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WHAT IS A TYPICAL QUANTUM STATE?

N.S. WITTE

Abstract. There is much interest in the understanding of non-classical cor-

relations of observables in quantum systems, such as entanglement. We con-

sider this question for a finite pair of coupled systems, the simplest setting

of this problem. Now the dimension of the Hilbert spaces generically grows

exponentially with the number of components and only the smallest cases are

completely understood. With this in mind we adopt a statistical approach and

pose the question - what is a typical quantum state and how can one best (i.e.

uniformly) sample these from the state space? Consideration of this question

has lead to a particular joint probability distribution governing the eigenvalues

of a certain density matrix, known as the Bures-Hall ensemble. Some of the

essential results in this understanding will be derived in a simple pedagogical

manner, without assuming a prior background and suitable for students in

mathematics, statistics and physics.

This then leads to a further question, namely, how do the largest and

smallest eigenvalues of the density matrix behave as the system size (number

of components) grows? Through recent work by the speaker the answer to this

question has been found using cutting-edge tools from integrable probability

and approximation theory. Time permitting a brief snapshot of some results

will be revealed.
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1. Essential References for Further Exploration

- Quantum Information Background and Online Notes: [20], [8], [1], [18], [6]

- Quantum Information Monograph: [4]

- Fubini-Study Metrics: [14],[22]

- Original Bures & Hall: [7], [15]

- Understanding Bures Metric: [16], [10]

- Selberg Integrals: [19], [13]

- Random Matrix Theory Monographs: [17], [11]

- Random Matrix Theory Extras: [23], [21]

- Approximation Theory Background: [9]

- Cauchy-Laguerre Matrix Models: [5], [12]

- Contemporary Issues in QIT: [2], [3]
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[21] H.-J. Sommers and K. Žyczkowski. Bures volume of the set of mixed quantum states. J. Phys.

A, 36(39):10083–10100, 2003.

[22] E. Study. Kürzeste wege im komplexen gebiet. Mathematische Annalen, 60(3):321–378, 1905.
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