Smoothing Survival Functions using an Empirical Saddlepoint
Approximation Based Method with Doubly Censored Data

Abstract ; L Proposed Method
Introduction and Motivation
A commonly used non-parametric procedure to estimate survival functions is _ _ m Arrange {0, L;, R;} in ascending order > Name them 0, 1, S, ..., Sm—1
through the Kaplan-Meier (KM) estimator. The distribution the KM Data: Failure time data Doubly-censored data (Interval-censored data) Survival function (Not smooth)
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. L : . L o m Times to certain events (failure or survival m Failure time (T) is observed as an interval. = Defined as the probability that failure time
estimator delivers Is a discrete one with approximations to the distribution T exceeds time t. 0| s{| s, Sj—1 Sj Sm—1 00
. . _ event). T € (L, R], L<R _
only at the observation times given. The proposed method is a non- ) : : (LRl S = =) Vst=ee
Eg: Death, The failure of a mechanical component Eg: Times to breast retraction of 6 patients. . t; t, t; ?
parametric method to produce smooth KM survival functions using an of a machine, or learning something. S S . |y,
. : . : o : e (45, ], (25,37],(37,], (4,11],(17,25], (6,10] o | 1 P2 J T 4i=1 U]
empirical saddlepoint approximation. The resulting distribution is m Occurrence of the event: failure. B a Use survfit function in R to give optimum p values using Non-parametric
constructed by inverting the moment generating function (MGF) for the KM The variable of interest : Survival variable. z Maximum Likelihood Estimation (NPMLE).
estimated discrete Simulation studies are conducted to demonstrate the
. . .. . . . . L . Probability Density Function (PDF): f(t) = f(t;) = p; whent; <t <t
performance of the method among competing parametric method and the Can we get a good smooth probability function using empirical saddle point approximation method for the interval censored data? . y Y (PDR): £(8) = 7 () = P, J J+1
semi-parametric spline-based method. m The Cumulative Distribution Function (CDF): F(t) = Nitj< ¢ Dy
= Obtain the Moment Generating Function (MGF): M(r) = Y71, el f(tj)
Results
m Obtain the Cumulant Generating Function (CGF): K(r) = In M(r)
: lati d : m Model 1: Weibull(1,10) _ _ _
Simulation Stu \' De3|gﬂ oer_cen: 10% 30% 50% =10 N=50 =100 m The saddlepoint CDF (Lugannani & Rice, 1980):
= | TE —e. | T = Censored percentage = 10% (e PP | :
Simulate interval censored data from 4 distributions =" 1 40 = B d(w) + flig(;”) (w u) ifr#0
— o 0 0 0 9 0 n — 1 K O
= Model 1: Weibull(1,10) n=10 —J=, P == Y == Fs(t) <E+ ©) _ ifr=0
10+ 10+ 101 (2) —
m Model 2: Weibull(1/3,10) I — S _ _ . \ 6vV2mK'4)(0)2
= Model 3: Weibull(2,V(2/3)) Censored percentage = 30%
o B "o i g where W = sign(r)/2[rt — K(r)] & i = ri/K®(r)
m Model 4: LogLogistic(2,1) n=>50 o | - ;o
. = | = Then the saddlepoint PDF:
Sample size (n) = 10, 25, 50, 75, 100 1 0 e | o e
B separ e pe separ e pe sear separ <% . 1
Percentage of censoring (per_cen) = 10%, 30%, 60% 1 T o . t) = exp {K(r) —rt
n=100 . N N . 1 —
Use the three methods to obtain the PDF: LN E — ‘| % ‘o —%— where K*(r) =t
m Parametric (par) I J
The underlying distribution should be known. Figure 2: PDF’s obtained for Weibull(1,10) Figure 3: Boxplots of ISE obtained for Weibull(1,10 Future Work
h _ likelihood estimation to find unk t by above methods for n=10, 50, 100 and per_cen 10, 30, and 60. by above methods for n=10, 50, 100 and per_cen 10, 30, and 60.
en use maximum likelihood estimation to find unknown parameters. _ L
Semi-parametric (spar) = Model 4 LogLogistic(2,1) m Integrated squared error comparisons for CDF’s.
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Fit cubic splines for knots at t4, t,, ..., t,, | . 1A o m Using the empirical saddlepoint based method there sometimes is a spike in
= Empirical Saddlepoint Approximation (spa) n=10 . / | | ' " ) | $ — $ the pdf obtained. Need to introduce a correction term to the model.
m The penalty term in splines method needs the number of uncensored
: : _ 200
Cocrj;pl)saleat;gep I;rg?sgrated squared errors between the true density and Cmensored percentage 304_) observations. We need to come-up with a method to treat data with
| n:50 3 0 3 0 3 0 . :
g ¥ : ' g censoring percentage 100%.
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m We do not need any previous assumptions, such as in parametric methods, but performs as good as parametric methods.

m We can see clearly that when sample size is small, the empirical saddlepoint based approximation works better in model fitting, than other methods. *
(The splines methods doesn’t work for sample sizes less than 6)

m The method works really well in modeling the underlying density function when it has sharp turns. (Eg: LogLogistic(2,1))




