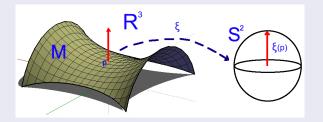
Introduction to CMC surfaces



 Let M be an oriented surface in R³, let ξ be the unit vector field normal to M:

$$\mathbf{A}_{\mathbf{p}} = -\mathbf{d}\xi_{\mathbf{p}} \colon T_{\mathbf{p}}\mathbf{M} \to T_{\xi(\mathbf{p})}\mathbf{S}^{2} \simeq T_{p}\mathbf{M}$$

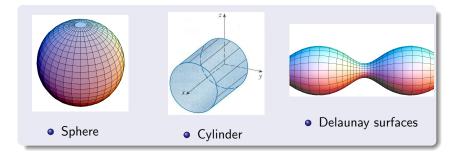
is the shape operator of M.

• The trace of A_p is twice the mean curvature H(p) at $p \in M$.

M is an H-surface means that it has constant mean curvature H.

Definition 2

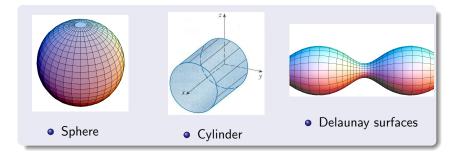
M is an H-surface \iff M is a critical point for the area functional under compactly supported variations preserving the volume.



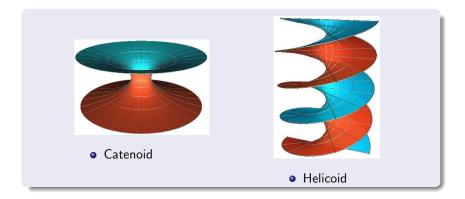
M is an H-surface means that it has constant mean curvature H.

Definition 2

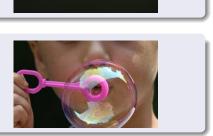
M is an H-surface \iff M is a critical point for the area functional under compactly supported variations preserving the volume.



An H-surface M is a minimal surface \iff H \equiv 0 \iff M is a critical point for the area functional under compactly supported variations.



Soap bubbles are nonzero H-surfaces.



Notation and Language

- $Ch(\mathbf{Y}) = Inf_{K \subset \mathbf{Y} \text{ compact}} \frac{Area(\partial K)}{Volume(K)} = Cheeger \text{ constant of } \mathbf{Y}.$
- H(Y) = Inf{max |H_M| : M = immersed closed surface in Y}, where max |H_M| denotes max of absolute mean curvature function H_M.
- The number **H**(**Y**) is called the critical mean curvature of **Y**.

Notation and Language

- $Ch(\mathbf{Y}) = Inf_{\mathbf{K} \subset \mathbf{Y} \text{ compact}} \frac{Area(\partial \mathbf{K})}{Volume(\mathbf{K})} = Cheeger \text{ constant of } \mathbf{Y}.$
- H(Y) = Inf{max |H_M| : M = immersed closed surface in Y}, where max |H_M| denotes max of absolute mean curvature function H_M.
- The number **H**(**Y**) is called the critical mean curvature of **Y**.

Theorem (Meeks-Mira-Pérez-Ros)

• If Y is a simply connected homogeneous 3-manifold, then:

 $2H(\mathbf{Y}) = Ch(\mathbf{Y})$

Notation and Language

- $Ch(\mathbf{Y}) = Inf_{\mathbf{K} \subset \mathbf{Y} \text{ compact}} \frac{Area(\partial \mathbf{K})}{Volume(\mathbf{K})} = Cheeger \text{ constant of } \mathbf{Y}.$
- H(Y) = Inf{max |H_M| : M = immersed closed surface in Y}, where max |H_M| denotes max of absolute mean curvature function H_M.
- The number **H**(**Y**) is called the critical mean curvature of **Y**.

Theorem (Meeks-Mira-Pérez-Ros)

• If Y is a simply connected homogeneous 3-manifold, then:

 $2H(\mathbf{Y}) = Ch(\mathbf{Y})$

Remark

Proof uses H(Y)-foliations of Y to show that if $\Omega(n) \subset Y$ is a sequence of isoperimetric domains in Y with $Volume(\Omega(n)) \rightarrow \infty$, then

 $H_{\partial\Omega(n)} \ge H(\mathbf{Y})$ and $\lim_{n\to\infty} H_{\partial\Omega(n)} = H(\mathbf{Y}).$

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature

Simply connected homogeneous 3-manifolds X are either isometric to $\mathbb{S}^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Simply connected homogeneous 3-manifolds X are either isometric to $\mathbb{S}^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, Ch(X) denote the Cheeger constant of X.

Simply connected homogeneous 3-manifolds X are either isometric to $\mathbb{S}^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, Ch(X) denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the **Hopf Uniqueness Problem**

Theorem (Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M.

Simply connected homogeneous 3-manifolds X are either isometric to $\mathbb{S}^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, Ch(X) denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the **Hopf Uniqueness Problem**

Theorem (Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

(1) If X is not diffeomorphic to \mathbb{R}^3 , then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature H in M.

Simply connected homogeneous 3-manifolds X are either isometric to $\mathbb{S}^2(\kappa) \times \mathbb{R}$ or to a metric Lie group.

Let M be a Riemannian homogeneous 3-manifold, X denote its Riemannian universal cover, Ch(X) denote the Cheeger constant of X.

The next theorem solves what is usually referred to as the **Hopf Uniqueness Problem**

Theorem (Meeks-Mira-Pérez-Ros)

Any two spheres in M of the same absolute constant mean curvature differ by an isometry of M. Moreover:

- (1) If X is not diffeomorphic to \mathbb{R}^3 , then, for every $\mathbf{H} \in \mathbb{R}$, there exists a sphere of constant mean curvature \mathbf{H} in \mathbf{M} .
- (2) If X is diffeomorphic to \mathbb{R}^3 , then the values $H \in \mathbb{R}$ for which there exists a sphere of constant mean curvature H in M are exactly those with |H| > Ch(X)/2.

Let S be an H-sphere in M and let $\widetilde{S} \subset X$ be a lift.

Let S be an H-sphere in M and let $\widetilde{S} \subset X$ be a lift.

• If X is a product $S^2 \times \mathbb{R}$, where S^2 is a sphere of constant curvature, and $\tilde{S} = S^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.

Let S be an H-sphere in M and let $\widetilde{S} \subset X$ be a lift.

- If X is a product $\mathbb{S}^2 \times \mathbb{R}$, where \mathbb{S}^2 is a sphere of constant curvature, and $\tilde{S} = \mathbb{S}^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion F: B → M of a Riemannian 3-ball B which is mean convex.

Let S be an H-sphere in M and let $\widetilde{S} \subset X$ be a lift.

- If X is a product $\mathbb{S}^2 \times \mathbb{R}$, where \mathbb{S}^2 is a sphere of constant curvature, and $\tilde{S} = \mathbb{S}^2 \times \{t_0\}$, for some $t_0 \in \mathbb{R}$, then S is totally geodesic, stable and has nullity 1 for its Jacobi operator.
- ② Otherwise, S has index 1 and nullity 3 for its Jacobi operator and the immersion of S into X extends as the boundary of an isometric immersion F : B → M of a Riemannian 3-ball B which is mean convex.
- **3** There is a point $p_S \in M$ such that every isometry of M that fixes p_S also leaves invariant S.

Previous results on the Hopf Uniqueness Problem are the following:

Theorem (Hopf, 1950)

H-spheres in \mathbb{R}^3 are round.

Previous results on the Hopf Uniqueness Problem are the following:

Theorem (Hopf, 1950)

H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2014)

If ${\bf M}$ has a 4-dimensional isometry group, then H-spheres in ${\bf M}$ are surfaces of revolution and they are characterized by their mean curvatures.

Previous results on the Hopf Uniqueness Problem are the following:

Theorem (Hopf, 1950)

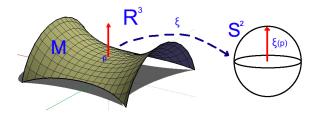
H-spheres in \mathbb{R}^3 are round.

Theorem (Abresch-Rosenberg, 2014)

If ${\bf M}$ has a 4-dimensional isometry group, then H-spheres in ${\bf M}$ are surfaces of revolution and they are characterized by their mean curvatures.

Theorem (Daniel-Mira (2013), Meeks (2013))

If X is the Lie group Sol₃ with any of its most symmetric left invariant metrics, then H-spheres in X have index 1 and nullity 3 and they are characterized by their mean curvatures.



• Given an oriented immersed surface $f: \Sigma \to X$ with unit normal vector field $N: \Sigma \to TX$, the left invariant Gauss map of Σ is the map $G: \Sigma \to \mathbb{S}^2 \subset T_e X$ that assigns to each $p \in \Sigma$, the unit tangent vector to X at the identity element *e* given by left translation:

 $(dI_{f(p)})_e(G(p)) = N_p.$

Theorem (Representation Theorem, Meeks-Mira-Perez-Ros)

- Suppose Σ is a simply connected Riemann surface with conformal parameter z, X is a simply connected metric Lie group, H ∈ ℝ and R(q): C → C is the H-potential.
- Let $g: \Sigma \to \overline{\mathbb{C}}$ be a solution of the complex elliptic PDE

$$g_{z\overline{z}} = \frac{R_q}{R}(g) g_z g_{\overline{z}} + \left(\frac{R_{\overline{q}}}{R} - \frac{\overline{R_q}}{\overline{R}}\right) (g) |g_z|^2, \quad (1)$$

such that $g_z \neq 0$ everywhere^a, and such that the **H**-potential R of **X** does not vanish on $g(\Sigma)$ (for instance, this happens if Σ is closed).

- Then, there exists an immersed H-surface f: Σ ↔ X, unique up to left translations, whose Gauss map is g.
- Conversely, if $g: \Sigma \to \overline{\mathbb{C}}$ is the Gauss map of an immersed H-surface $f: \Sigma \hookrightarrow X$ in a metric Lie group X, and the H-potential R of X does not vanish on $g(\Sigma)$, then g satisfies the equation (1), and moreover $g_z \neq 0$ holds everywhere.

^aBy $g_z \neq 0$ we mean that $g_z(z_0) \neq 0$ if $g(z_0) \in \mathbb{C}$ and that $\lim_{z \to z_0} (g_z/g^2)(z) \neq 0$ if $g(z_0) = \infty$.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature

Theorem (Classification Theorem for H-spheres, Meeks-Mira-Pérez-Ros)

Suppose X is a simply connected 3-dimensional metric Lie group.

- X is diffeomorphic to $\mathbb{R}^3 \implies$ the moduli space of H-spheres in X is parameterized by the mean curvature values H in $(H(X), \infty)$.
- X is diffeomorphic to S³ ⇒ the moduli space of H-spheres in X is parameterized by the mean curvature values H in [0,∞).
- X diffeomorphic to S³ ⇒ the areas of all H-spheres form a half-open interval (0, A(X)].
- H-spheres in X are Alexandrov embedded with index 1, nullity 3.

Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

Throughout Σ denotes a fixed H_0 -sphere in X of index 1.

• Step 0: Σ has nullity 3: Cheng's theorem.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map G: Σ → S² ⊂ T_e(X) is a degree-1 diffeomorphism: Nodal Domain Argument.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map G: Σ → S² ⊂ T_e(X) is a degree-1 diffeomorphism: Nodal Domain Argument.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to \mathbb{S}^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for Σ.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to \mathbb{S}^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to \mathbb{S}^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is not isomorphic to SU(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded.

- Step 0: Σ has nullity 3: Cheng's theorem.
- Step 1: The moduli space M(X) of non-congruent index-1
 H-spheres in X is an analytic <u>1-manifold</u> locally parameterized by its
 mean curvature values: Implicit Function Theorem.
- Step 2: The left invariant Gauss map $G: \Sigma \to \mathbb{S}^2 \subset T_e(X)$ is a degree-1 diffeomorphism: Nodal Domain Argument.
- Step 3: Curvature estimates for Σ (given any fixed upper bound H₁ of H₀): Use that Gauss map is a degree-1 diffeo.
- Step 4: <u>Area estimates</u> for **Σ**. This means:
 - (A) If X is isomorphic to SU(2), areas of spheres in $\mathcal{M}(X)$ are uniformly bounded.
 - (B) If X is **not** isomorphic to **SU**(2), then for any $\Delta > 0$ the areas of spheres in $\mathcal{M}(X)$ with $H_0 \in [H(X) + \Delta, \infty)$ are uniformly bounded. There are **no** H(X)-spheres in X.

• Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0,\infty)$. $I_X = [0,\infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X),\infty)$.

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ, ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ, ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ,
 ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

• The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if X is isomorphic to SU(2) and otherwise, in the interval $(H(X),\infty)$.

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ, ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if X is isomorphic to SU(2) and otherwise, in the interval $(H(X),\infty)$.
- Each H-sphere in X has index 1 and nullity 3.

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ, ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if X is isomorphic to SU(2) and otherwise, in the interval $(H(X),\infty)$.
- Each H-sphere in X has index 1 and nullity 3.
- Each H-sphere in X is the boundary of an immersed 3-ball $F: B \to X$ (Alexandrov embedded).

- Step 5: Each component of $\mathcal{M}(X)$ is an interval parameterized by the mean curvature values in a subinterval $I_X \subset [0, \infty)$. $I_X = [0, \infty)$ if X is isomorphic to SU(2) and otherwise $I_X = (H(X), \infty)$.
- Step 6: On any H₀-sphere M different from a left translation of Σ, ∃ a NON-ZERO complex valued quadratic differential ω_Σ(M) with isolated negative index zeroes.
- Step 7: Since the Euler characteristic of the sphere is positive, any H_0 -sphere in X is a left translate of the unique H_0 -sphere in $\mathcal{M}(X)$.

Conclusions:

- The space of non-congruent H-spheres in X equals $\mathcal{M}(X)$ which is an interval parameterized by the mean curvature values in $[0,\infty)$ if X is isomorphic to SU(2) and otherwise, in the interval $(H(X),\infty)$.
- Each H-sphere in X has index 1 and nullity 3.
- Each H-sphere in X is the boundary of an immersed 3-ball $F: B \to X$ (Alexandrov embedded).
- If X is isomorphic to SU(2), then the areas of H-spheres in X form a half-open interval (0, A(X)].

• **Step 4(A):** Suppose X is isomorphic to **SU(2)**. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

• **Step 4(A):** Suppose X is isomorphic to **SU(2)**. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

Proof.

Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.

• **Step 4(A):** Suppose X is isomorphic to **SU(2)**. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.

• Step 4(A): Suppose X is isomorphic to SU(2). There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_{∞} is invariant under the left action of a 1-parameter subgroup \mathbb{S}^1 of X generating a tangent right invariant Killing field K.

• Step 4(A): Suppose X is isomorphic to SU(2). There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_{∞} is invariant under the left action of a 1-parameter subgroup \mathbb{S}^1 of X generating a tangent right invariant Killing field K.
- Σ_{∞} can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\Longrightarrow \Sigma_{\infty}$ is parabolic.

• Step 4(A): Suppose X is isomorphic to SU(2). There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_∞ is invariant under the left action of a 1-parameter subgroup S¹ of X generating a tangent right invariant Killing field K.
- Σ_{∞} can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\Longrightarrow \Sigma_{\infty}$ is parabolic.
- Given a point $p \in \Sigma_{\infty}$, let K' be a right invariant Killing field with $\mathsf{K}'(p) \in \mathcal{T}_p \Sigma_{\infty}$ linearly independent from $\mathsf{K}(p)$.

• Step 4(A): Suppose X is isomorphic to SU(2). There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

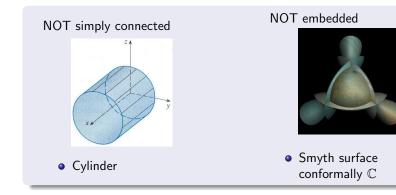
- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_{∞} is invariant under the left action of a 1-parameter subgroup \mathbb{S}^1 of X generating a tangent right invariant Killing field K.
- Σ_{∞} can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\Longrightarrow \Sigma_{\infty}$ is parabolic.
- Given a point $p \in \Sigma_{\infty}$, let K' be a right invariant Killing field with $\mathsf{K}'(p) \in \mathcal{T}_p \Sigma_{\infty}$ linearly independent from $\mathsf{K}(p)$.
- Jacobi function $\langle \mathsf{K}', \mathsf{N} \rangle$ changes sign on $\mathbf{\Sigma}_{\infty}$, $\mathsf{N} =$ unit normal field.

• **Step 4(A):** Suppose X is isomorphic to **SU(2)**. There exists a uniform bound on the areas of index 1 H-spheres in $\mathcal{M}(X)$.

- Arguing by contradiction, ∃ a sequence of H_n-spheres Σ_n ∈ M(X) with Area(Σ_n) ≥ n and H_n uniformly bounded.
- Some subsequence of compact domains in the Σ_n converges to a complete, stable limit H-surface Σ_∞ with degenerate Gauss map.
- Σ_{∞} is invariant under the left action of a 1-parameter subgroup \mathbb{S}^1 of X generating a tangent right invariant Killing field K.
- Σ_{∞} can be chosen to be a quasi-periodic cylinder of bounded curvature and linear area growth $\Longrightarrow \Sigma_{\infty}$ is parabolic.
- Given a point $p \in \Sigma_{\infty}$, let K' be a right invariant Killing field with $\mathsf{K}'(p) \in \mathcal{T}_p \Sigma_{\infty}$ linearly independent from $\mathsf{K}(p)$.
- Jacobi function $\langle \mathsf{K}', \mathsf{N} \rangle$ changes sign on $\mathbf{\Sigma}_{\infty}$, $\mathsf{N} =$ unit normal field.
- But on a stable parabolic **H**-surface, a bounded Jacobi function cannot change sign, a contradiction.

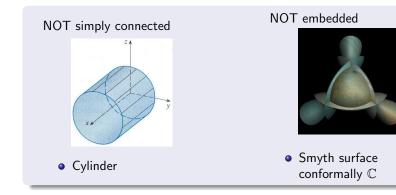
Question

Is the round sphere the only complete simply connected surface **embedded** in \mathbb{R}^3 with **non-zero** constant mean curvature?



Question

Is the round sphere the only complete simply connected surface **embedded** in \mathbb{R}^3 with **non-zero** constant mean curvature?



Round spheres are the only complete simply connected surfaces embedded in ${\rm I\!R}^3$ with non-zero constant mean curvature.

1986 - Above result proved by Meeks for properly embedded.

Round spheres are the only complete simply connected surfaces **embedded** in \mathbb{R}^3 with non-zero constant mean curvature.

1986 - Above result proved by Meeks for properly embedded.

2007 - Work of Colding-Minicozzi and Meeks-Rosenberg for H = 0 shows that if M is a complete, simply connected 0-surface embedded in \mathbb{R}^3 , then M is either

a plane or a helicoid.

Let $\mathsf{M} \subset \mathsf{R}^3$ be a complete, connected embedded $\mathsf{H}\text{-surface}.$

() M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .

Let $\mathsf{M} \subset \mathsf{R}^3$ be a complete, connected embedded $\mathsf{H}\text{-surface}.$

- **(**) M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.

Let $\mathsf{M} \subset \mathsf{R}^3$ be a complete, connected embedded $\mathsf{H}\text{-surface}.$

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|\mathbf{A}_{\mathbf{M}}|$ is bounded \iff **M** has positive injectivity radius.

Let $\mathsf{M} \subset \mathsf{R}^3$ be a complete, connected embedded $\mathsf{H}\text{-surface}.$

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on: Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Let $\mathsf{M} \subset \mathsf{R}^3$ be a complete, connected embedded $\mathsf{H}\text{-surface}.$

- **1** M has positive injectivity radius \implies M is properly embedded in \mathbb{R}^3 .
- **2** M has finite topology \implies M has positive injectivity radius.
- **3** Suppose H > 0. Then:

 $|A_M|$ is bounded \iff M has positive injectivity radius.

When H = 0, items 1 and 2 were proved by Meeks-Rosenberg, based on: Colding-Minicozzi: M has finite topology and $H = 0 \implies M$ is proper.

Item 3 in the above theorem holds for 3-manifolds which are homogeneously regular; in particular it holds in closed Riemannian 3-manifolds.

Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

 $\exists R_0 \ge \pi$ such that every embedded H-disk in \mathbb{R}^3 has radius $< \mathbb{R}_0/\mathbb{H}$.

Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

 $\exists \ \mathbf{R}_0 \geq \pi$ such that every embedded **H**-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0/\mathbf{H}$.

Corollary (Meeks-Tinaglia)

A complete simply connected H-surface embedded in ${\ensuremath{\mathsf{R}}}^3$ with ${\ensuremath{\mathsf{H}}}>0$ is a round sphere.

Theorem (Radius Estimates for H-Disks, Meeks-Tinaglia)

 $\exists \ \mathbf{R}_0 \geq \pi$ such that every embedded **H**-disk in \mathbf{R}^3 has radius $< \mathbf{R}_0/\mathbf{H}$.

Corollary (Meeks-Tinaglia)

A complete simply connected H-surface embedded in ${\bf R}^3$ with ${\bf H}>0$ is a round sphere.

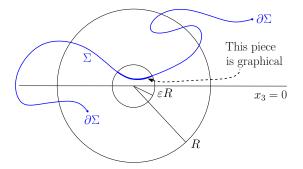
Theorem (Curvature Estimates for **H**-Disks, Meeks-Tinaglia)

$$\begin{split} & \text{Fix } \varepsilon, \textbf{H}_0 > 0 \text{ and a complete locally homogenous 3-manifold X}. \ \exists \ \textbf{C} > 0 \\ & \text{s.t. for all embedded } (\textbf{H} \geq \textbf{H}_0) \text{-disks } \textbf{D} \text{:} \\ & |\textbf{A}_{D}|(p) \leq \textbf{C} \quad \text{for all } p \in \textbf{D} \ \text{s.t. } \textbf{dist}_{D}(p, \partial \textbf{D}) \geq \varepsilon. \end{split}$$

Theorem (One-sided curvature estimate for **H**-disks, Meeks-Tinaglia)

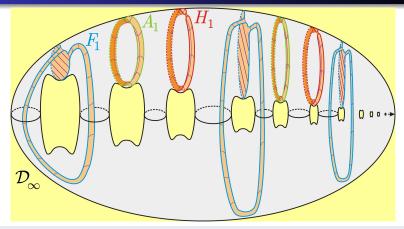
 $\exists \mathbf{C}, \varepsilon > 0$ s.t. for any **H**-disk $\mathbf{\Sigma} \subset \mathbf{R}^3$ as in the figure below:

$$|\mathbf{A}_{\mathbf{\Sigma}}| \leq \frac{\mathbf{C}}{R}$$
 in $\mathbf{\Sigma} \cap \mathbb{B}(\varepsilon R) \cap \{x_3 > 0\}.$



This result generalizes the one-sided curvature estimates for minimal disks by Colding-Minicozzi, and uses their work in its proof.

Universal domain for Embedded Calabi-Yau problem?



- \mathcal{D}_{∞} = the above bounded domain, smooth except at \mathbf{p}_{∞} .
- Ferrer, Martin and Meeks conjecture: An open surface properly embeds as a complete minimal surface in $\mathcal{D}_{\infty} \iff$ every end has infinite genus \iff it admits a complete bounded minimal embedding in \mathbb{R}^3 .

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature

Conjecture (Meeks-Perez-Ros-Tinaglia)

For any complete, connected embedded H-surface $\Sigma \subset \mathbb{R}^3$ of finite genus and compact boundary, there exists a constant K_{Σ} s.t. $\forall R \geq 1$,

 $\operatorname{Area}(\Sigma \cap \mathbb{B}(R)) \leq \mathbf{K}_{\Sigma} \cdot R^{3}.$

Conjecture (Meeks-Perez-Ros-Tinaglia)

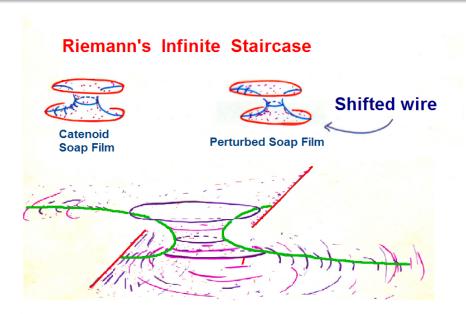
For any complete, connected embedded H-surface $\Sigma \subset \mathbb{R}^3$ of finite genus and compact boundary, there exists a constant K_{Σ} s.t. $\forall R \geq 1$,

 $\operatorname{Area}(\Sigma \cap \mathbb{B}(R)) \leq \mathbf{K}_{\Sigma} \cdot R^{3}.$

Theorem (Meeks-Perez-Ros)

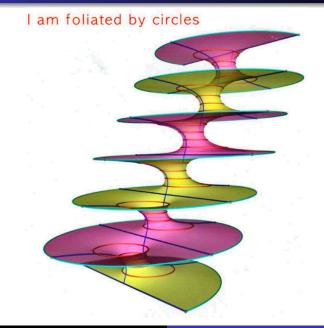
Let $\Sigma\subset {\rm I\!R}^3$ be a complete, connected embedded 0-surface of finite genus. Then:

 Σ is proper $\iff \Sigma$ has a <u>countable</u> # of ends.

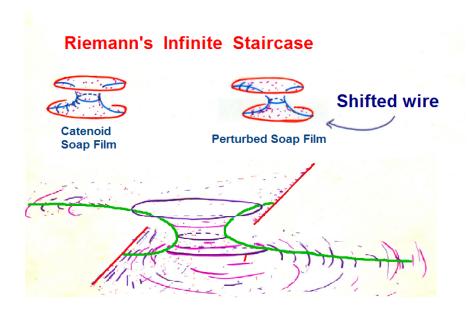


1860 Riemann's discovery!

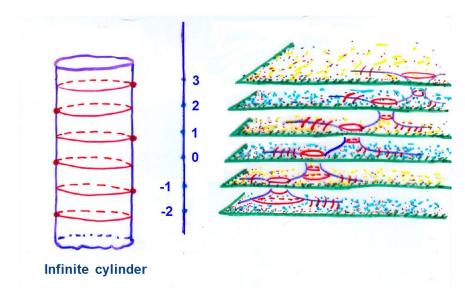
Image by Matthias Weber



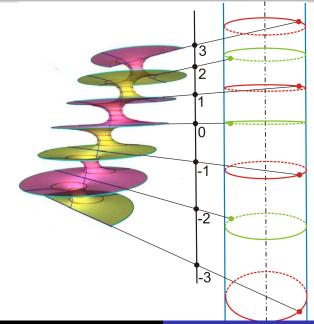
The family \mathcal{R}_t of Riemann minimal examples



Cylindrical parametrization of a Riemann minimal example



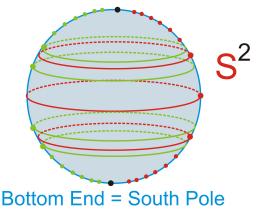
Cylindrical parametrization of a Riemann minimal example



Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature

Conformal compactification of a Riemann minimal example

Top End = North Pole

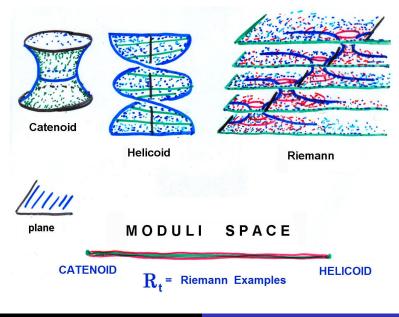


Example

Topologically there is **only one** connected **genus-zero** surface with **two limit ends**. Riemann minimal examples have this property.

Bill Meeks at the University of Massachusetts The theory of surfaces of constant mean curvature

Properly embedded genus-0 examples - Collin-Meeks-Perez-Ros-Rosenberg



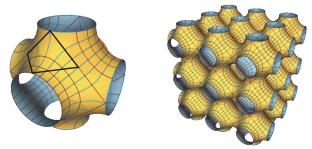


Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus g > 2 in any flat 3-torus (Traizet).

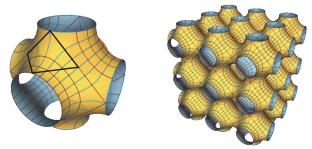


Figure: A body-centered cubic interface or Fermi surface in salt crystal.

Next theorem is motivated by the study of 3-periodic H-surfaces that appear as interfaces in material science or as equipotential surfaces in crystals. This result contrasts with the failure of area estimates for compact minimal surfaces of genus $\mathbf{g} > 2$ in any flat 3-torus (Traizet).

Theorem (Meeks-Tinaglia)

Given a flat 3-torus \mathbb{T}^3 and H > 0, $\exists C_H$ s.t. $\forall g \in \mathbb{N}$, a closed H-surface Σ embedded in \mathbb{T}^3 with genus at most g satisfies $Area(\Sigma) \leq C_H(g+1)$.

Definition

- Suppose f: Σ → N is a closed immersed surface positive mean curvature in a Riemannian 3-manifold N.
- Σ is called **strongly Alexandrov embedded** if f extends to an immersion $F: W \to N$ of a compact 3-manifold W with $\Sigma = \partial W$, where the extended immersion is injective on the interior of W.

Definition

- Suppose f: Σ → N is a closed immersed surface positive mean curvature in a Riemannian 3-manifold N.
- Σ is called **strongly Alexandrov embedded** if f extends to an immersion $F: W \to N$ of a compact 3-manifold W with $\Sigma = \partial W$, where the extended immersion is injective on the interior of W.

Theorem (Meeks-Tinaglia, 2017)

- Let N be a closed Riemannian 3-manifold.
- Given H > 0 and a non-negative integer g, then the space of strongly Alexandrov embedded closed surfaces in N of genus at most g and constant mean curvature H is compact.

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian **n**-manifold **X** is a **CMC** foliation if it is transversely oriented and the mean curvature function $\mathbf{H}_{\mathcal{F}}: \mathbf{X} \to \mathbb{R}$ constant along leaves of \mathcal{F} .

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian **n**-manifold **X** is a **CMC** foliation if it is transversely oriented and the mean curvature function $\mathbf{H}_{\mathcal{F}} \colon \mathbf{X} \to \mathbb{R}$ constant along leaves of \mathcal{F} .

Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

- Let \mathcal{F} be a *weak* CMC foliation of a punctured Riemannian 3-ball $B(p, r) \{p\}$.
- Then *F* extends to a weak CMC foliation of B(p, r) ⇐⇒ the mean curvature function of *F* is bounded in some neighborhood of p.

Definition

A codimension-1 foliation \mathcal{F} of a Riemannian **n**-manifold **X** is a **CMC** foliation if it is transversely oriented and the mean curvature function $\mathbf{H}_{\mathcal{F}} \colon \mathbf{X} \to \mathbb{R}$ constant along leaves of \mathcal{F} .

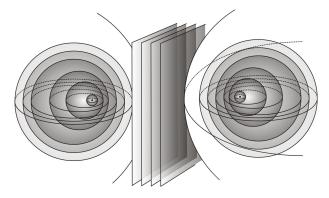
Theorem (CMC Foliation Extension Theorem, Meeks-Perez-Ros)

- Let \mathcal{F} be a *weak* CMC foliation of a punctured Riemannian 3-ball $B(p, r) \{p\}$.
- Then \mathcal{F} extends to a weak **CMC** foliation of $B(p, r) \iff$ the mean curvature function of \mathcal{F} is bounded in some neighborhood of p.

2 key ingredients in the proof.

- Curvature estimates for CMC foliations.
- Local removable singularity theorem for weak H-laminations.

CMC foliation of \mathbf{R}^3 punctured in two points by spheres and planes



Theorem (Meeks-Perez-Ros)

Suppose \mathcal{F} is a CMC foliation of $\mathbb{R}^3 - \mathcal{S}$ where \mathcal{S} is a closed countable set. Then all leaves of \mathcal{F} are contained in planes and round spheres.

For $H \ge 1$, complete embedded finite topology H-surfaces in complete hyperbolic 3-manifolds are proper.

Theorem (Coskunuzer-Meeks-Tinaglia)

- For every H < 1, \exists a complete embedded stable H-plane that is nonproper in \mathbb{H}^3 .
- For every $\mathbf{H} \in (0, 1/2)$, \exists a complete embedded stable \mathbf{H} -plane that is **nonproper** in $\mathbb{H}^2 \times \mathbb{R}$.

Theorem (Tinaglia-Rodriguez)

 \exists a complete embedded stable **0**-plane that is **nonproper** in $\mathbb{H}^2 \times \mathbb{R}$.