
Introduction to CMC surfaces

Let M be an oriented surface in R3, let ξ be the unit vector field
normal to M:

Ap = −dξp : TpM→ Tξ(p)S
2 ' TpM

is the shape operator of M.

The trace of Ap is twice the mean curvature H(p) at p ∈M.
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Introduction to the theory of CMC surfaces.

Definition 1

M is an H-surface means that it has constant mean curvature H.

Definition 2

M is an H-surface ⇐⇒ M is a critical point for the area functional
under compactly supported variations preserving the volume.

Sphere Cylinder
Delaunay surfaces
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Introduction to the theory of CMC surfaces.

Definition

An H-surface M is a minimal surface ⇐⇒ H ≡ 0 ⇐⇒ M is a critical
point for the area functional under compactly supported variations.

Catenoid

Helicoid
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CMC surfaces in nature.

Soap films are minimal
surfaces.

Soap bubbles are nonzero
H-surfaces.
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Notation and Language

Ch(Y) = InfK⊂Y compact
Area(∂K)

Volume(K)
= Cheeger constant of Y.

H(Y) = Inf{max |HM| : M = immersed closed surface in Y}, where
max |HM| denotes max of absolute mean curvature function HM.

The number H(Y) is called the critical mean curvature of Y.

Theorem (Meeks-Mira-Pérez-Ros)

If Y is a simply connected homogeneous 3-manifold, then:

2H(Y) = Ch(Y)

Remark

Proof uses H(Y)-foliations of Y to show that if Ω(n) ⊂ Y is a sequence
of isoperimetric domains in Y with Volume(Ω(n))→∞, then

H∂Ω(n) ≥ H(Y) and lim
n→∞

H∂Ω(n) = H(Y).
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Fact:

Simply connected homogeneous 3-manifolds X are either isometric to
S2(κ)× R or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its
Riemannian universal cover, Ch(X) denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the Hopf
Uniqueness Problem

Theorem (Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature
differ by an isometry of M. Moreover:

(1) If X is not diffeomorphic to R3, then, for every H ∈ R, there exists a
sphere of constant mean curvature H in M.

(2) If X is diffeomorphic to R3, then the values H ∈ R for which there
exists a sphere of constant mean curvature H in M are exactly those
with |H| > Ch(X)/2.
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Theorem

Let S be an H-sphere in M and let S̃ ⊂ X be a lift.

1 If X is a product S2 × R, where S2 is a sphere of constant
curvature, and S̃ = S2 × {t0}, for some t0 ∈ R, then S is totally
geodesic, stable and has nullity 1 for its Jacobi operator.

2 Otherwise, S has index 1 and nullity 3 for its Jacobi operator and
the immersion of S into X extends as the boundary of an isometric
immersion F : B→M of a Riemannian 3-ball B which is mean
convex.

3 There is a point pS ∈M such that every isometry of M that fixes
pS also leaves invariant S .
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Previous results on the Hopf Uniqueness Problem are the following:

Theorem (Hopf, 1950)

H-spheres in R3 are round.

Theorem (Abresch-Rosenberg, 2014)

If M has a 4-dimensional isometry group, then H-spheres in M are
surfaces of revolution and they are characterized by their mean
curvatures.

Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol3 with any of its most symmetric left invariant
metrics, then H-spheres in X have index 1 and nullity 3 and they are
characterized by their mean curvatures.
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Definition

Given an oriented immersed surface f : Σ→ X with unit normal
vector field N : Σ→ TX, the left invariant Gauss map of Σ is the
map G : Σ→ S2 ⊂ TeX that assigns to each p ∈ Σ, the unit
tangent vector to X at the identity element e given by left
translation:

(dlf (p))e(G (p)) = Np.
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Theorem (Representation Theorem, Meeks-Mira-Perez-Ros)

Suppose Σ is a simply connected Riemann surface with conformal
parameter z , X is a simply connected metric Lie group, H ∈ R and
R(q) : C→ C is the H-potential.

Let g : Σ→ C be a solution of the complex elliptic PDE

gzz =
Rq

R
(g) gzgz +

(
Rq

R
− Rq

R

)
(g) |gz |2, (1)

such that gz 6= 0 everywherea, and such that the H-potential R of X
does not vanish on g(Σ) (for instance, this happens if Σ is closed).

Then, there exists an immersed H-surface f : Σ # X, unique up to
left translations, whose Gauss map is g .

Conversely, if g : Σ→ C is the Gauss map of an immersed
H-surface f : Σ # X in a metric Lie group X, and the H-potential
R of X does not vanish on g(Σ), then g satisfies the equation (1),
and moreover gz 6= 0 holds everywhere.

aBy gz 6= 0 we mean that gz(z0) 6= 0 if g(z0) ∈ C and that
limz→z0(gz/g

2)(z) 6= 0 if g(z0) = ∞.
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Theorem (Classification Theorem for H-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional metric Lie group.

X is diffeomorphic to R3 =⇒ the moduli space of H-spheres in X
is parameterized by the mean curvature values H in (H(X),∞).

X is diffeomorphic to S3 =⇒ the moduli space of H-spheres in X
is parameterized by the mean curvature values H in [0,∞).

X diffeomorphic to S3 =⇒ the areas of all H-spheres form a
half-open interval (0,A(X)].

H-spheres in X are Alexandrov embedded with index 1, nullity 3.
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Steps of the proof of the Classification Theorem for H-spheres.

Throughout Σ denotes a fixed H0-sphere in X of index 1.

Step 0: Σ has nullity 3: Cheng’s theorem.

Step 1: The moduli space M(X) of non-congruent index-1
H-spheres in X is an analytic 1-manifold locally parameterized by its
mean curvature values: Implicit Function Theorem.

Step 2: The left invariant Gauss map G : Σ→ S2 ⊂ Te(X) is a
degree-1 diffeomorphism: Nodal Domain Argument.

Step 3: Curvature estimates for Σ (given any fixed upper bound H1

of H0): Use that Gauss map is a degree-1 diffeo.

Step 4: Area estimates for Σ. This means:

(A) If X is isomorphic to SU(2), areas of spheres in M(X) are
uniformly bounded.

(B) If X is not isomorphic to SU(2), then for any ∆ > 0 the areas
of spheres in M(X) with H0 ∈ [H(X) + ∆,∞) are uniformly
bounded. There are no H(X)-spheres in X.
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Steps of the proof continued.

Step 5: Each component of M(X) is an interval parameterized by
the mean curvature values in a subinterval IX ⊂ [0,∞). IX = [0,∞)
if X is isomorphic to SU(2) and otherwise IX = (H(X),∞).

Step 6: On any H0-sphere M different from a left translation of Σ,

∃ a NON-ZERO complex valued quadratic differential ωΣ(M) with
isolated negative index zeroes.

Step 7: Since the Euler characteristic of the sphere is positive, any
H0-sphere in X is a left translate of the unique H0-sphere in M(X).

Conclusions:

The space of non-congruent H-spheres in X equals M(X)
which is an interval parameterized by the mean curvature
values in [0,∞) if X is isomorphic to SU(2) and otherwise, in
the interval (H(X),∞).
Each H-sphere in X has index 1 and nullity 3.
Each H-sphere in X is the boundary of an immersed 3-ball
F : B→ X (Alexandrov embedded).
If X is isomorphic to SU(2), then the areas of H-spheres in X
form a half-open interval (0,A(X)].
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∃ a NON-ZERO complex valued quadratic differential ωΣ(M) with
isolated negative index zeroes.

Step 7: Since the Euler characteristic of the sphere is positive, any
H0-sphere in X is a left translate of the unique H0-sphere in M(X).

Conclusions:

The space of non-congruent H-spheres in X equals M(X)
which is an interval parameterized by the mean curvature
values in [0,∞) if X is isomorphic to SU(2) and otherwise, in
the interval (H(X),∞).

Each H-sphere in X has index 1 and nullity 3.
Each H-sphere in X is the boundary of an immersed 3-ball
F : B→ X (Alexandrov embedded).
If X is isomorphic to SU(2), then the areas of H-spheres in X
form a half-open interval (0,A(X)].
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Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Steps of the proof continued.

Step 4(A): Suppose X is isomorphic to SU(2). There exists a
uniform bound on the areas of index 1 H-spheres in M(X).

Proof.

Arguing by contradiction, ∃ a sequence of Hn-spheres Σn ∈M(X)
with Area(Σn) ≥ n and Hn uniformly bounded.

Some subsequence of compact domains in the Σn converges to a
complete, stable limit H-surface Σ∞ with degenerate Gauss map.

Σ∞ is invariant under the left action of a 1-parameter subgroup S1
of X generating a tangent right invariant Killing field K.

Σ∞ can be chosen to be a quasi-periodic cylinder of bounded
curvature and linear area growth =⇒ Σ∞ is parabolic.

Given a point p ∈ Σ∞, let K′ be a right invariant Killing field with
K′(p) ∈ TpΣ∞ linearly independent from K(p).

Jacobi function 〈K′,N〉 changes sign on Σ∞, N = unit normal field.

But on a stable parabolic H-surface, a bounded Jacobi function
cannot change sign, a contradiction.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



New uniqueness results for CMC surfaces.

Question

Is the round sphere the only complete simply connected surface
embedded in R3 with non-zero constant mean curvature?

NOT simply connected

Cylinder

NOT embedded

Smyth surface
conformally C
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New uniqueness results for CMC surfaces.

Theorem (Meeks-Tinaglia)

Round spheres are the only complete simply connected surfaces
embedded in R3 with non-zero constant mean curvature.

1986 - Above result proved by Meeks for properly embedded.

2007 - Work of Colding-Minicozzi and Meeks-Rosenberg for H = 0
shows that if M is a complete, simply connected 0-surface embedded in
R3, then M is either

a plane or a helicoid.
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Theorem (Meeks-Tinaglia)

Let M ⊂ R3 be a complete, connected embedded H-surface.

1 M has positive injectivity radius =⇒ M is properly embedded in R3.

2 M has finite topology =⇒ M has positive injectivity radius.

3 Suppose H > 0. Then:

|AM| is bounded ⇐⇒ M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on:

Colding-Minicozzi: M has finite topology and H = 0 =⇒ M is proper.

Item 3 in the above theorem holds for 3-manifolds which are
homogeneously regular; in particular it holds in closed Riemannian
3-manifolds.
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Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

∃ R0 ≥ π such that every embedded H-disk in R3 has radius < R0/H.

Corollary (Meeks-Tinaglia)

A complete simply connected H-surface embedded in R3 with H > 0 is a
round sphere.

Theorem (Curvature Estimates for H-Disks, Meeks-Tinaglia)

Fix ε,H0 > 0 and a complete locally homogenous 3-manifold X. ∃ C > 0
s.t. for all embedded (H ≥ H0)-disks D:

|AD|(p) ≤ C for all p ∈ D s.t. distD(p, ∂D) ≥ ε.
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Theorem (One-sided curvature estimate for H-disks, Meeks-Tinaglia)

∃C, ε > 0 s.t. for any H-disk Σ ⊂ R3 as in the figure below:

|AΣ| ≤
C

R
in Σ ∩ B(εR) ∩{x3 > 0}.

εR

∂Σ

∂Σ

R

Σ
This piece
is graphical

x3 = 0

This result generalizes the one-sided curvature estimates for minimal
disks by Colding-Minicozzi, and uses their work in its proof.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature



Universal domain for Embedded Calabi-Yau problem?

D∞ = the above bounded domain, smooth except at p∞.

Ferrer, Martin and Meeks conjecture: An open surface properly
embeds as a complete minimal surface in D∞ ⇐⇒ every end
has infinite genus ⇐⇒ it admits a complete bounded minimal
embedding in R3.
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The embedded Calabi-Yau problem for finite genus

Conjecture (Meeks-Perez-Ros-Tinaglia)

For any complete, connected embedded H-surface Σ ⊂ R3 of finite genus
and compact boundary, there exists a constant KΣ s.t. ∀R ≥ 1,

Area(Σ ∩ B(R)) ≤ KΣ · R3.

Theorem (Meeks-Perez-Ros)

Let Σ ⊂ R3 be a complete, connected embedded 0-surface of finite
genus. Then:

Σ is proper ⇐⇒ Σ has a countable # of ends.
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The family Rt of Riemann minimal examples
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1860 Riemann’s discovery! Image by Matthias Weber

Figure:
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The family Rt of Riemann minimal examples
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Cylindrical parametrization of a Riemann minimal example
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Cylindrical parametrization of a Riemann minimal example
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Conformal compactification of a Riemann minimal example

Example

Topologically there is only one connected genus-zero surface with two
limit ends. Riemann minimal examples have this property.
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Properly embedded genus-0 examples - Collin-Meeks-Perez-Ros-Rosenberg
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Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that
appear as interfaces in material science or as equipotential surfaces in
crystals. This result contrasts with the failure of area estimates for
compact minimal surfaces of genus g > 2 in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia)

Given a flat 3-torus T3 and H > 0, ∃CH s.t. ∀g ∈ N, a closed H-surface
Σ embedded in T3 with genus at most g satisfies Area(Σ) ≤ CH(g + 1).
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Definition

Suppose f : Σ→ N is a closed immersed surface positive mean
curvature in a Riemannian 3-manifold N.

Σ is called strongly Alexandrov embedded if f extends to an
immersion F : W→ N of a compact 3-manifold W with Σ = ∂W,
where the extended immersion is injective on the interior of W.

Theorem (Meeks-Tinaglia, 2017)

Let N be a closed Riemannian 3-manifold.

Given H > 0 and a non-negative integer g , then the space of
strongly Alexandrov embedded closed surfaces in N of genus at
most g and constant mean curvature H is compact.
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These studies on the geometry of embedded H-surfaces lead to the
following deep results on CMC foliations of 3-manifolds.

Definition

A codimension-1 foliation F of a Riemannian n-manifold X is a CMC
foliation if it is transversely oriented and the mean curvature function
HF : X→ R constant along leaves of F .

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

Let F be a weak CMC foliation of a punctured Riemannian 3-ball
B(p, r)− {p}.

Then F extends to a weak CMC foliation of B(p, r) ⇐⇒ the mean
curvature function of F is bounded in some neighborhood of p.

2 key ingredients in the proof.

Curvature estimates for CMC foliations.

Local removable singularity theorem for weak H-laminations.
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These studies on the geometry of embedded H-surfaces lead to the
following deep results on CMC foliations of 3-manifolds.

Definition

A codimension-1 foliation F of a Riemannian n-manifold X is a CMC
foliation if it is transversely oriented and the mean curvature function
HF : X→ R constant along leaves of F .

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

Let F be a weak CMC foliation of a punctured Riemannian 3-ball
B(p, r)− {p}.

Then F extends to a weak CMC foliation of B(p, r) ⇐⇒ the mean
curvature function of F is bounded in some neighborhood of p.

2 key ingredients in the proof.

Curvature estimates for CMC foliations.

Local removable singularity theorem for weak H-laminations.
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CMC foliation of R3 punctured in two points by spheres and planes

Theorem (Meeks-Perez-Ros)

Suppose F is a CMC foliation of R3 − S where S is a closed countable
set. Then all leaves of F are contained in planes and round spheres.
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Calabi-Yau type problems for embedded H-surfaces

Theorem (Meeks-Tinaglia)

For H ≥ 1, complete embedded finite topology H-surfaces in complete
hyperbolic 3-manifolds are proper.

Theorem (Coskunuzer-Meeks-Tinaglia)

For every H < 1, ∃ a complete embedded stable H-plane that is
nonproper in H3.

For every H ∈ (0, 1/2), ∃ a complete embedded stable H-plane that
is nonproper in H2 × R.

Theorem (Tinaglia-Rodriguez)

∃ a complete embedded stable 0-plane that is nonproper in H2 × R.
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