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Abstract

We develop a multivariate regression model when 
responses or predictors are on nonlinear manifolds, rather 
than on Euclidean spaces. The nonlinear constraint makes 
the problem challenging and needs to be studied carefully. 
By performing principal component analysis (PCA) on  
tangent space of manifolds at mean, we use principal 
directions instead in the model. Then, the ordinary 
regression tools can be utilized. We apply the framework to 
shape data (ozone hole contours). Specially, we adopt the 
square-root velocity representation and parametrization-
invariant metric proposed by Srivastava et al. (2011) . 
Experimental results have shown that we can not only 
perform efficient regression analysis on the non-Euclidean 
data, but also achieve high prediction accuracy by the 
constructed model.

Introduction
Regression analysis of Euclidean data has been studied 

for decades. The methodologies and tools have been well 
developed. 

The explosive growth of non-Euclidean data such as 
functions, curves, surfaces, images and trajectories of 
those above attracted tremendous attention. 

Functional data (left) and curves (right). The left figure 
displays the absorbance spectrum functions of  215 meat 
sample from Tecator dataset. The right displays the  ozone 
hole contours of September from 1982 to 2016.

 Traditional MLR model will not work because 
• The usual Euclidean calculus will not apply 
• Conventional methods and statistics may not apply

Our Idea 
1. Describe data on manifold using representation proposed by Srivastava, Klassen et al. 
2. Perform PCA in tangent space at mean
3. Use principal component scores for regression instead

Our contribution 
 We develop a multivariate regression model when response variable or predictors are on nonlinear manifolds, rather 

than on Euclidean space.
 We remove phase variability by performing registration to preserve representative
statistical summary and capture the variability of data.

Methodology
 Mathematics representation of shape and functional data:
An absolutely continuous , n-dimensional  parameterized 
curve β, such that β(t) :[0,1] → 𝑅𝑛.
• Diffeomorphisms:
Г= {𝜸: 𝟎, 𝟏 → 𝟎, 𝟏 , 𝜸(0)=0, 𝜸(1)=1, 𝜸 is a diffeomorphism}
𝜸 ∈ Г , Г be set of all positive to be the set of all positive 
diffeomorphisms from [0,1] to itself.

• Representation of Curves (the square-root velocity 
field(SRVF) ). Let β(t) :[0,1] → 𝑅𝑛, ∀ 𝑡 is defined by a 
function 𝑞: [0,1] → 𝑅𝑛 as

q 𝑡 =
ሶβ(𝑡)

ሶβ(𝑡)
∈ 𝑅𝑛

• Advantage of SRVF representation:

1. An elastic metric reduces to the L2 metric
2. Isometry under re-parametrization and rotation for L2

metric

𝑞1 − 𝑞2 = 𝑂 𝑞1,𝜸 − 𝑂(𝑞2,𝜸)
3 .  The proper metric leads to computation of mean and 
covariance
4.   The tangent space at mean becomes a vector space, 
where conventional statistics and methods will apply

Statistical Summary: Karcher mean
𝜇 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑞 ∈𝑆 σ 𝑖=1

𝑛 𝑑𝑠 𝑞 , 𝑞𝑖
2

Principal Component Analysis(PCA):
1. Represent smooth curves 𝑦1(𝑡), … , 𝑦𝑛 (𝑡)

with SRVF’s 𝑞1 𝑡 , … , 𝑞𝑛 𝑡

2. Find Karcher mean of all 𝑞𝑖’s 𝜇

3. Tangent space 𝑇𝜇(S) of S at 𝜇, ෤𝑞𝑖 ∈ 𝑞 has 

shortest distance to 𝜇, by mapping curve ෤𝑞𝑖 →
𝑣𝑖=𝑙𝑜𝑔𝜇 (෥𝑞𝑖) with inverse exponential map, we 

can define covariance matrix K= 
1

𝑛−1
σ 𝑖=1
𝑛 𝑣𝑖𝑣𝑖

𝑡

3. With PCA, using SVD 𝐾 =𝑈σ𝑈 , estimating the 
most variation of shooting vectors 𝑣𝑖

,s, denoted 

by 𝑉1, 𝑉2. Dominating direction of 𝑣𝑖
,s at 𝜇 can be 

written as 𝑉 = 𝒄𝟏 𝑉1+ 𝒄𝟐 𝑉2, 𝒄𝟏=< 𝑣𝑖 , 𝑉1 >,
𝒄𝟐=< 𝑣𝑖 , 𝑉2 >

Application
 Study of Ozone Hole Contours

• Ozone is a gas made up of three oxygen atoms 𝑂3. It exists naturally in small amounts in the stratosphere.

• The ozone hole is ozone depletion around earth’s south pole area.

• Influencing factor: EESC(Equivalent effective stratospheric chlorine), Antarctic Zonal Wind Speed, Temperature, 
Heat flux, Solar Radiation, 𝐶𝑂2

Experimental Results
• ozone hole contours and mean contour

▪ MLR on first principal component score:
• The p-value is 3.987e-7, 𝑅2=0.8633
• EESC explains 62.3% and zonal wind explains 21.4%

• Registered contour, warping function and modes by PCs

▪ MLR on second principal component score:
• The p-value is 3.987e-7, 𝑅2=0.9149
• 𝐶𝑂2 explains 28.93%, zonal wind explains 27.84%, solar 

radiation explains 11.90%

Conclusion
• We studied the regression problem where response variables 

are functions and curves.
• The representation by Srivastava et al. is utilized and PCA at 

tangent space of mean is performed.
• The principal component scores are used instead for MLR 

models.
• This framework can be applied to functional data or high 

dimensional curves.


