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Part 0. Configuration Spaces

• Configuration spaces are topological spaces describing arrangements
of a (fixed) number of points on a topological space X, taken to be a
manifold, carrying a (global) metric.

• Constrained configuration spaces are such spaces with extra
geometric constraints imposed on location of the points. The simplest
such condition is that they cannot be too close to each other. (It is
convenient to have X be a metric space, in order to measure distance
beween points.)

• Packing and tiling problems can be viewed as special sorts of
problems in constrained configuration spaces.

• Talk considers a specific model: constrained configuration spaces of N
spheres of radius r touching a central sphere of radius 1.
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Part I. Materials Science-1

• Problems in materials science can be approached mathematically via
“toy model" problems

• A basic question in materials science is to determine the thermodynamic
phase diagram of simple materials: gas, liquid, solids in various states.

• Some thermodynamic phases can described by global “order
parameters" with phase transitions signaled by sharp change in an order
parameter value (as a function of temperature, pressure etc.)
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Materials Science-4

• One of the mysteries of materials science whether there is some
associated phase transition (under rapid cooling or compression) in
amorphous glassy materials. Is there a “glass phase transition" between
a hard material and a “rubbery" material.

• A simpler question, also unanswered, concerns the possible
appearance of a “jamming" phase transition in granular materials.

• Packings of hard particles give simple models for granular materials,
glasses, liquids and other random media.
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Part I. Materials Science-5

• Materials problems can be approached in complementary ways:

1. empirical, large scale, by Monte Carlo simulations.

2. statistical mechanics, approximate models. (math + numerical
analysis of formula predictions)

3. theoretical, very small scale: “toy models"

• Next slides: some results of simulation: “gas" of hard tetrahedra
compressed to given density
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Materials Science-8

• The problems of materials science involve geometry of interacting
objects in three dimensions. They also be described using higher
dimensions: the motions of N objects requires 3N coordinates.

• This talk considers simpler and simpler toy problems in which the
connection to reality becomes more and more tenuous. But the chance to
say something precise increases.

• Talk concentrates on Toy model 2 (coming up)
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Materials Science-9

• Toy model 1: Assemblies of hard spheres in thermal motion. (“Ball
bearings") (J. D. Bernal et al (1967) Geometry of close-packed hard
sphere model. Structure of liquids.)

• Parameter to vary: density of packing, and “pressure".

• Maximal density of sphere packing: π√
18
≈ 0.74

• Experimentally a phase change: (“jamming transition") to the “random
close packing" (RCP) is observed between density 63% and 64%. There
is a change in elastic modulus and in bulk modulus.

• One can study for this model, mainly by simulation, but also by
experiment, are: geometry of the final packed states, statistics like
average number of contacts among the spheres.
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Materials Science-12

• Toy model 2: Consider spaces consisting of:
(1) N hard spheres of a fixed radius r
(2) each touching a fixed sphere of radius 1.

Spheres may move, but are restricted to remaining in contact with the
central sphere.

• This model has a two-dimensional flavor: One can replace the spheres
touching the central spheres with spherical caps (“contact lenses") of
radius f(r) on the surface of the sphere, which may be moved about, as
long as their interiors don’t overlap.

• Density of a packing of circular caps is specified the fraction of the
total surface area 4π2 that they cover on the central unit sphere. For fixed
radius r it is a linear function of the number of caps N present, they cover
a surface areas proportional to Nr.
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Disclaimer

• This reductive process of simplification has produced mathematics
problems that may be approached. However they only capture limited
features of the original problem.

•Work to be described in no way resolves the existence of a “jamming
transition " or of a “glass transition".

• Results in quotes: e. g. “Theorem" are not yet in preprint form.
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Part II. Configuration Spaces-the r = 0 case

• Configuration spaces of N distinct points on a manifold Z, e.g R2 or
S2.

Conf(Z,N) := ZN r {zi = zj : 1 ≤ i < j ≤ N}.

• Such spaces have been studied by topologists since 1960’s.
Cohomology and homotopy type of configuration spaces have been
extensively studied, with rather complete answers for Rn and Sn.
(Book of Fadell and Husseini (2001).)
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Reduced Configuration Spaces-the r = 0 case

• Reduced configuration spaces mod out by global symmetries. For S2

the isometries are given by elements of SO(3), a 3-dimensional real
Lie group. Set

Bconf(S2, N) = Conf(S2, N)/SO(3).

• We have

Bconf(S2, N) = Conf(R2, N − 1)/SO(2),

taking the one-point compactification of R2 ' C.
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Betti Numbers of Configuration Spaces
Conf(R2, n)

n \ k 0 1 2 3 4 5 6 7 8
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
3 1 3 2 0 0 0 0 0 0
4 1 6 11 6 0 0 0 0 0
5 1 10 35 50 24 0 0 0 0
6 1 15 85 225 274 120 0 0 0
7 1 21 175 735 1624 1764 720 0 0
8 1 28 322 1960 6769 13132 13068 5040 0
9 1 36 546 4536 22449 67284 118124 109584 40320

TABLE: Betti numbers of Hk(Conf(R2, n),C).
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Betti Numbers of Reduced Configuration Spaces
Bconf(S2, n),C)

n \ k 0 1 2 3 4 5 6 7
3 1 0 0 0 0 0 0 0
4 1 2 0 0 0 0 0 0
5 1 5 6 0 0 0 0 0
6 1 9 26 24 0 0 0 0
7 1 14 71 154 120 0 0 0
8 1 20 155 580 1044 720 0 0
9 1 27 295 1665 5104 8028 5040 0
10 1 35 511 4025 18424 48860 69264 40320

TABLE: Betti numbers of Hk(Bconf(S2, n),C)
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Cohomology Calculations

• The cohomology ring of Bconf(R2, N) was computed by
Arnol’d(1969), in terms of “colored" braid groups.

• The reduced configuration space Bconf(S2, N) has homotopy type
a twisted product of bouquets of circles with N − 3 factors, with the
j-th factor being a bouquet of j +2 factors, from 1 ≤ j ≤ N − 3. so
its cohomology over Q vanishes above dimension N − 3.
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Constrained Configuration Spaces

• One can extra constraints on point locations. In our case, we treat
points on S2 = {(x, y, z) = x2 + y2 + z2 = 1} ⊂ R3. and require:
minimal distance d = f(r) between points is bounded below.

• Injectivity radius function ρ(U) for a collection U of N points
u1,u2, · · ·uN is the minimum distance between any pair of points.

• Can measure distance d as half the spherical angle θ between points.
on S2. Convert θ to radius r via

r =
sin θ/2

1+ sin θ/2
.
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Constrained configuration Spaces -2

• Constrained configuration space is

YN [r] = Conf(n)[r] = {(u1, ..,uN) : ρ(U) ≥ θ(r)}.

• This configuration space has a global symmetry: the group SO(3) of
isometries of S2.

• Reduced (constrained) configuration space is

XN [r] = YN [r]/SO(3) := Bconf(n)[r] = Conf(N)[r])/SO(3).
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Part III. The 12 Spheres Problem: History

•We restrict to small N , particularly N = 12, which has an extensive
history.

• 12 Spheres Problem: Describe the topology and geometry of the
configuration space of 12 spheres all of radius 1 touching a central
sphere of radius 1.

• Generalized 12 Spheres Problem: Describe the topology and
geometry of the configuration spaces of 12 spheres of radius r touching a
central sphere of radius 1, and how it changes with varying radius
0 < r ≤ rmax.

• The history of this problem relates to physics, crystallography,
chemistry, biology and architecture.
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Kepler (1611): FCC Packing

In “Strena, Seu de nive Sexangula" [The Six-Cornered Snowflake]"
(Packing of spheres, with woodcut figures)

“In the second mode, not only is every pellet touched by its four neighbors
in the same plane, but also by four in the plane above and in the plane
below, so throughout one will be touched by twelve, and under pressure
spherical pellets will become rhomboid. [· · · ] The packing will be the
tightest possible, so that in no other arrangements could more pellets be
stuffed into the same container."

[FCC= Face Centered Cubic Lattice Configuration]
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Gregory (1715): Thirteen spheres can touch

• David Gregory talked with Isaac Newton about locations of stars in the
1690’s about the second edition of the Principia. Newton said 12 or 13
could be close to a given star.

• Gregory studied the packing problem. In his lectures on astronomy
(published 1715) he said:

“Now, ’tis certain from Geometry, that thirteen Spheres can touch and
surround one in the middle equal to them, (for Kepler is wrong in
asserting, in B. I of the Epit. that there may be twelve such, according to
the number of Angles of an Icosaedrum,)"
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Barlow (1883): Hexagonal Close Packing

“A fourth kind of symmetry, which resembles the third in that each point is
equidistant from the twelve nearest points, but which is of a widely
different character than the three former kinds, is depicted if layers of
spheres in contact arranged in the triangular pattern (plan d) are so
placed that the sphere centers of the third layer are over those of the first,
those of the fourth layer over those of the second, and so on. The
symmetry produced is hexagonal in structure and uniaxial (Figs. 5 and
5a)"

[HCP= Hexagonal Close Packing]
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Tammes (1930) Maximal Radius rmax(N)

• The Tammes problem (1930) concerns the maximum angular
separation θ achievable for N points on a sphere.

• Problem studied by P.M. L. Tammes concerned distribution of pores
on pollen grains in plants.

• Radial Tammes Problem. What is the maximum radius
r = rmax(N) achievable for N equal spheres of radius r touching a
radius 1 central sphere?

Equivalence of the problems: sin θ
2 = r

r+1.
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N r(N) Minimal Equation for r(N)
4 rmax(4) = 2+

√
6 X2 − 4X − 2

≈ 4.4495 Regular Tetrahedron

5- 6 rmax(5) = rmax(6) = X2 − 2X − 1
1+
√
2 ≈ 2.4142 Regular Octahedron (N=6)

7 rmax(7) ≈ 1.6913 X6 − 6X5 − 3X4

+8X3 +12X2 +6X +1

8 rmax(8) ≈ 1.5496 X4 − 8X3 +4X2 +8X +2
Square Antiprism

9 rmax(9) ≈ 1.3660 2X2 − 2X − 1

10 rmax(10) ≈ 1.2013 4X6 − 30X5 +17X4

+24X3 − 4X2 − 6X − 1

11-12 rmax(11) = rmax(12) = X4 − 6X3 +X2 +4X +1
1√

5+
√
5

2 −1
≈ 1.10851 Regular Icosahedron (N=12)

23-24 rmax(23) = rmax(24) = X6 − 10X5 +23X4

≈ 0.59262 +20X3 − 5X2 − 6X − 1
Snub Cube (N=24)
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Frederick Charles Frank (1952)

In “Supercooling of liquids" he says:

“Consider the question of how many different ways one can put twelve
billiard balls in simultaneous contact with another one, counting as
different the arrangements that cannot be transformed into each other
without breaking contact with the centre ball. The answer is three. Two
which come to mind of any crystallographer occur in the face-centred
cubic and hexagonal close packed lattce. The third [· · · ] is to put one at
the centre of each face of a regular dodecahedron. This body has five-fold
axes, which are abhorrent to crystal symmetry."

[DOD= dodecahedral configuration]
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Frederick Charles Frank (1952)

In “Supercooling of liquids" he also says:

“one may calculate that the binding energy of [the dodecahedral cluster of
13 atoms] is 8.4% greater than the other two packings. This is 40
percent of the lattice energy per atom in the crystal. I infer that this will be
a very common grouping in liquids, that most of the groups will be of this
form."

Main Physics Idea. The phase transition of freezing (liquid to solid)
involves a substantial rearrangement of atoms into a new order, there is a
local energy barrier to making the rearrangement.

Note. Ice Ih (standard ice) has its oxygen atoms in the HCP packing,
forms/melts at 0◦C. However under some conditions pure water can be
supercooled to −45◦C at standard pressure and remain liquid.
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Motivating Question

• Frank singles out three configuations: Call them FCC, HCP and DOD.

• Question. Is Frank’s assertion about the space of configurations of unit
distance spheres (mathematically) accurate?

• Frank asserts that the configuration space X12[1] of
12 unit spheres on a central unit sphere is disconnected. Furthermore, he
states there are three types of connected components.

[Two variant questions: Considering unlabeled spheres, versus
considering labeled spheres, numbered 1 to 12. For labeled spheres, the
number might not be three.]
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Motivating Question-Answers: Yes and No

Mathematical Answer 1. No.
There are explicit deformations showing that DOD, FCC and HCP are
in same connected component of the configuration space X12[1].

Conjecture: The configuration space X12[1] is connected, i.e. its 0-th
cohomology group H0(X12[1],C) = C.

Physics Answer 2. Yes. It is “almost true" in various senses.

[FCC and HCP configurations are points on the boundary of the
24-dimensional space X12[1].]

Conjecture. The configuration space X12[r] := Conf(12)[r] of 12
spheres of any fixed radius r > 1 touching a central unit sphere is
disconnected.
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Part IV. The 12 Spheres Problem: Geometry

•We consider the 21-dimensional space Bconf(12)[r] for
0 < r ≤ rmax. The first question concerns: value of rmax.
It corresponds to the Tammes problem for N = 12.

• Theorem (László Fejes-Tóth(1943)) (1) The maximum radius of 12
equal spheres touching a central sphere of radius 1 is:

rmax(12) =
1√

5+
√
5

2 − 1

≈ 1.1085085.

Here rmax(12) is a real root of the fourth degree equation
x4 − 6x3 + x2 +4x+1 = 0.

(2) An extremal configuration achieving this radius is the 12 vertices of an
inscribed regular icosahedron (equivalently, the face-centers of a
circumscribed regular dodecahedron). [It is unique, up to isometry.]
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Local Maxima for the Generalized 12 Spheres
Problem

• Question. Are there additional local maxima of the radius function for
some value 0 < r < rmax?

• If so, it must have r > 1. Such values would give connected
components of Bconf(12)[r] that do not contain any DOD
configurations.
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Permutation Problem for 12 Spheres

Permutation Problem. Considering labeled spheres, we have the
following questions:

• Question 1. What is the largest radius rp at which all 12 spheres can
be arbitrarily permuted?

• Theorem. Conway and Sloane (1998) All spheres in DOD can be
arbitrarily permuted at r = 1. Thus rp ≥ 1.

• Question 2. What is the largest radius rc for which the configuration
space is connected? [One has rc ≤ rp.]

• Conjecture. The equality rc = rp = 1 holds. The maximal radius is
equal spheres case. (Requires to show the inequality rc ≥ 1.)
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Deformation from DOD to FCC/HCP-1

(0) Put unit sphere center at (0,0,0).

(1) Put (rescaled) DOD configuration with three spheres at z = h, three
at z = −h, where h = φ2√

3φ2+3
≈ 0.79569, forming a non-touching

triangle of spheres. Put the remaining 6 spheres near equator, three
above it and three below it, in the DOD configuration.

(2) Phase one. Let the three spheres with z = h move radially towards
north pole at same speed, till they meet on a plane z = α. Same for three
spheres z = −h, till they meet at plane z = −α.

(The FCC and HCP moves are the same for this part.)
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Deformation from DOD to FCC/HCP-2

(3) Phase two. The six equatorial balls move radially towards equator, all
at same speed. At the same time the balls on z = α rotate clockwise at a
(variable) radial speed, aiming to move 60 degrees. The radial speed
function is not unique, it must be adjusted to avoid the equatorial spheres.
The south pole three balls do exactly the same motion, either moving
clockwise for HCP or counterclockwise for FCC.

• Physical model: Buckminster Fuller (1948+) found a jointed framework
(“jitterbug" configuration) permitting a (rescaled) deformation moving from
FCC (cuboctahedron) to DOD (icosahedron) with no unscaled spheres
touching till the final moment. In this model the distance between sphere
centers remains constant while the radius of central sphere decreases.
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Deformation from DOD to FCC/HCP-Locking at
Final Point

• The FCC configuration is jammed in the sense that one cannot move
one sphere, while still touching the central sphere, while the other 11
spheres remain in their current positions. In fact the minimal known
deformation to “unlock" the FCC configuration requires 6 balls to move
simultaneously with respect to holding the other 6 fixed.

• The HCP configuration is jammed in the same sense. The minimal
known deformation to “unlock" the HCP configuration requires 9 balls to
move simultaneously with respect to holding the other 3 balls fixed.
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FCC and HCP are on the boundary of space
X12[1]

It appears that both FCC and HCP are “pinch points" on the boundary of
X12[1]. They appear to be accessible from the interior X12[1] with a
single normal direction.

• “Theorem" (1) Take an ε-neighborhood Uε(FCC) of a (labeled)
FCC configuration. Then Uε(FCC)r {FCC} is disconnected, with 2

connected components.

(2) Take an ε-neighborhood Uε(HCP) of a (labeled) HCP

configuration. Then Uε(HCP) r {HCP} is disconnected, with 2

connected components.
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FCC and HCP are on the boundary of space
X12[1]

It is plausible that both FCC and HCP are “unavoidable" configurations in
X12(1) in the permutability problem.

• Conjecture. To continuously deform a labeled DOD configuration to
another DOD configuration at the same sphere centers in X12[1], which
is an odd permutation of the 12 spheres, at some point in the deformation
the configuration is either an FCC configuration or an HCP configuration.

• That is, one must traverse through one of the “pinch points" on the
boundary of X12(1) to get from one configuration to the other.
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Part V. Topology change with varying r: Min-Max
Morse theory

• Problem. Determine how the topology of the constrained configuration
spaces vary as a function of r.

[These spaces are super-level sets of the radius function r.]

• Problem. Determine all the critical values where the topology
changes, and compute the changes.

• Approach. Use a suitable generalization of Morse theory.

• Eventual Objective. Carry this program out for small values of N .
[Already N = 12 is a huge computational problem, out of reach.]
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Topology change with r for N = 12 : Betti number
changes

r /k 0 1 2 3 4
r = 0 1 54 1266 16884 140889

5 6 7 8 9
r = 0 761166 2655764 5753736 6999840 3628800

r/ k 0 1 2 3 4
r = rmax 7983360 0 0 0 0

5 6 7 8 9
r = rmax 0 0 0 0 0

• Betti numbers for r = 0 are those of Bconf(S2,12). Millions of critical
points seem necessary to achieve the large change in Betti numbers
occurring as r varies from 0 to rmax.
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Morse Theory

• Compute topological invariants of manifold using (lower)-level sets of
a nice enough real-valued function f :M → R (“Morse function")

• A Morse function is C2, finite number of isolated critical points,
non-degenerate Hessian at critical points, defines signature at point.

• Change in topology (up to homotopy equivalence) found by attaching
cells of dimension related to to the indexes of the critical points.
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Extensions of Morse Theory

• Morse theory extended to stratified spaces (Goresky and MacPherson
(1988)).

• The injectivity radius function is not a Morse function. It is a minimum of
several functions, each of which separately is (almost) a Morse function.

• Its critical manifolds can be higher dimensional. This happens for
N = 5.

• Morse theory for min functions for hard spheres only recently initiated
(Baryshnikov et al, IMRN (2014)).

• Related approach: balanced stress functions.
50



Balanced Configurations: Stress Graphs

• Start with the contact graph of a configuration.

• Put a set of nonnegative real weights on the edges, called stresses

• Balanced stress condition requires the tangent vector sum of the
stresses along edges at a vertex add up to 0.

• Theorem. If a configuration is critical for its injectivity radius value
then its contact graph must have a set of balanced stress weights.
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Balanced Configurations-2

• Balancing conditions are a testable, computable condition.

• The problem is one of computational real algebraic geometry.

• “Theorem". For XN [r] constrained configuration space.

(1) There are only finitely many radii values r′ which have a balanced
stress configuration.

(2) Any such radius values r′ are algebraic numbers.
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FCC Configuration Balanced Stress Graph
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HCP Configuration Balanced Stress Graph
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Minimal Balanced Configuration.

• The minimal balanced configuration is a ring of 12 spheres around the
equator. It occurs at raidus corresponding to θ = 2π

12. Set

r0 =
sin 2π

24

1− sin 2π
24

≈ 0.0908.

• Theorem. For r < r0 the space X[r] has a strong deformation retract
onto the reduced configuration space Bconf(12). In particular its
cohomology ring is constant for 0 < r < r0.
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Connectedness Conjecture for X12[r]-1

For X12[r] = Bconf(12)[r] we have:

• For 0 < r ≤ 1,

H0(X12[r],Q) = Q

• For 1 ≤ r < r∗1,

H0(X12[r],Q) = Q2

• For r∗2 ≤ r < rmax(12) = 1√
5+
√
5

2 −1
≈ 1.10851,

H0(X12[r],Q) = Q7983360
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Connectedness Conjecture for X12[r]-2

For X12[r] = Bconf(12)[r] we have:

• For r∗1 < r < r∗2 complicated things might happen. ("phase
transition"?)

• There might be interior maximal of the radius function, giving
connected components of X12(r) that do not contain any DOD
configuration.

• This leaves open the possiblity of values of r with r∗1 < r < r∗2 having

H0(X12[r],Q) = Qb0

with b0 > 7983360.
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Conclusions

It seems computationally challenging to prove things rigorously in this
area for N = 12.

Future objectives include:

• Carry out research problem for small N up to N = 12. (The latter
has an (unquantified) enormous number of critical configurations.)

• Determine connections between topological information and
properties of materials. (Critical configurations are analogous to
jammed configurations in granular materials..)
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Conclusion

• There is still some mystery...
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Thank you for your attention!
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