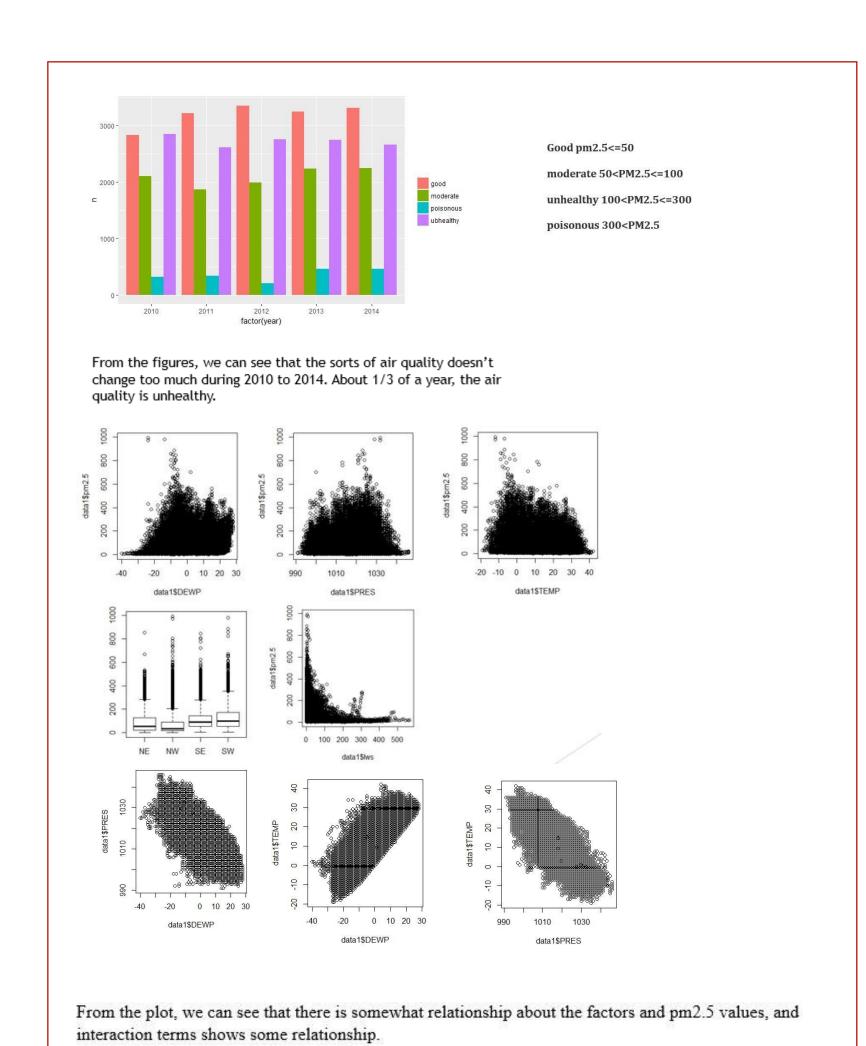
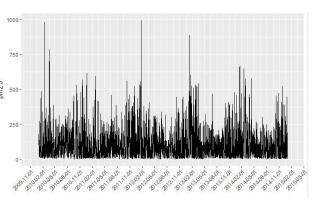
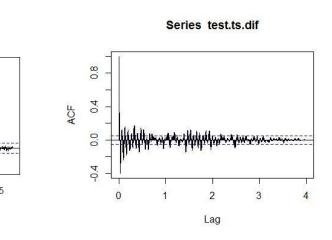

PM2.5 Air Pollution in Beijing

Department of Mathematics and Statistics Nan Mi


what is PM2.5?

PM2.5 refers to dangerous atmospheric particulate mater, that have a diameter less than 2.5 micrometers.


Natural sources: soil dust, sea salt, plant pollen, spores, bacteria, volcanic eruptions, forest fires, etc.


Man-made source: power plant, metallurgy and petroleum industrial processes, motor vehicles, coal burning, wood burning, etc.

Series test.ts.dif

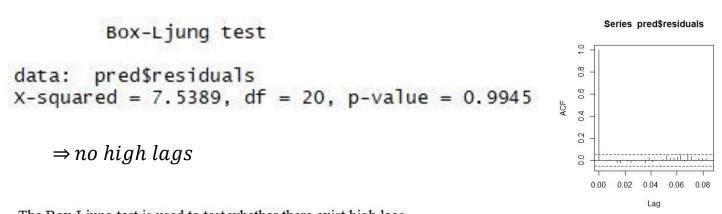
Augmented Dickey-Fuller Test

data: pm
Dickey-Fuller = -23.463, Lag order = 34,
p-value = 0.01
alternative hypothesis: stationary

From the figures of AIC and PAIC, we can see the data are stationary. The Dickey-Fuller test also shows that the data are stationary. Therefore, time series analysis can be applied.

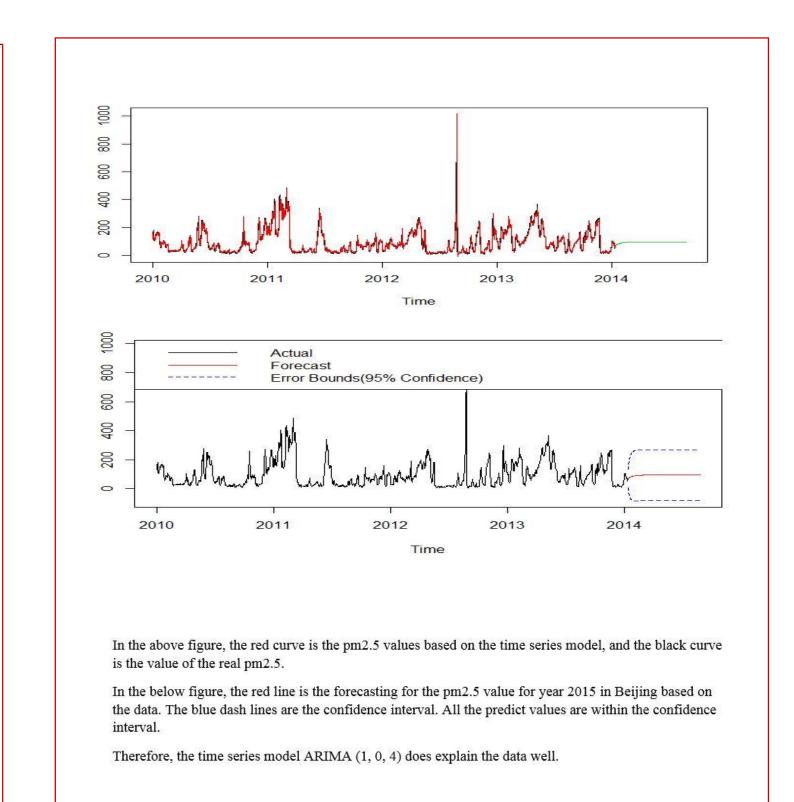
- ARIMA (p, d, q) (Autoregressive Integrated Moving Average Model)
- **p** is the number of autoregressive terms,
- **d** is the number of non-seasonal differences needed for stationarity
- **q** is the number of lagged forecast errors in the prediction equation

Series: test.ts


ARIMA(1,0,4) with non-zero mean

Coefficients:

ar1 ma1 ma2 ma3 ma4 mean 0.9212 0.1895 -0.1392 -0.0343 0.0429 94.0197 s.e. 0.0145 0.0298 0.0317 0.0315 0.0286 11.1435


sigma^2 estimated as 1033: log likelihood=-7194.96 AIC=14403.91 AICc=14403.99 BIC=14440.98

 $y_t = 94.0197 + 0.9212y_{t-1} + 0.1892\varepsilon_{t-1} - 0.1392\varepsilon_{t-2} - 0.0343\varepsilon_{t-3} + 0.0429\varepsilon_{t-4} + \varepsilon_t$ ε_t , ε_{t-1} , ε_{t-2} , ε_{t-3} , $\varepsilon_{t-4} \sim Normal \ distribution$

The Box-Ljung test is used to test whether there exist high lags.

The p-value is 0.9945 which is very large; therefore, we reject the null hypothesis. We conclude that there are not high lags. Thus, the model works.

A research group at Tsinghua University collected hourly PM2.5 data in Beijing from 2010 to 2014 and obtained total 48,324 hourly samples. They used the following features in their data collection.

Year	Year of data in this row
No	Row number
Month	Month of data in this row
PM2.5	PM2.5 concentration (ug/m^3)
DEWP	Dew point (\hat{a}, f)
TEMP	Temperature (\hat{a}, f)
PRES	Pressure (hPa)
cbwd	Combined wind direction
Iws	Cumulated wind speed (m/s)
Is	Cumulated hours of snow
Ir	Cumulated hours of rain

Linear Regression Model

```
rfit.default(formula = pm2.5 ~ DEWP + TEMP + PRES + cbwd + Iws +
    DEWP:PRES + TEMP:PRES, data = data1)
Coefficients:
               Estimate Std. Error t.value p.value
 (Intercept) 1.1764e+03 7.0893e+01 16.5933 < 2.2e-16 ***
            -8.8664e+01 3.6493e+00 -24.2959 < 2.2e-16 ***
            1.8426e+01 4.2073e+00 4.3796 1.192e-05 ***
            -1.0323e+00 6.9431e-02 -14.8682 < 2.2e-16 ***
            -5.6383e+00 9.9521e-01 -5.6655 1.476e-08 ***
             2.9302e+01 9.7091e-01 30.1798 < 2.2e-16 ***
cbwdSE
cbwdsw
            2.4117e+01 1.0260e+00 23.5071 < 2.2e-16 ***
            -1.0304e-01 6.3479e-03 -16.2324 < 2.2e-16 ***
DEWP:PRES 9.0175e-02 3.5935e-03 25.0938 < 2.2e-16 ***
 TEMP:PRES -2.2585e-02 4.1393e-03 -5.4562 4.893e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Overall Wald Test: 18170.87 p-value: 0
```

pm2.5 = 1176.4 - 88.664 * DEWP + 18.426 * TEMP - 1.0323 * PRES - 5.6383 * cbwdNW + 29.302 * cbwdSE + 24.117 * cbwdSW - 0.10304Iws + 0.090175 * <math>(DEWP: PRES) - 0.022585 * (TEMP: PRES)

Comparing ARIMA and Regression models

Residual standard error: 78.32 on 41747 degrees of freedom Multiple R-squared: 0.2762, Adjusted R-squared: 0.276 F-statistic: 1770 on 9 and 41747 DF, p-value: < 2.2e-16

ME RMSE MAE MPE MAPE MASE ACF1
Training set -0.03421951 32.07985 15.56282 -14.86163 26.40248 0.1787067 -2.515054e-06

ARIMA (1, 0, 4) model shows much smaller MSE than the regression model (32.07985 and 78.32)

Therefore, ARIMA (1, 0, 4) model is a better choice.

Conclusion

Pm2.5 data is time series data

Stationary Trend

- Linear regression is able to predict the future pm2.5 value.
- ARIMA (1, 0, 4) is able to predict the future pm2.5 value.
- ARIMA (1, 0, 4) is more accurate than the linear regression model.

