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Brief History of Submanifolds

Submanifolds ...

An isometric immersion x : M �! Em of a submanifold M in
Euclidean m-space is called �nite type, if x identi�ed with the
position vector �eld of M in Em can be expressed as a �nite sum of
eigenvectors of the Laplacian ∆ of M, i.e., x = x0 +∑k

i=1 xi , where
x0 is a constant map, x1, x2, . . . , xk non-constant maps, and
∆x = λixi , λi 2 R, i = 1, 2, . . . , k.

If λi are di¤erent, M is called k-type. See [9] for details.
Referring to Chen [8� 11], geometers have been studying �nite type
submanifolds, whose immersion into Euclidean space Em (or
pseudo-Euclidean space Em

ν ) is achieved using a �nite number of
eigenfunctions of their Laplacian, for nearly half a century.
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Brief History of Submanifolds

Submanifolds ...

A Gauss map G is called 1-type if it satis�es ∆G = λG, where ∆ is
the Laplace�Beltrami operator and λ is a constant.

A Gauss map G is called 2-type if it satis�es ∆G = λiG, where ∆ is
the Laplace�Beltrami operator, λ1,λ2 are di¤erent constants.
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Brief History of Submanifolds

Submanifolds ...

Takahashi [40] demonstrated that a connected Euclidean submanifold
is of 1-type if and only if it is either minimal in Em or minimal in
some hypersphere of Em .

The simplest submanifolds of �nite type, next to the minimal ones,
are 2-type spherical submanifolds (where "spherical" indicates
immersion into a sphere).

Some key results on 2-type spherical closed submanifolds were
obtained by Barros and Chen [5], Barros and Garay [6], Chen [9].

Garay [24] served an extended Takahashi�s theorem in Em .
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Brief History of Submanifolds

Submanifolds ...

Cheng and Yau [15] worked on hypersurfaces with constant scalar
curvature, while Chen and Piccinni [13] studied submanifolds with
�nite type Gauss maps in Em .

Dursun [19] focused on hypersurfaces with pointwise 1-type Gauss
maps in En+1 (A submanifold of a Euclidean space is called pointwise
1-type Gauss map if its Gauss map satis�es ∆G = f (G+C ) for
some smooth function f on M and some constant vector C .).

Chen et al. [12] provided a survey on the developments of 1-type
submanifolds and those with 1-type Gauss maps.
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Brief History of Submanifolds

Submanifolds ...

In E3, Takahashi [40] asserted that minimal surfaces and spheres are
the only surfaces that satisfy the condition ∆r = λr , where λ 2 R.

Ferrandez et al. [21] proved that surfaces satisfying ∆H = AH, where
A 2 Mat(3, 3), are either minimal, or an open piece of a sphere or a
right circular cylinder.

Choi and Kim [16] characterized the minimal helicoid by its pointwise
1-type Gauss map of the �rst kind.

Garay [23] studied a speci�c class of �nite type surfaces of revolution.
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Brief History of Submanifolds

Submanifolds ...

Dillen et al. [17] demonstrated that the only surfaces satisfying
∆r = Ar + B, where A 2 Mat(3, 3), B 2 Mat(3, 1), are the minimal
surfaces, spheres, and circular cylinders.

Stamatakis and Zoubi [39] investigated surfaces of revolution that
satisfy ∆IIIx = Ax .

Senoussi and Bekkar [38] explored helicoidal surfaces that are of �nite
type with respect to the fundamental forms I, II and III, where their
position vector �eld r(u, v) satis�es the condition ∆J r = Ar ,
J = I, II, III, where A 2 Mat(3, 3).
Kim et al. [32] focused on the Cheng�Yau operator and the Gauss
map of surfaces of revolution.
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Brief History of Submanifolds

Submanifolds ...

General rotational surfaces in 4-space were �rst introduced by Moore
[36, 37].

Focusing on E4, Hasanis and Vlachos [29] examined hypersurfaces
with harmonic mean curvature vector �elds.

Cheng and Wan [14] investigated complete hypersurfaces with
constant mean curvature (CMC).

Kim and Turgay [33] explored surfaces with L1-pointwise 1-type
Gauss maps.

In recent years, the de�nition of Lk -�nite type hypersurface has been
given by changing the Laplace operator ∆ in the de�nition of �nite
type hypersurfaces with the sequence of operators L0, L1, ..., Ln�1,
such that L0 = �∆.
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Brief History of Submanifolds

Submanifolds ...

Arslan et al. [2] studied Vranceanu surfaces M parametrized by

V(s, t) = (r(s) cos s cos t, r(s) cos s sin t, r(s) sin s cos t, r(s) sin s sin t)

with pointwise 1-type Gauss maps.

Kahraman Aksoyak and Yayl¬[30] introduced �at rotational surfaces
with pointwise 1-type Gauss maps.

Güler, Magid, and Yayl¬[27] focused on helicoidal hypersurfaces.

Güler, Hac¬saliho¼glu, and Kim [26] analyzed the Gauss map and the
third Laplace�Beltrami operator of rotational hypersurfaces (RHSs).

Güler and Turgay [28] introduced the Cheng�Yau operator and Gauss
map of RHSs.

Güler [25] speci�cally studied RHSs satisfying ∆IR = AR, where
A 2 Mat(4, 4).
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Brief History of Submanifolds

Submanifolds ...

In Minkowski 4-space E4
1, Ganchev and Milousheva [22] considered

analogue of surfaces of Moore [36, 37],

Arvanitoyeorgos, Kaimakamais, and Magid [4] showed that if the
mean curvature vector �eld of M3

1 satis�es the equation ∆H = αH (α
a constant), then M3

1 has CMC,

Arslan and Milousheva [3] worked meridian surfaces of elliptic or
hyperbolic type with pointwise 1-type Gauss map,

Turgay [41] gave some classi�cations of Lorentzian surfaces with
�nite type Gauss map,

Dursun and Turgay [20] studied space-like surfaces in with pointwise
1-type Gauss map.
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Brief History of Submanifolds

Summary

In this talk, we present the fourth fundamental form IV and formulas
of the curvatures Ci for hypersurfaces in four-dimensional Euclidean
space E4.

We introduce the fundamental concepts of four-dimensional Euclidean
geometry.

Next, we de�ne the fourth fundamental form and the curvatures for
hypersurfaces, and calculate Ci and the fourth fundamental form for
RHS.

Finally, we investigate the RHS that satis�es ∆IVx = Ax, where A is
a 4� 4 matrix.
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Preliminaries

Notions of Euclidean Geometry

We introduce some basic facts and de�nitions and describe the
notations used throughout the talk.

Let Em represent Euclidean m-space with the canonical Euclidean

metric tensor de�ned by eg = h , i = m
∑
i=1
dx2i , where (x1, x2, . . . , xm)

is a rectangular coordinate system in Em .

Consider an n-dimensional Riemannian submanifold M within Em .

Let φ : M �! eM be an isometric immersion. The Levi�Civita
connections M and eM of Em are denoted by r and er, respectively.
We use the letters X ,Y ,Z ,W to denote vector �elds tangent to M,
and ξ, η to denote vector �elds normal to M.
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Preliminaries

Gauss and Weingarten

The Gauss and Weingarten formulas are given, respectively, by

erXY = rXY + h(X ,Y ), (1)erX ξ = �AξX +DX ξ, (2)

where X ,Y indicate the vector �elds, h, D and A represent the
second fundamental form, the normal connection, and the shape
operator of M, respectively.

For each ξ 2 T?p M, the shape operator Aξ is a symmetric
endomorphism (is a map T : V �! V is a linear transformation
between a vector space V and itself.) of the tangent space TpM at a
point p 2 M.
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Preliminaries

Gauss and Codazzi

The relationship between the shape operator A and the second
fundamental form h is given by

hh(X ,Y ), ξi =


AξX ,Y

�
.

The relationship between the shape operator and the second
fundamental form is described by the Gauss and Codazzi equations,
which are as follows:

hR(X ,Y , )Z ,W i = hh(Y ,Z ), h(X ,W )i (3)

�hh(X ,Z ), h(Y ,W )i,erX h(Y ,Z ) = erY h(X ,Z ), (4)

where R represents the curvature tensor associated with connection
r.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

Now, let M be an oriented hypersurface in the Euclidean space En+1,
S its shape operator, and x its position vector.

We consider a local orthonormal frame �eld fe1, e2, . . . , eng of
consisting of principal directions of M corresponding from the
principal curvature ki for i = 1, 2, . . . , n.
Let the dual basis of this frame �eld be fθ1, θ2, . . . , θng.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

Then, the �rst structural equation of Cartan is given by

dθi =
n

∑
j=1

θj ^ωi
j , i , j = 1, 2, . . . , n, (5)

where ωij denotes the connection forms corresponding to the chosen
frame �eld.

We denote the Levi�Civita connection of M and eM of En+1 by r ander, respectively.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

Then, from the Codazzi equation (4), we have

ei (kj ) = ωj
i (ej )(ki � kj ), (6)

ωij (el )(ki � kj ) = ωl
i (ej )(ki � kl ) (7)

for distinct i , j , l = 1, 2, . . . , n.

The two equations derived from the Codazzi equation describe how
the principal curvatures ki change with respect to the Levi�Civita
connection on the manifold:
The �rst equation relates the derivative of a principal curvature kj in
the direction of a vector �eld ei to the di¤erence between two
curvatures, scaled by a connection 1-form (or covector �eld on a
di¤erentiable manifold is a di¤erential form of degree one, that is, a
smooth section of the cotangent bundle.).
The second equation generalizes this relationship to three distinct
directions, showing how the connection 1-forms and curvature
di¤erences interact between di¤erent indices.
These equations describe the interaction between the curvatures and
the geometry of the submanifold.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

We put sj = σj (k1, k2, . . . , kn), where σj is the j-th elementary
symmetric function given by

σj (a1, a2, . . . , an) = ∑
1�i1<i2<...<ij�n

ai1ai2 . . . aij .

We use following notation

r ji = σj (k1, k2, . . . , ki�1, ki+1, ki+2, . . . , kn).

By the de�nition, we have r0i = 1 and sn+1 = sn+2 = � � � = 0. We
call the function sk as the k-th mean curvature of M.

We would like to note that functions H = 1
n s1 and K = sn are called

the mean curvature and Gauss�Kronecker curvature of M,
respectively. In particular, M is said to be j-minimal if sj � 0 on M.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

We use the characteristic polynomial PS(λ) = 0 of S. That is,

det(S� λIn) =
n

∑
k=0

(�1)n�k skλn�k = 0, (8)

where In denotes the identity matrix of order n. See[1] and [34] for details.
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Preliminaries Hypersurfaces of Euclidean Space

Notions ...

Then, we get curvature formulas (ni )Ci = si . That is, (
n
0)C0 = s0 = 1

(by de�nition), (n1)C1 = s1, . . . , (nn)Cn = sn = K .

k-th fundamental form of M is de�ned by
I
�
Sk�1 (X ) ,Y

�
=


Sk�1 (X ) ,Y

�
. Then,

n

∑
i=0
(�1)i

�
n
i

�
CiI
�
Sn�i (X ) ,Y

�
= 0. (9)

In particular, one can get classical result

C0III� 2C1II+ C2I = 0

of surface theory for n = 2.
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Preliminaries Rotational Hypersurfaces (RHSs)

RHSs

We will obtain a RHS in Euclidean 4-space.

Before we proceed, we would like to note that the de�nition of RHSs
in Riemannian space forms were de�ned in [18].

A rotational hypersurface M � En+1 generated by a curve ` around
an axis C that does not meet C is obtained by taking the orbit of C
under those orthogonal transformations of En+1 that leaves `
pointwise �xed (See [18, Remark 2.3]).
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A rotational hypersurface M � En+1 generated by a curve ` around
an axis C that does not meet C is obtained by taking the orbit of C
under those orthogonal transformations of En+1 that leaves `
pointwise �xed (See [18, Remark 2.3]).
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Preliminaries Rotational Hypersurfaces (RHSs)

RHSs

Throughout the talk, we shall identify a vector (a, b, c , d) with its
transpose.

Consider the case n = 3, and let C be the curve parametrized by

γ(u) = (f (u), 0, 0, ϕ (u)) . (10)

In E4, an axis ` = (0, 0, 0, 1) and a matrix

Z(v ,w) =

0BB@
cos v cosw � sin v � cos v sinw 0
sin v cosw cos v � sin v sinw 0
sinw 0 cosw 0
0 0 0 1

1CCA , v ,w 2 R,

supply Z�`T= `T , where Z 2 SO (4) .
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Preliminaries Rotational Hypersurfaces (RHSs)

RHSs

Therefore, the parametrization of the RHS generated by a curve C
around an axis ` is given by

x(u, v ,w) = Z(v ,w)�γT (u). (11)

Here, "�" indicates the matrix product.
Let x = x(u, v ,w) be an isometric immersion from M3 � E3 to E4.

Triple vector product of �!x = (x1, x2, x3, x4), �!y = (y1, y2, y3, y4),�!z = (z1, z2, z3, z4) of E4 is de�ned by

�!x ��!y ��!z = det

0BB@
e1 e2 e3 e4
x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4

1CCA .
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Preliminaries Rotational Hypersurfaces (RHSs)

RHSs

For a hypersurface x in 4-space, we have

I =

0@ E F A
F G B
A B C

1A , II =

0@ L M P
M N T
P T V

1A , III =

0@ X Y O
Y Z S
O S U

1A ,
(12)

where
E = hxu , xui , F = hxu , xv i , G = hxv , xv i ,
A = hxu , xw i , B = hxv , xw i , C = hxw , xw i ,
L = hxuu ,Gi , M = hxuv ,Gi , N = hxvv ,Gi ,
P = hxuw ,Gi , T = hxvw ,Gi , V = hxww ,Gi ,
X = hGu ,Gui , Y = hGu ,Gv i , Z = hGv ,Gv i ,
O = hGu ,Gw i , S = hGv ,Gw i , U = hGw ,Gw i .
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Preliminaries Rotational Hypersurfaces (RHSs)

RHSs

In addition, we have the following determinants

det I = (EG � F 2)C � EB2 + 2FAB � GA2,
det II =

�
LN �M2�V � LT 2 + 2MPT �NP2,

det III =
�
XZ � Y 2

�
U � ZO2 + 2OSY � XS2.

Here, h , i denotes the four-dimensional Euclidean inner product of
two vectors,

G =
xu � xv � xw
kxu � xv � xw k

(13)

determines the unit normal (i.e., the Gauss map) of hypersurface x,
and kk indicates the norm of a vector in E4.

On the other hand, I�1�II gives shape operator matrix S of
hypersurface x in 4-space. See [26� 28] for details.
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Curvatures and the Fourth Fundamental Form

Curvatures

Considering (4), and taking n = 3, we use characteristic polynomial
of S

PS(λ) = det(S� λI3) = 0

to compute the i-th curvature formula Ci , where i = 0, 1, 2, 3.

Then, get PS(λ) = aλ3 + bλ2 + cλ+ d = 0, where C0 = 1 (by
de�nition), 3C1 = 3H = � b

a , 3C2 =
c
a , C3 = K = �

d
a .

Therefore, we reveal curvature formulas depend on the coe¢ cients of
I and II fundamental forms in 4-space:
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Curvatures and the Fourth Fundamental Form

Curvatures

Theorem 1. Any hypersurface x in E4 has following curvature formulas,
C0 = 1 (by de�nition),

C1 =

[(EN + GL� 2FM)C + (EG � F 2)V � LB2
�NA2 � 2(APG � BPF � ATF + BTE � ABM)]

3 [(EG � F 2)C � EB2 + 2FAB � GA2] , (14)

C2 =

[(EN + GL� 2FM)V +
�
LN �M2

�
C � ET 2

�GP2 � 2 (APN � BPM � ATM + BTL� PTF )]
3 [(EG � F 2)C � EB2 + 2FAB � GA2] , (15)

C3 =

�
LN �M2

�
V � LT 2 + 2MPT �NP2

(EG � F 2)C � EB2 + 2FAB � GA2 . (16)

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Güler 10/15/2024 28 / 54



Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

Why do we care about the fourth fundamental form?

In 3D, there are three fundamental forms that describe surface
geometry, however in 4D, there are four for hypersurface geometry.
The fourth fundamental form is studied to understand its relationship
to the �rst, second, and third forms, providing insights into
higher-dimensional geometry (See also Corollary 3 for the answer).

De�nition 1. In 4-space, for any hypersurface x with its shape
operator S and the �rst fundamental form (gij ) = I, following
relations holds:

(a) the second fundamental form (hij ) = II is given by II = I�S,
(b) the third fundamental form (eij ) = III is given by III = II�S,
(c) the fourth fundamental form (fij ) = IV is given by IV = III�S.
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

Corollary 1. For any hypersurface x in E4, the fundamental forms
and the curvatures are related by

IV� 3C1III+ 3C2II� C3I = O, (17)

where O indicates the zero matrix of order 3.

Corollary 2. For any hypersurface x in E4, the �rst fundamental
form matrix, curvatures, and the shape operator matrix have following
relation

I�
�
S3 � 3C1S2 + 3C2S� C3

�
= O,

where O detemines the zero matrix of order 3.
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

Corollary 3. In E4, the Gauss-Kronecker curvature and the
fundamental forms of any hypersurface x are related by

C3 =
det II

det I
=
det III

det II
=
det IV

det III
.

Corollary 4. For any hypersurface x in E4, the fourth fundamental
form IV = (fij ) is given by

IV =

0@ ζ η δ
η φ σ
δ σ ξ

1A ,
where
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

ζ =
1
det I

8>>>><>>>>:
CLM2 � CL2N + 2BL2T + GLP2 � B2LX � A2NX
�GL2V � F 2VX �NP2E �M2VE + CNXE

�2BTXE + 2MPTE + GVXE + 2ABMX + 2ALNP
�2BLMP � 2ALMT � 2CFMX + CGLX � 2AGPX

+2BFPX + 2AFTX + 2FLMV � 2FLPT

9>>>>=>>>>; ,

η =
1
det I

8>>>><>>>>:
CM3 � 2BM2P � 2AM2T � FNP2 + GMP2 � FLT 2
�B2LY � A2NY + FM2V � F 2VY +MT 2E

+CNYE � 2BTYE �MNVE + GVYE + 2ABMY
�CLMN + 2AMNP + 2BLMT � 2CFMY + CGLY
�2AGPY + 2BFPY + 2AFTY + FLNV � GLMV

9>>>>=>>>>; ,
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

δ =
1
det I

8>>>><>>>>:
GP3 � B2LO � A2NO + ANP2 � 2BMP2 + CM2P
�ALT 2 � AM2V � 2FP2T � F 2OV + PT 2E
+CNOE � 2BOTE + GOVE �NPVE + 2ABMO
�2CFMO + CGLO � 2AGOP + 2BFOP + 2AFOT
�CLNP + ALNV + 2BLPT + 2FMPV � GLPV

9>>>>=>>>>; ,

φ =
1
det I

8>>>><>>>>:
�CLN2 + CM2N + 2AN2P � GLT 2 � B2LZ � A2NZ

�GM2V � F 2VZ +NT 2E �N2VE + CNZE
�2BTZE + GVZE + 2ABMZ � 2BMNP � 2AMNT
+2BLNT � 2CFMZ + CGLZ � 2AGPZ + 2BFPZ

+2AFTZ + 2FMNV � 2FNPT + 2GMPT

9>>>>=>>>>; ,
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Curvatures and the Fourth Fundamental Form

Fourth Fundamental Form

σ =
1
det I

8>>>><>>>>:
T 3E � BNP2 � B2LS � 2AMT 2 + BLT 2 � A2NS
+CM2T � BM2V � 2FPT 2 + GP2T � F 2SV
+CNSE � 2BSTE + GSVE �NTVE + 2ABMS
�2CFMS + CGLS � 2AGPS + 2BFPS + 2AFST
�CLNT + BLNV + 2ANPT + 2FMTV � GLTV

9>>>>=>>>>; ,

ξ =
1
det I

8>>>><>>>>:
�CNP2 � CLT 2 � B2LU � A2NU + 2FMV 2
�GLV 2 + GP2V � F 2UV �NV 2E + T 2VE

+CNUE � 2BTUE + GUVE + 2ABMU � 2CFMU
+CGLU � 2AGPU + 2BFPU + 2AFTU + 2CMPT
+2ANPV � 2BMPV � 2AMTV + 2BLTV � 2FPTV

9>>>>=>>>>; ,

and det I = (EG � F 2)C � EB2 + 2FAB � GA2.
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Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

We consider the i-th curvatures of the RHS (11), that is

x(u, v ,w) = (f (u) cos v cosw , f (u) sin v cosw , f (u) sinw , ϕ(u)) ,
(18)

where f 6= 0 and 0 � v ,w < 2π, and the range of the parameter w

must satisfy w 6= π

2
,
3π

2
, otherwise the �rst fundamental form I is

degenerated.
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Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

Using the �rst derivatives of RHS (18) with respect to u,v ,w , we get
the �rst quantities

I = diag
�
W , f 2 cos2 w , f 2

�
, (19)

where W = f 02 + ϕ02, f = f (u), f 0 = df
du , ϕ = ϕ(u), ϕ0 = d ϕ

du .

The Gauss map of the RHS is determined by

G =
�

ϕ0

W 1/2 cos v cosw ,
ϕ0

W 1/2 sin v cosw ,
ϕ0

W 1/2 sinw ,�
f 0

W 1/2

�
.

(20)
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I = diag
�
W , f 2 cos2 w , f 2

�
, (19)

where W = f 02 + ϕ02, f = f (u), f 0 = df
du , ϕ = ϕ(u), ϕ0 = d ϕ

du .

The Gauss map of the RHS is determined by

G =
�

ϕ0

W 1/2 cos v cosw ,
ϕ0

W 1/2 sin v cosw ,
ϕ0

W 1/2 sinw ,�
f 0

W 1/2

�
.

(20)
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Curvatures and the RHS

With the second derivatives and G of hypersurface (18), we have the
second quantities

II = diag
�
� f

0ϕ00 � f 00ϕ0
W 1/2 ,� f ϕ0

W 1/2 cos
2 w ,� f ϕ0

W 1/2

�
. (21)

Taking the �rst derivatives of (20) with respect to u,v ,w , we �nd the
third fundamental form matrix

III = diag

 
(f 0ϕ00 � f 00ϕ0)2

W 2 ,
ϕ02

W
cos2 w ,

ϕ02

W

!
. (22)
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Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

We calculate I�1�II, then obtain shape operator matrix

S = diag
�
� f

0ϕ00 � f 00ϕ0
W 3/2 ,� ϕ0

fW 1/2 ,�
ϕ0

fW 1/2

�
. (23)

Finally, we obtain curvatures of the RHS (18) .
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Curvatures and the RHS

Theorem 2. RHS (18) has following curvatures

C0 = 1 (by de�nition),

C1 =
(¤ 00 � 2W ) ϕ0 � ¤ 0ϕ00

3fW 3/2 , (24)

C2 =
ϕ02W � 2f ϕ0 (ϕ0f 00 � f 0ϕ00)

3f 2W 2 , (25)

C3 =
(ϕ0f 00 � f 0ϕ00) ϕ02

f 2W 5/2 , (26)

where W = f 02 + ϕ02 6= 0, and f = f (u) 6= 0.
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Curvatures and the RHS

Therefore, we have following corollaries.

Corollary 6. RHS (18) is 1-minimal i¤

ϕ = �ic�1/4
1 EllipticF

h
i sinh�1

�
ic1/4
1 f

�
,�1

i
+ c2,

where i = (�1)1/2, EllipticF[φ,m] =
φR
0

�
1�m sin2 θ

��1/2
dθ is

elliptic integral, φ 2 [�π/2,π/2], 0 6= c1, c2 are constants.
Here, as obtaining analytical solutions manually is highly challenging,
we utilize software to solve the ODE 2ϕ0W + f (f 0ϕ00 � f 00ϕ0) = 0.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Güler 10/15/2024 40 / 54



Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

Therefore, we have following corollaries.

Corollary 6. RHS (18) is 1-minimal i¤

ϕ = �ic�1/4
1 EllipticF

h
i sinh�1

�
ic1/4
1 f

�
,�1

i
+ c2,

where i = (�1)1/2, EllipticF[φ,m] =
φR
0

�
1�m sin2 θ

��1/2
dθ is

elliptic integral, φ 2 [�π/2,π/2], 0 6= c1, c2 are constants.

Here, as obtaining analytical solutions manually is highly challenging,
we utilize software to solve the ODE 2ϕ0W + f (f 0ϕ00 � f 00ϕ0) = 0.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Güler 10/15/2024 40 / 54



Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

Therefore, we have following corollaries.

Corollary 6. RHS (18) is 1-minimal i¤

ϕ = �ic�1/4
1 EllipticF

h
i sinh�1

�
ic1/4
1 f

�
,�1

i
+ c2,

where i = (�1)1/2, EllipticF[φ,m] =
φR
0

�
1�m sin2 θ

��1/2
dθ is

elliptic integral, φ 2 [�π/2,π/2], 0 6= c1, c2 are constants.
Here, as obtaining analytical solutions manually is highly challenging,
we utilize software to solve the ODE 2ϕ0W + f (f 0ϕ00 � f 00ϕ0) = 0.

(TTU Math Seminar) Fundamental Form IV and Curvatures in 4D Erhan Güler 10/15/2024 40 / 54



Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

Corollary 7. RHS (18) is 2-minimal i¤

ϕ = c1 or ϕ = �
Z e

R
f 00
f du

f 1/2

�Z
e
R 2f 00�f 0

f du

¤ 0 du + c1

�1/2 du + c2,

where f 6= 0, c1, c2 are constants.

Corollary 8. RHS (18) is 3-minimal i¤

ϕ = c1, ϕ = c1f + c2.

Next, one can see some examples about RHS in E4.
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Curvatures and the Fourth Fundamental Form Curvatures and Fundamental Forms of RHS

Curvatures and the RHS

Example 1. Catenoidal-type Hypersurface. Taking f (u) = a cosh u
and ϕ (u) = au, where �∞ < u < ∞, 0 � v ,w � 2π, we get

x(u, v ,w) = (a cosh u cos v cosw , a cosh u sin v cosw , a cosh u sinw , au).
(27)

x veri�es C1 = � 1
3a cosh2 u

, C2 = � 1
3a2 cosh4 u

, C3 =
1

a3 cosh6 u
.

Example 2. Hypersphere. Considering f (u) = r cos u and
ϕ (u) = r sin u, where r > 0, 0 < u < π, 0 � v ,w � 2π, we have

x(u, v ,w) = (r cos u cos v cosw , r cos u sin v cosw , r cos u sinw , r sin u) .
(28)

x supplies Ci =
�
� 1
r

�i
, where i = 1, 2, 3.
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Curvatures and the RHS

Example 3. Right Spherical Hypercylinder. Taking f (u) = r > 0
and ϕ (u) = u, where 0 < u < π, 0 � v ,w � 2π, we obtain

x(u, v ,w) = (r cos v cosw , r sin v cosw , r sinw , u) . (29)

x has C1 = � 2
3r , C2 =

1
3r 2 , C3 = 0. So, it is 3-minimal.

Let us see some results of the fourth fundamental form of the RHS
(18) .

Corollary 9. The fourth fundamental form matrix (fij ) of RHS (18)
is determined by

IV = diag

 
� (f

0ϕ00 � f 00ϕ0)3

W 7/2 ,� ϕ03

fW 3/2 cos
2 w ,� ϕ03

fW 3/2

!
. (30)
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Curvatures and the RHS

When W = 1, the curvatures (24) , (25) , and (26) of the RHS (18)
reduce to

C1 =
¤ 02f 00 + (¤ 00 � 2)

�
1� f 02

�
3f ϕ0

, (31)

C2 =
�f 02 (2¤ 00 + 1) + 1� 2¤ 00ϕ02

3f 2
,

C3 =
f 00ϕ0

f 2
,

where f 6= 0, ϕ0 6= 0.
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Curvatures and the RHS

Corollary 10. When the curve (10) of (18) is parametrized by the
arc length (i.e., W = 1), then the curvatures of (18) have the
relations

0 = 9f 2C21
�
�3f 2C2 � f 02

�
2¤ 00 + 1

�
+ 1
�

(32)

�2¤ 00
�
¤ 02f 00 +

�
¤ 00 � 2

� �
1� f 02

��2
,

0 = 3f 3C1C3 � f 00
�
¤ 02f 00 +

�
¤ 00 � 2

� �
1� f 02

��
, (33)

0 = f 2
�
3f 00C2 + 2f 3C23

�
� f 00

�
1� f 02

�
2¤ 00 + 1

��
. (34)
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Corollary 11. When f = u 6= 0, ϕ0 6= 0 in the previous corollary,
then (18) has the following

Ci = 0.

where i = 1, 2, 3. That is, the hypersurface (18) is i-minimal.
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The Fourth Laplace�Beltrami Operator of a Hypersurface

Fourth Laplace�Beltrami Operator

De�nition 2. The fourth Laplace�Beltrami operator of a smooth
function φ = φ(x1, x2, x3)jD (D � R3) of class C 3 with respect to
the fourth fundamental form of hypersurface x is the operator ∆IV,
de�ned by

∆IVφ =
1
f1/2

3

∑
i ,j=1

∂

∂x i

�
f1/2f ij

∂φ

∂x j

�
. (35)

where
�
f ij
�
= (fij )

�1 and

f = det (fij )

= f11f22f33 � f11f23f32 � f12f21f33 + f12f31f23 + f21f13f32 � f13f22f31.

Here, the Laplace�Beltrami operator with respect to the metric IV is
de�ned only when the fourth fundamental form IV is
non-degenerated. The righ side of the operator (35) looks like the
regular Laplace�Beltrami, but it depends on fourth fundamental form
IV = (fij ).
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Fourth Laplace�Beltrami Operator on RHSs

Theorem 3. The fourth Laplace�Beltrami operator of RHS (18) is related
by ∆IVx = Ax, where A = diag(Ω1,Ω2,Ω3,Φ), and

Ωi =
W 3/2

2f ϕ03ψ4
Pi , (36)

Φ =
W 3/2

2f ϕ03ψ4
P4, (37)

where W = f 02 + ϕ02, ψ = f 0ϕ00 � f 00ϕ0, i = 1, 2, 3, and also
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Fourth Laplace�Beltrami Operator on RHSs

Pi = 2f 02W 2ϕ03 (f 0ϕ00 � f 00ϕ0) + 3¤ 04f 00ϕ03 (f 0ϕ00 + f 00ϕ0)
+ 5¤ 0f 00ϕ06 (f 0f 00 + ϕ0ϕ00)� 16f 3f 0f 00ϕ0ϕ00

�
f 02ϕ002 + f 002ϕ02

�
+ 4f 3

�
f 004ϕ04 + f 04ϕ004

�
+ 3¤ 0W 2ϕ03 (f 0ϕ000 � ϕ0f 000)

� 13¤ 04ϕ04ϕ002 + 8¤ 03f 00ϕ05ϕ00 � 6¤ 03f 000ϕ06
� 7¤ 02ϕ06ϕ002 + 24f 3f 02f 002ϕ02ϕ002 + 2¤ 002ϕ08,

P4 = W ϕ03[2f 04ϕ0ϕ00 � 8¤ 03ϕ002 + 2f 02ϕ02 (ϕ0ϕ00 � f 0f 00)
+ 7¤ 02f 00ϕ0ϕ00 + ¤ 0f 002ϕ02 � 9f ϕ02ϕ00ψ� 2f 0f 00ϕ04
+ 3fW ϕ0 (f 0ϕ000 � f 000ϕ0)].
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Fourth Laplace�Beltrami Operator on RHSs

Example 4. Considering f (u) = a cosh u and ϕ (u) = au as in
Example 1, we have

∆IVx =
a2 cosh3 u

2

0BB@
(5+ cosh 2u) cos v cosw
(5+ cosh 2u) sin v cosw
(5+ cosh 2u) sinw

�4 sinh u

1CCA . (38)

Example 5. Taking f (u) = r cos u and ϕ (u) = r sin u as in
Example 2, we obtain

∆IVx = 3r2

0BB@
cos u cos v cosw
cos u sin v cosw
cos u sinw
sin u

1CCA . (39)
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thanks ...

thank you very much!
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