that functions H = %51 and K = s, are called
the mean curvature and Gauss—Kronecker curvature of M,
respectively. In particular, M is said to be j-minimal if s; =0 on M.
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Notions ...

We use the characteristic polynomial Ps(A) = 0 of S. That is,

det(S — Al,) = Z (—1)" A"k =, (8)
k=0

where [, denotes the identity matrix of order n. See[1] and [34] for details.
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ithparuriEes o Eueliiken Speee
Notions ...

@ Then, we get curvature formulas (7)¢; = s;. Thatis, (7)€ = sp = 1
(by definition), ({)€1 =s1,...,(])Cyh = 5, = K.

n
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Notions ...

@ Then, we get curvature formulas (7)¢; = s;. Thatis, (7)€ = sp = 1
(by definition), ({)€1 =s1,...,(])Cyh = 5, = K.

@ k-th fundamental form of M is defined by
T(SK1(X),Y) = (Sk"1(X),Y). Then,

1

:no (-1) (’I’) ¢I(S"™(X),Y) =0. (9)
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Notions ...

@ Then, we get curvature formulas (7)¢; = s;. Thatis, (7)€ = sp = 1
(by definition), ({)€1 =s1,...,(])Cyh = 5, = K.

@ k-th fundamental form of M is defined by
T(SK1(X),Y) = (Sk"1(X),Y). Then,

n . i
Z (-1) (7) ¢I(S"'(X),Y)=0. (9)
i=0
@ In particular, one can get classical result
CollIl — 2¢4 I + ¢, =0

of surface theory for n = 2.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Giiler 10/15/2024 21 / 54



Resasined Kypaiuizees (RAES)
RHSs

@ We will obtain a RHS in Euclidean 4-space.
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RHSs

@ We will obtain a RHS in Euclidean 4-space.

@ Before we proceed, we would like to note that the definition of RHSs
in Riemannian space forms were defined in [18].
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RHSs

@ We will obtain a RHS in Euclidean 4-space.
@ Before we proceed, we would like to note that the definition of RHSs
in Riemannian space forms were defined in [18].

o A rotational hypersurface M C [E"*! generated by a curve ¢ around
an axis C that does not meet C is obtained by taking the orbit of C
under those orthogonal transformations of IE"*! that leaves /¢
pointwise fixed (See [18, Remark 2.3]).
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Resasined Kypaiuizees (RAES)
RHSs

@ Throughout the talk, we shall identify a vector (a, b, ¢, d) with its
transpose.
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RHSs

@ Throughout the talk, we shall identify a vector (a, b, ¢, d) with its
transpose.

o Consider the case n = 3, and let C be the curve parametrized by

v(u) = (f(1),0,0,¢(u)). (10)
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RHSs

@ Throughout the talk, we shall identify a vector (a, b, ¢, d) with its
transpose.

o Consider the case n = 3, and let C be the curve parametrized by

v(u) = (f(1),0,0,¢(u)). (10)

e In [E* an axis £ = (0,0,0,1) and a matrix

cosvcosw —sinv —cosvsinw O
sinvcosw cosv —sinvsinw 0
Z(v,w) = . . v,weR,
sin w 0 cos w 0
0 0 0 1

supply Z-£T= (T where Z € SO (4).
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RHSs

@ Therefore, the parametrization of the RHS generated by a curve C
around an axis £ is given by

x(u,v,w) =Z(v,w)-yT (u). (11)
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RHSs

@ Therefore, the parametrization of the RHS generated by a curve C
around an axis £ is given by

x(u,v,w) =Z(v,w)-yT (u). (11)

@ Here, "-" indicates the matrix product.
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RHSs

@ Therefore, the parametrization of the RHS generated by a curve C
around an axis £ is given by

x(u,v,w) =Z(v,w)-yT (u). (11)

@ Here, "-" indicates the matrix product.

o Let x = x(u, v, w) be an isometric immersion from M* C [E3 to E*.
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RHSs

@ Therefore, the parametrization of the RHS generated by a curve C
around an axis £ is given by

x(u,v,w) =Z(v,w)-yT (u). (11)

@ Here, "-" indicates the matrix product.
o Let x = x(u, v, w) be an isometric immersion from M* C [E3 to E*.

@ Triple vector product of X = (x1, X2, X3, Xa), 7 = (y1.y2.¥3.ya),
Z = (21,22, 23, z4) of E* is defined by

€1 €& € &
XXV X Z X1 X2 X3 X4
Yio Y2 Y3 ya
Z1 2Zp Z3 Z4
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RHSs

For a hypersurface x in 4-space, we have

L M P X Y O
,JMM={ M N T |, Il={Y Z S |,
P T V o S U

(12)

-

where

E F A
F G B
A B C

E
A
L
P
X
)

(TTU Math Seminar)

Fundamental Form I'V and Curvatures in 4D Erhan Giiler

G = (xy,Xy),
C = (Xw, Xw)
N = (x,, G),
V = (Xyw, G),
Z = <GV1GV>y
U= (Gw,Gu).

10/15/2024
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RHSs

@ In addition, we have the following determinants
detl = (EG— F?)C — EB? +2FAB — GA®,

det I (LN — M?) V — LT* + 2MPT — NP?,
detIll = (XZ— Y?)U—ZO?+20SY — XS
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RHSs

@ In addition, we have the following determinants

detl = (EG— F?)C — EB? +2FAB — GA®,
detll = (LN —M?)V —LT?+2MPT — NP?,
detIll = (XZ— Y?)U—ZO?+20SY — XS

@ Here, (, ) denotes the four-dimensional Euclidean inner product of

two vectors,
X, X Xy X Xy

G (13)

T Ixe X %y X X ||

determines the unit normal (i.e., the Gauss map) of hypersurface x,
and |||| indicates the norm of a vector in [E*.
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RHSs

@ In addition, we have the following determinants

detl = (EG— F?)C — EB? +2FAB — GA®,
detll = (LN —M?)V —LT?+2MPT — NP?,
detIll = (XZ— Y?)U—ZO?+20SY — XS

@ Here, (, ) denotes the four-dimensional Euclidean inner product of

two vectors,
X, X Xy X Xy

G

— 1
Xe X %0 X %] (13)

determines the unit normal (i.e., the Gauss map) of hypersurface x,
and |||| indicates the norm of a vector in [E*.

@ On the other hand, 1711 gives shape operator matrix S of
hypersurface x in 4-space. See [26 — 28] for details.
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Curvatures and the Fourth Fundamental Form

Curvatures

e Considering (4), and taking n = 3, we use characteristic polynomial
of S
Ps(A) = det(S—Ak) =0

to compute the j-th curvature formula €;, where i =0, 1,2, 3.
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Curvatures and the Fourth Fundamental Form

Curvatures

e Considering (4), and taking n = 3, we use characteristic polynomial
of S
Ps(A) = det(S—Ak) =0
to compute the j-th curvature formula €;, where i =0, 1,2, 3.

o Then, get Ps(A) = aA® + bA®> + cA +d = 0, where ¢y = 1 (by
definition), 3¢; =3H = —2,3¢, = £, ¢3 =K = - 4.
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Curvatures and the Fourth Fundamental Form

Curvatures

e Considering (4), and taking n = 3, we use characteristic polynomial

of S
Ps(A) = det(S—Ak) =0

to compute the j-th curvature formula €;, where i =0, 1,2, 3.

o Then, get Ps(A) = aA® + bA®> + cA +d = 0, where ¢y = 1 (by
definition), 3¢; =3H = —2,3¢, = £, ¢3 =K = - 4.

@ Therefore, we reveal curvature formulas depend on the coefficients of
I and I fundamental forms in 4-space:
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Curvatures and the Fourth Fundamental Form

Curvatures

Theorem 1. Any hypersurface x in IE* has following curvature formulas,
¢y = 1 (by definition),

[((EN + GL —2FM)C + (EG — F*)V — LB?
—NA? — 2(APG — BPF — ATF + BTE — ABM)]
3[(EG — F2)C — EB® + 2FAB — GA?] '
[((EN+ GL—2FM) V + (LN — M?) C — ET?
—GP? — 2(APN — BPM — ATM + BTL — PTF)]
3[(EG — F2)C — EB? + 2FAB — GA?]
(LN — M?) V — LT? +2MPT — NP?
(EG—F?)C — EB? +2FAB — GA?

&

(14)
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Fourth Fundamental Form

@ Why do we care about the fourth fundamental form?
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

@ Why do we care about the fourth fundamental form?

@ In 3D, there are three fundamental forms that describe surface
geometry, however in 4D, there are four for hypersurface geometry.
The fourth fundamental form is studied to understand its relationship
to the first, second, and third forms, providing insights into
higher-dimensional geometry (See also Corollary 3 for the answer).
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Fourth Fundamental Form

@ Why do we care about the fourth fundamental form?

@ In 3D, there are three fundamental forms that describe surface
geometry, however in 4D, there are four for hypersurface geometry.
The fourth fundamental form is studied to understand its relationship
to the first, second, and third forms, providing insights into
higher-dimensional geometry (See also Corollary 3 for the answer).

o Definition 1. /n 4-space, for any hypersurface x with its shape
operator S and the first fundamental form (gjj) =1, following
relations holds:
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Fourth Fundamental Form

@ Why do we care about the fourth fundamental form?

@ In 3D, there are three fundamental forms that describe surface
geometry, however in 4D, there are four for hypersurface geometry.
The fourth fundamental form is studied to understand its relationship
to the first, second, and third f