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ABSTRACT. In recent times, several deep learning techniques have been used
for learning dynamical systems from data. One state-of-the-art technique is the
method of neural ordinary differential equations (NODEs) which learns the right
hand side of a system of differential equations using a neural network. However,
we observe that a basic implementation of NODEs for learning chaotic dynamics
is shown to lead to unstable surrogate models. To remedy this, we introduce a
novel decomposition of the NODE into a linear and nonlinear term that promotes
long-term stability and robustness into the surrogate. The linear term may be spec-
ified by utilizing a dictionary or through a multipoint stencil prescribe through a
convolutional layer. We observe that our novel NODE is able to learn the chaotic
dynamics of the Kuramoto-Sivashinsky equations and provide models that are sta-
ble and robust to noise for long durations. Moreover, the prescription of a linear
term also allows for the identification of an approximate inertial manifold directly
from the data which can be used for further model-order reduction of the surrogate.



