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Abstract. In recent times, several deep learning techniques have been used

for learning dynamical systems from data. One state-of-the-art technique is the

method of neural ordinary differential equations (NODEs) which learns the right

hand side of a system of differential equations using a neural network. However,

we observe that a basic implementation of NODEs for learning chaotic dynamics

is shown to lead to unstable surrogate models. To remedy this, we introduce a

novel decomposition of the NODE into a linear and nonlinear term that promotes

long-term stability and robustness into the surrogate. The linear term may be spec-

ified by utilizing a dictionary or through a multipoint stencil prescribe through a

convolutional layer. We observe that our novel NODE is able to learn the chaotic

dynamics of the Kuramoto-Sivashinsky equations and provide models that are sta-

ble and robust to noise for long durations. Moreover, the prescription of a linear

term also allows for the identification of an approximate inertial manifold directly

from the data which can be used for further model-order reduction of the surrogate.
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