Texas Geometry and Topology Conference

Lubbock, TX, February 18, 2017

Jacobians with prescribed eignvectors.

Irina Kogan

North Carolina State University

joint work with

Michael Benfield, NC Sate/ San Diego State

and

Kris Jenssen, Penn State

Acknowledgement: This project was supported, in part, by NSF grant DMS-1311743 (PI: Kogan) and NSF grant DMS-1311353 (PI: Jenssen),

Jacobian problem:

Given: $\Omega \subset_{open} \mathbb{R}^n$, with a fixed coordinate system $u = (u^1, \dots, u^n)$, a point $\bar{u} \in \Omega$ and vector fields

$$\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}, \quad 1 \le m \le n,$$

independent at \bar{u} .

Jacobian problem:

Given: $\Omega \subset_{open} \mathbb{R}^n$, with a fixed coordinate system $u = (u^1, \dots, u^n)$, a point $\bar{u} \in \Omega$ and vector fields

$$\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}, \quad 1 \le m \le n,$$

independent at \bar{u} .

Find: <u>all</u> maps $f = [f^1, \ldots, f^n]^T \colon \Omega' \to \mathbb{R}^n$ from some open nbhd. Ω' of \bar{u} , such that \mathcal{R} is a (partial) set of eigenvector-fields of the Jacobian matrix

$$[D_u f] = \begin{bmatrix} \operatorname{grad}(f^1) \\ \vdots \\ \operatorname{grad}(f^n) \end{bmatrix}$$

Jacobian problem:

Given: $\Omega \subset_{open} \mathbb{R}^n$, with a fixed coordinate system $u = (u^1, \ldots, u^n)$, a point $\bar{u} \in \Omega$ and vector fields

$$\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}, \quad 1 \le m \le n,$$

independent at \bar{u} .

Find: <u>all</u> maps $f = [f^1, \ldots, f^n]^T \colon \Omega' \to \mathbb{R}^n$ from some open nbhd. Ω' of \overline{u} , such that \mathcal{R} is a (partial) set of eigenvector-fields of the Jacobian matrix

$$[D_u f] = \begin{bmatrix} \operatorname{grad}(f^1) \\ \vdots \\ \operatorname{grad}(f^n) \end{bmatrix}$$

I.e. \exists smooth functions $\lambda^i \colon \Omega' \to \mathbb{R}$, s. t. for i = 1, ..., m and $\forall u \in \Omega'$ $[D_u f] \mathbf{r}_i(u) = \lambda^i(u) \mathbf{r}_i(u).$ $\mathcal{F}(\mathcal{R})$ -system

$$\left| \begin{bmatrix} D_u f \end{bmatrix} \mathbf{r}_i(u) = \lambda^i(u) \mathbf{r}_i(u) \right|, \quad i = 1, \dots, m.$$

 $\mathcal{F}(\mathcal{R})$ -system:

$$[D_u f] \mathbf{r}_i(u) = \lambda^i(u) \mathbf{r}_i(u), \quad i = 1, \dots, m.$$

• $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$, is called a partial (local) frame.

- $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$, is called a partial (local) frame.
- f is called a flux.

- $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$, is called a partial (local) frame.
- f is called a flux.
 - f is called hyperbolic if the Jacobian matrix $[D_u f]$ is diagonalizable over \mathbb{R} at \overline{u} , otherwise f is called non-hyperbolic.

- $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$, is called a partial (local) frame.
- f is called a flux.
 - f is called hyperbolic if the Jacobian matrix $[D_u f]$ is diagonalizable over \mathbb{R} at \overline{u} , otherwise f is called non-hyperbolic.
 - *f* is called strictly hyperbolic if the eigenvalues $\lambda^1(u), \ldots, \lambda^n(u)$ of $[D_u f]$ are real and distinct for at \overline{u} .

- $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$, is called a partial (local) frame.
- *f* is called a flux.
 - f is called hyperbolic if the Jacobian matrix $[D_u f]$ is diagonalizable over \mathbb{R} at \overline{u} , otherwise f is called non-hyperbolic.
 - *f* is called strictly hyperbolic if the eigenvalues $\lambda^1(u), \ldots, \lambda^n(u)$ of $[D_u f]$ are real and distinct for at \overline{u} .

• $\mathcal{F}(\mathcal{R})$ denotes the set of all fluxes corresponding to a partial frame \mathcal{R} .

Motivation for the Jacobian problem

- By solving the Jacobian problem, we can construct and study the set of systems conservations laws $u_t + f(u)_x = 0$ with prescribed rarefaction curves and analyze how the geometry of these curves determines behavior of the solutions of conservation laws.
- It is an interesting geometric problem on its own.
- It leads to interesting overdetermined systems of PDE's.

• Setting up a system of PDE's for *f* and then solving it by hand or by computer software?

- Setting up a system of PDE's for *f* and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?

- Setting up a system of PDE's for *f* and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame R and the size of F(R)?

- Setting up a system of PDE's for *f* and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame R and the size of F(R)?
- What types of fluxes \$\mathcal{F}(\mathcal{R})\$ contains? Hyperbolic? Strictly hyperbolic?
 Non-hyperbolic?

- Setting up a system of PDE's for *f* and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame R and the size of F(R)?
- What types of fluxes \$\mathcal{F}(\mathcal{R})\$ contains? Hyperbolic? Strictly hyperbolic?
 Non-hyperbolic?

Goals:

- to determine how the "size" of $\mathcal{F}(\mathcal{R})$ (in terms of the number of arbitrary functions and constants) depends on the geometric properties of \mathcal{R} .
- to determine whether or not $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes.

Observations about
$$\mathcal{F}(\mathcal{R})$$
-system: $[D_u f] \mathbf{r}_i = \lambda^i \mathbf{r}_i$.

• m n first order PDEs on m + n unknown functions:

 λ^i , i = 1, ..., m and n components of f.

- m n first order PDEs on m + n unknown functions: λ^i , i = 1, ..., m and n components of f.
- overdetermined for all $n \ge m$, such that n > 2 and $m \ge 2$.

- m n first order PDEs on m + n unknown functions: λ^i , i = 1, ..., m and n components of f.
- overdetermined for all $n \ge m$, such that n > 2 and $m \ge 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R} .

- m n first order PDEs on m + n unknown functions: λ^i , i = 1, ..., m and n components of f.
- overdetermined for all $n \ge m$, such that n > 2 and $m \ge 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R} .
- for all R, the set F(R) contains (n+1)-dimensional subspace F^{triv} of trivial fluxes:

$$f(u) = \overline{\lambda} \begin{bmatrix} u^1 \\ \vdots \\ u^n \end{bmatrix} + \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \qquad \overline{\lambda}, a_1, \dots, a_n \in \mathbb{R},$$

- m n first order PDEs on m + n unknown functions: λ^i , i = 1, ..., m and n components of f.
- overdetermined for all $n \ge m$, such that n > 2 and $m \ge 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R} .
- for all R, the set F(R) contains (n+1)-dimensional subspace F^{triv} of trivial fluxes:

$$f(u) = \overline{\lambda} \begin{bmatrix} u^1 \\ \vdots \\ u^n \end{bmatrix} + \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \qquad \overline{\lambda}, a_1, \dots, a_n \in \mathbb{R},$$

because $[D_u f] = \overline{\lambda} I$.

- m n first order PDEs on m + n unknown functions: λ^i , i = 1, ..., m and n components of f.
- overdetermined for all $n \ge m$, such that n > 2 and $m \ge 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R} .
- for all R, the set F(R) contains (n+1)-dimensional subspace F^{triv} of trivial fluxes:

$$f(u) = \overline{\lambda} \begin{bmatrix} u^1 \\ \vdots \\ u^n \end{bmatrix} + \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, \qquad \overline{\lambda}, a_1, \dots, a_n \in \mathbb{R},$$

because $[D_u f] = \overline{\lambda} I$.

• scaling invariance: $\mathcal{F}(\mathbf{r}_1, \dots, \mathbf{r}_m) = \mathcal{F}(\alpha^1 \mathbf{r}_1, \dots, \alpha^m \mathbf{r}_m)$ for any nowhere zero smooth functions α^i on Ω . **Examples of full frames on** \mathbb{R}^3 (m = n = 3, coordinates (u, v, w))

(1) •
$$\mathbf{r}_1 = \begin{bmatrix} 0 \\ 1 \\ u \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} w \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} u \\ 0 \\ -w \end{bmatrix}$

(integral curves: lines, parabolas, circles)

Examples of full frames on \mathbb{R}^3 (m = n = 3, coordinates (u, v, w))

(1) •
$$\mathbf{r}_1 = \begin{bmatrix} 0 \\ 1 \\ u \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} w \\ 0 \\ 1 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} u \\ 0 \\ -w \end{bmatrix}$

(integral curves: lines, parabolas, circles)

$$f(u) = \overline{\lambda} \begin{bmatrix} u \\ v \\ w \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}, \qquad \overline{\lambda}, a_1, a_2, a_3 \in \mathbb{R},$$

• only trivial fluxes: $\mathcal{F}(\mathcal{R}) = \mathcal{F}^{\text{triv}}$.

(2) •
$$\mathbf{r}_1 = \begin{bmatrix} v \\ u \\ 1 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -v \\ u \\ 0 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ on Ω , where $u v \neq 0$.
("hyperbolic spiral":

(2) •
$$\mathbf{r}_1 = \begin{bmatrix} v \\ u \\ 1 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -v \\ u \\ 0 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ on Ω , where $u v \neq 0$.
("hyperbolic spiral":

• $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ is a 1-dimensional space

$$f = c \left[v^3, u^3, \frac{3}{4} (u^2 + v^2) \right]^T + a \text{ trivial flux}, \quad c \in \mathbb{R}$$

(2) •
$$\mathbf{r}_1 = \begin{bmatrix} v \\ u \\ 1 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -v \\ u \\ 0 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ on Ω , where $u v \neq 0$.
("hyperbolic spiral":

• $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ is a 1-dimensional space

$$f = c \left[v^3, u^3, \frac{3}{4} (u^2 + v^2) \right]^T + a \text{ trivial flux}, \quad c \in \mathbb{R}$$

$$\lambda^1 = 3 c u v + \overline{\lambda}, \quad \lambda^2 = -3 c u v + \overline{\lambda}, \quad \lambda^3 = \overline{\lambda}.$$

(2) •
$$\mathbf{r}_1 = \begin{bmatrix} v \\ u \\ 1 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -v \\ u \\ 0 \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ on Ω , where $u v \neq 0$.
("hyperbolic spiral":

• $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ is a 1-dimensional space

$$f = c \left[v^3, u^3, \frac{3}{4} (u^2 + v^2) \right]^T + a \text{ trivial flux}, \quad c \in \mathbb{R}$$

$$\lambda^1 = 3 c u v + \overline{\lambda}, \quad \lambda^2 = -3 c u v + \overline{\lambda}, \quad \lambda^3 = \overline{\lambda}.$$

• There are strictly hyperbolic fluxes in a neighborhood of $(\bar{u}, \bar{v}, \bar{w}) \in \Omega$.

(3) (the coordinate frame)

$$\mathbf{r}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \quad \mathbf{r}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$

(3) (the coordinate frame)

 $\mathbf{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

 $f = \left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i} \colon \mathbb{R} \to \mathbb{R} \text{ arbitrary}$

 $\mathcal{F}(\mathcal{R})$ is a $\infty\text{-dimensional space}$

(3) (the coordinate frame)

 $\mathbf{r}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{r}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{r}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

 $f = \left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i} \colon \mathbb{R} \to \mathbb{R} \text{ arbitrary}$

 $\mathcal{F}(\mathcal{R})$ is a $\infty\text{-dimensional space}$

 $\lambda^{1} = \left(\phi^{1}\right)'(u), \quad \lambda^{2} = \left(\phi^{2}\right)'(v), \quad \lambda^{3} = \left(\phi^{3}\right)'(w).$

All fluxes are hyperbolic, and almost all are strictly hyperbolic.

What if we prescribe an incomplete eigenframe?

(1)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_2 = [w, 0, 1]^T$, $\mathbf{r}_3 = [u, 0, -w]^T$ only trivial fluxes.

(1a)
$$\mathbf{r_1} = [0, 1, u]^T, \, \mathbf{r_2} = [w, 0, 1]^T$$

What if we prescribe an incomplete eigenframe?

(1)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_2 = [w, 0, 1]^T$, $\mathbf{r}_3 = [u, 0, -w]^T$ only trivial fluxes.

(1a)
$$\mathbf{r_1} = [0, 1, u]^T, \, \mathbf{r_2} = [w, 0, 1]^T$$

again only trivial fluxes!
What if we prescribe an incomplete eigenframe?

(1)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_2 = [w, 0, 1]^T$, $\mathbf{r}_3 = [u, 0, -w]^T$ only trivial fluxes.

(1a)
$$\mathbf{r}_1 = [0, 1, u]^T, \, \mathbf{r}_2 = [w, 0, 1]^T$$

again only trivial fluxes!

(1b)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_3 = [u, 0, -w]^T$.

 $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ is 2-dimensional:

$$f = c_1 \begin{bmatrix} \ln(u) \\ 0 \\ \frac{1}{2} \left(\frac{w}{u} - v\right) \end{bmatrix} + c_2 \begin{bmatrix} -\frac{1}{3}u^3 \\ uw \\ wu^2 \end{bmatrix} + \text{trivial fluxes}$$
$$\lambda^1 = c_2 u^2 + \bar{\lambda}, \quad \lambda^3 = c_1 \frac{1}{u} - c_2 u^2 + \bar{\lambda}$$

What if we prescribe an incomplete eigenframe?

(1)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_2 = [w, 0, 1]^T$, $\mathbf{r}_3 = [u, 0, -w]^T$ only trivial fluxes.

(1a)
$$\mathbf{r}_1 = [0, 1, u]^T, \, \mathbf{r}_2 = [w, 0, 1]^T$$

again only trivial fluxes!

(1b)
$$\mathbf{r}_1 = [0, 1, u]^T$$
, $\mathbf{r}_3 = [u, 0, -w]^T$.

 $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ is 2-dimensional:

$$f = c_1 \begin{bmatrix} \ln(u) \\ 0 \\ \frac{1}{2} \left(\frac{w}{u} - v\right) \end{bmatrix} + c_2 \begin{bmatrix} -\frac{1}{3}u^3 \\ uw \\ wu^2 \end{bmatrix} + \text{trivial fluxes}$$
$$\lambda^1 = c_2 u^2 + \bar{\lambda}, \quad \lambda^3 = c_1 \frac{1}{u} - c_2 u^2 + \bar{\lambda}$$

.

(1c)
$$\mathbf{r}_2 = [w, 0, 1]^T, \, \mathbf{r}_3 = [u, 0, -w]^T.$$

 $\mathcal{F}(\mathcal{R})$ is ∞ -dimensional !

What about the coordinate frame example?

(3)
$$\mathbf{r}_1 = [1, 0, 0]^T$$
, $\mathbf{r}_2 = [0, 1, 0]^T$, $\mathbf{r}_3 = [0, 0, 1]^T$
 $f = \left[\phi^1(u), \phi^2(v), \phi^3(w)\right]^T$, $\phi^i \colon \mathbb{R} \to \mathbb{R}$ arbitrary
 $\lambda^1 = (\phi^1)'(u), \quad \lambda^2 = (\phi^2)'(v), \quad \lambda^3 = (\phi^3)'(w).$

What about the coordinate frame example?

(3)
$$\mathbf{r}_{1} = [1, 0, 0]^{T}, \quad \mathbf{r}_{2} = [0, 1, 0]^{T}, \quad \mathbf{r}_{3} = [0, 0, 1]^{T}$$

 $f = \left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i} \colon \mathbb{R} \to \mathbb{R} \text{ arbitrary}$
 $\lambda^{1} = (\phi^{1})'(u), \quad \lambda^{2} = (\phi^{2})'(v), \quad \lambda^{3} = (\phi^{3})'(w).$
(3a) $\mathbf{r}_{1} = [1, 0, 0]^{T}, \quad \mathbf{r}_{2} = [0, 1, 0]^{T}.$
 $f = \left[\phi^{1}(u, w), \phi^{2}(v, w), \phi^{3}(w)\right]^{T}, \quad \phi^{1}, \phi^{2} \colon \mathbb{R}^{2} \to \mathbb{R}; \quad \phi^{3} \colon \mathbb{R} \to \mathbb{R}$
 $\lambda^{1} = \frac{\partial \phi^{1}}{\partial u}, \quad \lambda^{2} = \frac{\partial \phi^{2}}{\partial v}.$

What about the coordinate frame example?

(3)
$$\mathbf{r}_{1} = [1, 0, 0]^{T}, \quad \mathbf{r}_{2} = [0, 1, 0]^{T}, \quad \mathbf{r}_{3} = [0, 0, 1]^{T}$$

 $f = \left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i} \colon \mathbb{R} \to \mathbb{R} \text{ arbitrary}$
 $\lambda^{1} = (\phi^{1})'(u), \quad \lambda^{2} = (\phi^{2})'(v), \quad \lambda^{3} = (\phi^{3})'(w).$
(3a) $\mathbf{r}_{1} = [1, 0, 0]^{T}, \quad \mathbf{r}_{2} = [0, 1, 0]^{T}.$
 $f = \left[\phi^{1}(u, w), \phi^{2}(v, w), \phi^{3}(w)\right]^{T}, \quad \phi^{1}, \phi^{2} \colon \mathbb{R}^{2} \to \mathbb{R}; \quad \phi^{3} \colon \mathbb{R} \to \mathbb{R}$
 $\lambda^{1} = \frac{\partial \phi^{1}}{\partial u}, \quad \lambda^{2} = \frac{\partial \phi^{2}}{\partial v}.$
(3b) $\mathbf{r}_{1} = [1, 0, 0]^{T}.$
 $f = \left[\phi^{1}(u, v, w), \phi^{2}(v, w), \phi^{3}(v, w)\right]^{T}, \quad \phi^{1} \colon \mathbb{R}^{3} \to \mathbb{R}; \quad \phi^{2}, \phi^{3} \colon \mathbb{R}^{2} \to \mathbb{R}$
 $\lambda^{1} = \frac{\partial \phi^{1}}{\partial u}.$ 10

• Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$, i.e. there exist $\lambda^1(u), \dots, \lambda^m(u)$, such that

$$[D_u f] = \lambda^i(u) \mathbf{r}_i.$$

• Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$, i.e. there exist $\lambda^1(u), \dots, \lambda^m(u)$, such that

$$[D_u f] = \lambda^i(u) \mathbf{r}_i.$$

• Let a change of variables be described by a local diffeomorphism

$$u = \Phi(w).$$

• Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$, i.e. there exist $\lambda^1(u), \dots, \lambda^m(u)$, such that

$$[D_u f] = \lambda^i(u) \mathbf{r}_i.$$

• Let a change of variables be described by a local diffeomorphism

$$u = \Phi(w).$$

• It is not true that $f(\Phi(w))$ belongs to $\mathcal{F}(\Phi^*\mathcal{R})$, where $\Phi^*\mathcal{R} = \{\Phi^*\mathbf{r}_1, \dots, \Phi^*\mathbf{r}_m\}$, i.e., in general there <u>may not</u> exists functions $\kappa^1(w), \dots, \kappa^m(w)$, such that

$$[D_w f(\Phi(w))] = \kappa^i(u) \, \Phi^* \mathbf{r}_i.$$

Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

$$\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$$

on $\Omega \underset{open}{\subset} \mathbb{R}^n$, with a fixed <u>flat</u>, symmetric^{*} connection ∇ , and a point $\overline{u} \in \Omega$

*Coordinate-free formulation makes sense for non-flat connections, but is not considered here.

Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

$$\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}, \quad 1 \le m \le n$$

on $\Omega \underset{open}{\subset} \mathbb{R}^n$, with a fixed <u>flat</u>, symmetric^{*} connection ∇ , and a point $\overline{u} \in \Omega$

Find: <u>all</u> local smooth vector fields **f** ("fluxes"), defined on some nbhd Ω' of \overline{u} , for which there exist smooth functions $\lambda^i \colon \Omega' \to \mathbb{R}$, such that

$$\nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{for } i = 1, \dots, m.$$
 "new" $\mathcal{F}(\mathcal{R})$ -system

Observations:

$$\nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{for } i = 1, \dots, m$$
. "new" $\mathcal{F}(\mathcal{R})$ -system

- Written out in an affine system of coordinates: $(\nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = 0, \forall i, j)$ the "new" $\mathcal{F}(\mathcal{R})$ -system is the same as the "old" one.
- \bullet Integrability conditions for $\mathcal{F}(\mathcal{R})\text{-system}$ correspond to the flatness conditions

$$abla \mathbf{r}_i
abla \mathbf{r}_j \mathbf{f} -
abla \mathbf{r}_j
abla \mathbf{r}_i \mathbf{f} =
abla_{[\mathbf{r}_i, \mathbf{r}_j]} \mathbf{f}$$

Goals :

- to determine the "size" of $\mathcal{F}(\mathcal{R})$.
- to determine whether or not $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes.

Methods :

- for the size: C^1 Frobenius and Darboux theorems (and their generalizations), and as the last resort analytic Cartan-Kähler theorem.
- for strict hyperbolicity: a careful examination of integrability conditions.

Involutivity and richness

Definitions: A partial frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$ is:

- <u>in involution</u> if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega)} \mathcal{R}$ for all $1 \leq i, j \leq m$.
- <u>rich</u> if $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}(\Omega)}\{\mathbf{r}_i, \mathbf{r}_j\}$ (pairwise in involution).

• Results for <u>all</u> n and <u>all</u> $m \le n$:

- Results for <u>all</u> n and <u>all</u> $m \le n$:
 - Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$ if and only if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$

- Results for <u>all</u> n and <u>all</u> $m \leq n$:
 - Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$ if and only if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)

- Results for <u>all</u> n and <u>all</u> $m \le n$:
 - Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$ if and only if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)
- Low dimensional results:

- Results for <u>all</u> n and <u>all</u> $m \leq n$:
 - Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$ if and only if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)
- Low dimensional results:

- n = 1 or n = 2 or m = 1 fall under rich category.

- Results for <u>all</u> n and <u>all</u> $m \leq n$:
 - Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$ if and only if $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega')} \{\mathbf{r}_i, \mathbf{r}_j\}$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)
- Low dimensional results:
 - n = 1 or n = 2 or m = 1 fall under rich category.
 - non rich, but in involution:
 - * n = 3 non-rich full frame (m = 3) completely analyzed in:

K. Jenssen and I.K. (2010)

- 1. necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes
- 2. under these conditions: dim $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv} = 1$ (unique flux up to scaling)

* for m = 3, n > 3 we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)

- * for m = 3, n > 3 we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})$ (∞ -dim.)
- not in involution: for m = 2, n = 3 we have:
 - 1. (necessary conditions for strict hyperbolicity) $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if :

 $\nabla_{r_1} r_2 \notin \mathsf{span}_{C^{\infty}} \{ r_1, r_2 \} \text{ and } \nabla_{r_2} r_1 \notin \mathsf{span}_{C^{\infty}} \{ r_1, r_2 \}$ (****)

- 2. Under(****), $\mathcal{F}(\mathcal{R})/\mathcal{F}^{triv}$ contains only strictly hyperbolic and possibly a 1-dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes with repeated eigenfunctions).
- 3. (size) Under (****) and

 $\Gamma^{3}_{22}(\bar{u})\,\Gamma^{3}_{11}(\bar{u}) - 9\,\Gamma^{3}_{12}(\bar{u})\,\Gamma^{3}_{21}(\bar{u}) \neq 0,$

 $4 \le \dim(\mathcal{F}(\mathcal{R})) \le 8$ (we have examples in all dimensions $4, \ldots, 8$).

4. If dim $\mathcal{F}(\mathcal{R}) > 5$, then $\mathcal{F}(\mathcal{R})$ must contain strictly hyperbolic fluxes.

We don't have a sufficient condition for $\mathcal{F}(\mathcal{R})$ to contain non-trivial fluxes,

<u>unless</u> 1) \mathcal{R} is rich or 2) \mathcal{R} is in involution with m = 3.

We don't have a sufficient condition for $\mathcal{F}(\mathcal{R})$ to contain non-trivial fluxes,

<u>unless</u> 1) \mathcal{R} is rich or 2) \mathcal{R} is in involution with m = 3.

Remark: For all $n \ge m$, such that n > 2 and $m \ge 2$, <u>almost all</u> frames admit only trivial fluxes!

Jacobian problem for rich partial frames $\mathcal{R} = \{r_1, \dots, r_m\}$: Recall:

- <u>rich</u> means that $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}(\Omega)} \{\mathbf{r}_i, \mathbf{r}_j\} \ 1 \leq i, j \leq m$.
- $\mathcal{F}(\mathcal{R})$ consists of **f**'s, for which $\exists \lambda^i \colon \Omega \to \mathbb{R}$ such that

$$\nabla_{\mathbf{r}_i} \mathbf{f} = \boldsymbol{\lambda}^i \mathbf{r}_i, \quad \text{ for } i = 1, \dots, m.$$

Theorem:

1. (necessary and sufficient conditions for strict hyperbolicity) If \mathcal{R} is rich then $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes iff

$$\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \operatorname{span}_{C^{\infty}(\Omega)} \{\mathbf{r}_i, \mathbf{r}_j\} \text{ for all } 1 \le i, j \le m.$$
 (*)

2. (size) Under (*), F(R) depends on: *m* arbitrary functions of n - m + 1
(the degree of freedom of prescribing λ's) and *n* functions of n - m variables
(the degree of freedom for prescribing f for the chose

(the degree of freedom for prescribing f for the chosen λ 's)

Jacobian problem for involutive partial frames $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$:

Recall:

- <u>involutive</u> means that $[\mathbf{r}_i, \mathbf{r}_j] \in \operatorname{span}_{C^{\infty}(\Omega)} \mathcal{R}$ for $1 \leq i, j \leq m$.
- $\mathcal{F}(\mathcal{R})$ consists of **f**'s, for which $\exists \lambda^i \colon \Omega \to \mathbb{R}$ such that

$$abla_{\mathbf{r}_i} \mathbf{f} = \boldsymbol{\lambda}^i \mathbf{r}_i, \quad \text{ for } i = 1, \dots, m.$$

Theorem:

1. (necessary conditions for strict hyperbolicity for arbitrary m) If \mathcal{R} is involutive then $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if for all $1 \le i \ne j \le m$

 $\nabla_{\mathbf{r}_{i}}\mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}(\Omega)} \mathcal{R}$ $\nabla_{\mathbf{r}_{i}}\mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}(\Omega)} \{\mathbf{r}_{i}, \mathbf{r}_{j}\} \iff [\mathbf{r}_{i}, \mathbf{r}_{j}] \in \operatorname{span}_{C^{\infty}(\Omega)} \{\mathbf{r}_{i}, \mathbf{r}_{j}\}$

2. for m = 3 in non-rich case (**) can be completed to necessary and sufficient conditions (***). Under (***), $\mathcal{F}(\mathcal{R})$ depends on n+2 arbitrary functions of n-3 variables. Jacobian problem for non-involutive partial frames simplest case: $\mathcal{R} = \{r_1, r_2\}$ in \mathbb{R}^3 .

Recall:

- <u>non-involutive</u> means that $[\mathbf{r}_1, \mathbf{r}_2] \notin \text{span}_{C^{\infty}} \{\mathbf{r}_1, \mathbf{r}_2\}.$
- $\mathcal{F}(\mathcal{R})$ consists of **f**'s, for which $\exists \lambda^1, \lambda^2 \colon \Omega \to \mathbb{R}$ such that

$$\nabla_{\mathbf{r}_1} \mathbf{f} = \lambda^1 \mathbf{r}_1$$
 and $\nabla_{\mathbf{r}_2} \mathbf{f} = \lambda^2 \mathbf{r}_2$.

Theorem:

1. (necessary conditions for strict hyperbolicity) $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if :

 $\nabla_{r_1} r_2 \notin \text{span}_{C^{\infty}} \{r_1, r_2\} \text{ and } \nabla_{r_2} r_1 \notin \text{span}_{C^{\infty}} \{r_1, r_2\} \qquad (****)$

2. Under(****), $\mathcal{F}(\mathcal{R})/\mathcal{F}^{\text{triv}}$ contains only strictly hyperbolic and possibly a 1-dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes with repeated eigenfunctions).

3. (size) Under (****) and

$\Gamma^{3}_{22}(\bar{u})\,\Gamma^{3}_{11}(\bar{u}) - 9\,\Gamma^{3}_{12}(\bar{u})\,\Gamma^{3}_{21}(\bar{u}) \neq 0,$

 $4 \leq \dim(\mathcal{F}(\mathcal{R})) \leq 8$ (we have examples in all dimensions $4, \ldots, 8$).

4. If dim $\mathcal{F}(\mathcal{R}) > 5$, then $\mathcal{F}(\mathcal{R})$ must contain strictly hyperbolic fluxes.

Darboux Integrability Theorem [Leçons sur les systèmes orthogonaux et les coordonnées curvilignes. (1910)]

<u>Consider</u> a system of PDE's on $(\phi^1, \dots \phi^p)$: $\Omega \to \Theta$:

$$\frac{\partial \phi^i}{\partial u^j} = h^i_j(u, \phi(u)), \quad i = 1, \dots, p; \ j \in \alpha(i), \tag{1}$$

where:

 ϕ 's each of the h_{j}^{i} may depend so that (2) become algebraic.

If integrability conditions

$$\frac{\partial}{\partial u^k} \left(\frac{\partial}{\partial u^j} (\phi^i) \right) - \frac{\partial}{\partial u^j} \left(\frac{\partial}{\partial u^k} (\phi^i) \right) = 0 \text{ for all } j, k \in \alpha(i)$$
 (2)

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_j^i(u,\phi)$ for $\frac{\partial}{\partial u^j}(\phi^i)$ for all $i = 1, \ldots, p, j \in \alpha(i)$ as prescribed by system (1)

<u>Then</u> \exists ! smooth local solution of (1) around \bar{u} , for any C^1 initial data for ϕ^i prescribed along submanifold $\Xi_i = \{u^j = \bar{u}^j, j \in \alpha_i\} \subset \mathbb{R}^n$ of dimension $n-|\alpha_i|.$ 22

Example of a Darboux system:

- three unknown functions (dependent variables) ϕ, ψ and ξ .
- two independent variables u and v.
- system:

$$\begin{split} \phi_u &= F(u, v, \phi, \psi, \xi) \\ \psi_v &= G(u, v, \phi, \psi, \xi) \\ \xi_u &= f(u, v, \psi, \xi) \qquad (\text{ no } \phi) \\ \xi_v &= g(u, v, \phi, \xi) \qquad (\text{ no } \psi) \end{split}$$

• the integrability condition:

$$f_v + f_{\psi}G + f_{\xi}g = g_u + g_{\phi}F + g_{\xi}f.$$

• initial data near (\bar{u}, \bar{v}) :

$$egin{aligned} \phi(ar{u},v) &= a(v) \ \psi(u,ar{v}) &= b(u) \ \xi(ar{u},ar{v}) &= c \end{aligned}$$
 a constant.

• here F, G f, g, a and b are given C^1 functions of their arguments.

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_n\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$\mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) - \mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) = \sum_{l=1}^n c_{kj}^l \mathbf{r}_k(\phi^i).$$
(3)

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_n\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$\mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) - \mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) = \sum_{l=1}^n c_{kj}^l \mathbf{r}_k(\phi^i).$$
(3)

If (3) are satisfied then there is a unique solution with any initial data

$$\phi^i(\bar{u}) = c_i.$$

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_n\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$\mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) - \mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) = \sum_{l=1}^n c_{kj}^l \mathbf{r}_k(\phi^i).$$
(3)

If (3) are satisfied then there is a unique solution with any initial data

$$\phi^i(\bar{u}) = c_i.$$

There are equivalent diff. form version and vector field formulation versions about foliating \mathbb{R}^{n+p} by *n*-dimensional integrable manifolds.

Generalized Frobenius, PDE version [M. Benfield (2016)]: Consider a system of PDE's on $(\phi^1, \dots \phi^p)$: $\Omega \to \Theta$:

$$\mathbf{r}_{j}(\phi^{i}(u)) = h_{j}^{i}(u,\phi(u)), \quad i = 1, \dots, p; \ j = 1, \dots, m,$$
 (4)

where:

- 1. $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m} a$ partial frame in involution on $\Omega \underset{open}{\subset} \mathbb{R}^n$.
- 2. $\Theta \underset{open}{\subset} \mathbb{R}^p$ is the space of dependent variables ϕ 's.
- 3. $h_j^i(u,\phi), i = 1, ..., p, j = 1, ..., m$ smooth functions on $\Omega \times \Theta \to \mathbb{R}$.

If integrability conditions

$$\mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) - \mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) = \sum_{l=1}^m c_{jk}^l \mathbf{r}_l(\phi) \quad i = 1, \dots, p; \ j, k = 1, \dots, m$$
(5)

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_j^i(u, \phi)$ for $\mathbf{r}_j(\phi^i)$ for all $i = 1, \ldots, p, \ j = 1, \ldots, m$ as prescribed by system (4).

<u>Then</u> \exists ! smooth local solution of (4), for any smooth initial data prescribed along any embedded submanifold $\Xi \subset \Omega$ of dimension n - m transversal to \mathcal{R} .
Generalized Frobenius vector field version (local) [Benfield, I. K., Jenssen (2016)]:

Given:

- 1. s_1, \ldots, s_m a partial frame in involution on an open $\mathcal{O} \subset \mathbb{R}^{n+p}$, where $1 \leq m \leq n$ and $p \geq 1$.
- 2. $\Lambda \subset \mathcal{O}$ be an (n-m)-dimensional embedded submanifold, such that

$$\operatorname{span}_{\mathbb{R}}\{\mathbf{s}_1|_z,\ldots,\mathbf{s}_m|_z\}\oplus T_z\Lambda\cong\mathbb{R}^n\qquad\forall z\in\Lambda.$$

<u>Then</u> for $\forall \overline{z} \in \Lambda$, there exists a unique local extension of Λ to an *n*-dimensional submanifold $\Gamma_{\overline{z}}$ of \mathbb{R}^{n+p} , tangent to $\mathbf{s}_1, \ldots, \mathbf{s}_m$

In the classical local Frobenius theorem, m = n and $\Lambda = \{\bar{z}\}$.

Motivation: systems of conservation laws

$$u_t + f(u)_x = 0.$$
 (1a)

- *n* equations on *n* unknown functions $u(x,t) \in \Omega \subset \mathbb{R}^n$.
- one space-variable $x \in \mathbb{R}$; one time-variable: $t \in \mathbb{R}$.
- $f(u): \Omega \to \mathbb{R}^n$ smooth flux.

Motivation: systems of conservation laws

$$u_t + f(u)_x = 0.$$
 (1a)

- *n* equations on *n* unknown functions $u(x,t) \in \Omega \subset \mathbb{R}^n$.
- one space-variable $x \in \mathbb{R}$; one time-variable: $t \in \mathbb{R}$.
- $f(u): \Omega \to \mathbb{R}^n$ smooth flux.

Equivalently:

$$u_t + [D_u f] u_x = 0 \tag{1b}$$

• Euler system in thermodynamic variables

$$V_t - U_x = 0$$

$$U_t + p_x = 0$$

$$S_t = 0.$$

 $V = \frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass, p(V,S) > 0 is pressure as a given function, s.t $p_V < 0$.

• Euler system in thermodynamic variables

$$V_t - U_x = 0$$

$$U_t + p_x = 0$$

$$S_t = 0.$$

 $V = \frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass, p(V,S) > 0 is pressure as a given function, s.t $p_V < 0$.

• $u_t + f(u)_x = 0$, where $u = [V, U, S]^T$ and $f(u) = [-U, p(V, S), 0]^T$.

• Euler system in thermodynamic variables

$$V_t - U_x = 0$$

$$U_t + p_x = 0$$

$$S_t = 0.$$

 $V = \frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass, p(V,S) > 0 is pressure as a given function, s.t $p_V < 0$.

- $u_t + f(u)_x = 0$, where $u = [V, U, S]^T$ and $f(u) = [-U, p(V, S), 0]^T$.
- eigenvectors of $[D_u f]$ are: $\mathbf{r}_1 = [1, \sqrt{-p_V}, 0]^T, \ \mathbf{r}_2 = [-p_S, 0, p_V]^T, \ \mathbf{r}_3 = [1, -\sqrt{-p_V}, 0]^T$

• Euler system in thermodynamic variables

$$V_t - U_x = 0$$

$$U_t + p_x = 0$$

$$S_t = 0.$$

 $V = \frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass, p(V,S) > 0 is pressure as a given function, s.t $p_V < 0$.

- $u_t + f(u)_x = 0$, where $u = [V, U, S]^T$ and $f(u) = [-U, p(V, S), 0]^T$.
- eigenvectors of $[D_u f]$ are: $\mathbf{r}_1 = [1, \sqrt{-p_V}, 0]^T, \ \mathbf{r}_2 = [-p_S, 0, p_V]^T, \ \mathbf{r}_3 = [1, -\sqrt{-p_V}, 0]^T$
- eigenvalues of $[D_u f]$ are $\lambda^1 = -\sqrt{-p_V}$, $\lambda^2 \equiv 0$, $\lambda^3 = \sqrt{-p_V}$.

are used to construct solution of $u_t + f(u)_x = 0$.

are used to construct solution of $u_t + f(u)_x = 0$.

A wave curve consists of two parts:

are used to construct solution of $u_t + f(u)_x = 0$.

A wave curve consists of two parts:

• rarefaction curve - the integral curve of an eigenvector field of $[D_u f]$ - correspond to the smooth part of the self-similar solutions $u(x,t) = \zeta\left(\frac{x}{t}\right)$.

are used to construct solution of $u_t + f(u)_x = 0$.

A wave curve consists of two parts:

- rarefaction curve the integral curve of an eigenvector field of $[D_u f]$ correspond to the smooth part of the self-similar solutions $u(x,t) = \zeta\left(\frac{x}{t}\right)$.
- shock curve a solution of Rankine-Hugoniot conditions:

$$\{ u \in \Omega \mid \exists s \in \mathbb{R} : f(u) - f(\overline{u}) = s \cdot (u - \overline{u}) \}.$$

A shock curve describes the discontinuous part of the solutions.

are used to construct solution of $u_t + f(u)_x = 0$.

A wave curve consists of two parts:

- rarefaction curve the integral curve of an eigenvector field of $[D_u f]$ correspond to the smooth part of the self-similar solutions $u(x,t) = \zeta\left(\frac{x}{t}\right)$.
- shock curve a solution of Rankine-Hugoniot conditions:

$$\{ u \in \Omega \mid \exists s \in \mathbb{R} : f(u) - f(\overline{u}) = s \cdot (u - \overline{u}) \}.$$

A shock curve describes the discontinuous part of the solutions.

Through each strictly hyperbolic state $\bar{u} \in \Omega$, there exists *n* wave curves.

Wave curves are building blocks for the solutions of Cauchy problems:

$$u_t + f(u)_x = 0, \quad u(x,0) = u_0(x).$$

Wave curves are building blocks for the solutions of Cauchy problems:

$$u_t + f(u)_x = 0, \quad u(x,0) = u_0(x).$$

Lax (1957) under certain condition on f and when u_{-} and u_{+} are close, the solution to the Riemann problem:

$$u_0(x) = \begin{cases} u_-, & x < 0\\ u_+, & x > 0 \end{cases}$$

is determined by the wave curves.

Glimm (1965) for u_0 with small total variation, the solutions to the Cauchy problems is determined by solutions of Riemann problems.

Example: The Jacobian problem for the Euler frame.

Example: The Jacobian problem for the Euler frame.

Given:

• (V, U, S) are coordinate functions in \mathbb{R}^3 .

•
$$p(V,S) > 0$$
, s.t $-p_V < 0$

• vector fields
$$\mathbf{r}_1 = \begin{bmatrix} 1\\ \sqrt{-p_V}\\ 0 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -p_S\\ 0\\ p_V \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 1\\ -\sqrt{-p_V}\\ 0 \end{bmatrix}$

Example: The Jacobian problem for the Euler frame.

Given:

- (V, U, S) are coordinate functions in \mathbb{R}^3 .
- p(V,S) > 0, s.t $-p_V < 0$

• vector fields
$$\mathbf{r}_1 = \begin{bmatrix} 1 \\ \sqrt{-p_V} \\ 0 \end{bmatrix}$$
, $\mathbf{r}_2 = \begin{bmatrix} -p_S \\ 0 \\ p_V \end{bmatrix}$, $\mathbf{r}_3 = \begin{bmatrix} 1 \\ -\sqrt{-p_V} \\ 0 \end{bmatrix}$

Find: the set $\mathcal{F}(\mathcal{R})$ of <u>all</u> maps $f : \mathbb{R}^3 \to \mathbb{R}^3$, such that $\mathcal{R} = \{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3\}$ is a set of eigenvector-fields of the Jacobian matrix $[D_u f]$.

• If
$$\left(\frac{p_S}{p_V}\right)_V \neq 0$$

 $f = c \begin{bmatrix} -U\\ p(v,S)\\ 0 \end{bmatrix} + \bar{\lambda} \begin{bmatrix} V\\ U\\ S \end{bmatrix} + \begin{bmatrix} a_1\\ a_2\\ a_3 \end{bmatrix} = c \begin{bmatrix} -U\\ p(v,S)\\ 0 \end{bmatrix} + \text{trivial flux.}$

• If
$$\left(\frac{p_S}{p_V}\right)_V \neq 0$$

 $f = c \begin{bmatrix} -U\\ p(v,S)\\ 0 \end{bmatrix} + \bar{\lambda} \begin{bmatrix} V\\ U\\ S \end{bmatrix} + \begin{bmatrix} a_1\\ a_2\\ a_3 \end{bmatrix} = c \begin{bmatrix} -U\\ p(v,S)\\ 0 \end{bmatrix} + \text{trivial flux.}$

eigenvalues: $\lambda^1 = -c\sqrt{-p_V} + \overline{\lambda}$, $\lambda^2 \equiv \overline{\lambda}$, $\lambda^3 = c\sqrt{-p_V} + \overline{\lambda}$.

• If
$$\begin{pmatrix} p_S \\ p_V \end{pmatrix}_V \neq 0$$

 $f = c \begin{bmatrix} -U \\ p(v,S) \\ 0 \end{bmatrix} + \bar{\lambda} \begin{bmatrix} V \\ U \\ S \end{bmatrix} + \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = c \begin{bmatrix} -U \\ p(v,S) \\ 0 \end{bmatrix} + \text{trivial flux.}$
eigenvalues: $\lambda^1 = -c \sqrt{-p_V} + \bar{\lambda}, \qquad \lambda^2 \equiv \bar{\lambda}, \qquad \lambda^3 = c \sqrt{-p_V} + \bar{\lambda}$

• If $\left(\frac{p_S}{p_V}\right)_V \equiv 0$, then $\mathcal{F}(\mathcal{R})$ depends on 3 arbitrary functions of one variable.

How geometry of the eigenframe of $[D_u f]$ affects the properties of hyperbolic conservative systems and their solutions?

• We analyzed relationship between the geometry of the eigenframe and the number of companion conservation laws a system possesses.

Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws *Communications in PDE's*, No. 37, (2012), pp. 1096 – 1140.

• We would like to better understand relationship between the geometry of the eigenframe and wave interaction patterns, as well as blow-up of the solutions in finite time phenomena.

- Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed eigencurves. *J. of Hyperbolic Differential Equations (JHDE)* Vol. 7, No. 2., (2010) pp. 211–254.
- Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws *Communications in PDE's*, No. 37, (2012), pp. 1096 – 1140.
- 3. Benfield, M., Some Geometric Aspects of Hyperbolic Conservation Laws Ph.D. thesis, NCSU, (2016)
- 4. Benfield, M., Jenssen, H. K., Kogan, I. A., Jacobians with prescribed eignvectors, in preparation.

Thank you!

Additional slides

Rich partial frames: $[\mathbf{r}_i, \mathbf{r}_j] \in \text{span}_{C^{\infty}(\Omega)} \{\mathbf{r}_i, \mathbf{r}_j\}$

Properties

• \exists smooth functions $\alpha^i \colon \Omega \to \mathbb{R}, i = 1, \dots, m$ such that $\tilde{\mathbf{r}}_1 := \alpha^1(u) \mathbf{r}_1, \dots, \quad \tilde{\mathbf{r}}_m := \alpha^n \mathbf{r}_m$

commute.

 \downarrow

• \exists coordinates $w^1, \ldots, w^n = \rho(u)$ (called Riemann invariants)

$$\tilde{r}_i = \frac{\partial}{\partial w^i}, \quad i = 1, \dots, m.$$

Necessary condition for strict hyperbolicity

For $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}$, the exists strictly hyperbolic flux $\mathbf{f} \in \mathcal{F}(\mathcal{R})$ only if for each pair of indices $i \neq j \in {1, \dots, m}$ the following equivalence holds:

 $\nabla_{\mathbf{r}_i} \mathbf{r}_j \in \mathsf{span}_{C^{\infty}(\Omega')} \{ \mathbf{r}_i, \mathbf{r}_j \} \Longleftrightarrow [\mathbf{r}_i, \mathbf{r}_j] \in \mathsf{span}_{C^{\infty}(\Omega')} \{ \mathbf{r}_i, \mathbf{r}_j \}$

Differential-Algebraic system (the $\lambda(\mathcal{R})$ -system) for full frames *

n(n-1) linear, 1st order PDEs and $\frac{n(n-1)(n-2)}{2}$ algebraic equations:

$$\begin{cases} r_i(\lambda^j) = \Gamma_{ji}^j(\lambda^i - \lambda^j) & i \neq j, \\ \Gamma_{ji}^k(\lambda^i - \lambda^k) = \Gamma_{ij}^k(\lambda^j - \lambda^k) & i < j, i \neq k, j \neq k \end{cases} \begin{pmatrix} \lambda(\mathcal{R}) \text{-alg} \end{pmatrix}, \end{cases}$$

where $\begin{bmatrix} \Gamma_{ij}^k := L^k (DR_j) R_i \end{bmatrix}$ are the Christoffel symbols of the connection $\nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = 0$ computed relative to the frame \mathcal{R} i.e. $\nabla_{r_i} r_j = \sum_{k=1}^n \Gamma_{ij}^k r_k$.

$$c_{km}^{i} = \Gamma_{km}^{i} - \Gamma_{mk}^{i} \quad \text{(Symmetry)}$$
$$r_{m} \left(\Gamma_{ki}^{j} \right) - r_{k} \left(\Gamma_{mi}^{j} \right) = \sum_{s=1}^{n} \left(\Gamma_{ks}^{j} \Gamma_{mi}^{s} - \Gamma_{ms}^{j} \Gamma_{ki}^{s} - c_{km}^{s} \Gamma_{si}^{j} \right) \text{ (Flatness).}$$

*In different contexts the λ -system appeared in Sévannec (1994), Tsarëv (1985).

Rich system with non-trivial algebraic constraints

$$\partial_i \lambda^j = \Gamma^j_{ji} (\lambda^i - \lambda^j) \quad \text{for} \quad 1 \le i \ne j \le n, \quad \partial_i := \frac{\partial}{\partial w_i}.$$

$$\Gamma^k_{ij} (\lambda^j - \lambda^i) = 0 \quad \text{for} \quad 1 \le k \ne i < j \ne k \le n.$$

- \exists distinct i, j, k s.t. $\Gamma_{ij}^k \neq 0$
- multiplicity conditions on eigenvalues are implied by the algebro-differential system (no strictly hyperbolic conservation laws in this case).
- Darboux theorem \Rightarrow general solution depends on s_0 constants and s_1 functions of one variable, where
 - s_0 is the number of distinct eigenvalues of multiplicity > 1,
 - s_1 is the number of eigenvalues of multiplicity 1.

$\lambda(\mathcal{R})$ -system for n = 3

- I. rank($\lambda(\mathcal{R})$ -alg) = 0 $\Rightarrow \mathcal{R}$ is rich; a general solution of $\lambda(\mathfrak{R})$ depends on 3 functions of 1 variable; \exists strictly hyperbolic conservative system with eigenframe \mathcal{R} .
- II. rank($\lambda(\mathcal{R})$ -alg) = 1 (a single algebraic constraint):
 - IIa. All three λ^i appear in the algebraic constraint $\Rightarrow \lambda(\mathcal{R})$ can be analyzed by Fronebious theorem; the solution of the λ -system is either trivial or depends on 2 arbitrary constants; In the latter case, \exists strictly hyperbolic conservative system with eigenframe \mathcal{R} ; \nexists rich systems in class IIa.
 - Ilb. Exactly two λ^i appear in the algebraic constraint \Rightarrow two λ^i coincide; $\lambda(\mathcal{R})$ can be analyzed by Cartan-Kähler theorem; the general solution is either trivial or depends on 1 arbitrary function of 1 variables and 1 constant; \nexists strictly hyperbolic conservative system with eigenframe \mathcal{R} ; but \exists rich systems, in class Ilb.

III. rank($\lambda(\mathcal{R})$ -alg) = 2 \Rightarrow only trivial solutions $\lambda^1(u) = \lambda^2(u) = \lambda^3(u) = \overline{\lambda} \in \mathbb{R}$.

• Euler system in thermodynamic variables

$$v_t - u_x = 0$$

$$u_t + p_x = 0$$

$$S_t = 0.$$

 $v = \frac{1}{\rho}$ is volume per unit mass, u is velocity, S is entropy per unit mass, p(v,S) > 0 is pressure as a given function of v and S, s.t $p_v < 0$.

- $U_t + f(U)_x = 0$, where U = (v, u, S) and $f(U) = (-u, p(v, S), 0)^T$.
- eigenvalues of Df are $\lambda^1 = -\sqrt{-p_v}$, $\lambda^2 \equiv 0$, $\lambda^3 = \sqrt{-p_v}$.
- eigenvectors of D_f are $R_1 = [1, \sqrt{-p_v}, 0]^T$, $R_2 = [-p_S, 0, p_v]^T$, $R_3 = [1, -\sqrt{-p_v}, 0]^T$

Inverse problem: Coordinates U = (v, u, S)

 For a given pressure function p = p(v, S) > 0, with pv < 0 define a frame *R*:

$$R_1 = [1, \sqrt{-p_v}, 0]^T, R_2 = [-p_S, 0, p_v]^T, R_3 = [1, -\sqrt{-p_v}, 0]^T$$

- determine the class of conservative systems with eigenfields \mathcal{R} by solving the λ -system for λ^1 , λ^2 , λ^3 .
- Observation: frame is rich $\Leftrightarrow \left(\frac{p_S}{p_v}\right)_v \equiv 0 \Leftrightarrow p(v,S) = \Pi(v + F(S)).$

λ -system:

• differential equations

$$r_{1}(\lambda^{2}) = 0$$

$$r_{1}(\lambda^{3}) = \frac{p_{vv}}{4p_{v}}(\lambda^{3} - \lambda^{1})$$

$$r_{2}(\lambda^{1}) = \frac{p_{v}}{2} \left(\frac{p_{S}}{p_{v}}\right)_{v}(\lambda^{1} - \lambda^{2})$$

$$r_{2}(\lambda^{3}) = \frac{p_{v}}{2} \left(\frac{p_{S}}{p_{v}}\right)_{v}(\lambda^{3} - \lambda^{2})$$

$$r_{3}(\lambda^{1}) = \frac{p_{vv}}{4p_{v}}(\lambda^{1} - \lambda^{3})$$

$$r_{3}(\lambda^{2}) = 0.$$

• one independent algebraic equation:

$$\frac{p_v}{4} \left(\frac{p_S}{p_v}\right)_v (\lambda^1 + \lambda^3 - 2\lambda^2) = 0.$$

• Rich frame $\Leftrightarrow \left(\frac{p_S}{p_v}\right)_v \equiv 0 \Leftrightarrow$ no algebraic constraints.

Solution of the $\lambda(\mathcal{R})$ -system:

in the non-rich case:

• $\lambda(\mathcal{R})$ -alg consists of:

$$\frac{p_v}{4} \left(\frac{p_S}{p_v} \right)_v (\lambda^1 + \lambda^3 - 2\lambda^2) = 0 \Leftrightarrow \lambda^2 = \frac{1}{2} (\lambda^1 + \lambda^3)$$

that involves all three λ 's (case IIa) \Rightarrow the general solution depends on two constants.

• from the differential part of λ -system we obtain:

$$\lambda^1 = -C_1 \sqrt{-p_v} + C_2, \quad \lambda^2 = C_2, \quad \lambda^3 = C_1 \sqrt{-p_v} + C_2.$$

$$f(U) = C_1 \begin{pmatrix} -u \\ p(v,S) \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} v \\ u \\ S \end{pmatrix} + \overline{v}.$$

Solution of the $\lambda(\mathcal{R})$ -system:

in the rich case:, i.e. $\left(\frac{p_S}{p_v}\right)_v \equiv 0$

 this is rich case with no algebraic constraints ⇒ solution depends on 3 arbitrary functions in one variable.

•
$$\left(\frac{p_S}{p_v}\right)_v \equiv 0 \quad \Leftrightarrow \quad p(v,S) = \Pi(\xi), \text{ where } \xi = v + F(S).$$

• from the differential part of λ -system we obtain:

$$\lambda^2 = \lambda^2(S), \quad \lambda^1 = A(\xi, u), \quad \lambda^3 = B(\xi, u),$$

where

$$A_{\xi} - \sqrt{-\Pi'(\xi)} A_u = a (B - A), \ B_{\xi} + \sqrt{-\Pi'(\xi)} B_u = a (A - B)$$

and $a = -\frac{p_{vv}}{4p_v}$.

Example: rich orthogonal frame (cylindrical coordinates)

$$R_1 = [u^1, u^2, 0]^T, \quad R_2 = [-u^2, u^1, 0]^T, \quad R_3 = [0, 0, 1]^T.$$

Riemann coordinates: (in the first octant):

$$w^{1} = \frac{1}{2} \ln \left[(u^{1})^{2} + (u^{2})^{2} \right], \quad w^{2} = \arctan \left(\frac{u^{2}}{u^{1}} \right), \quad w^{3} = u^{3}.$$

$$\lambda^{1} = \psi_{1}(w^{1}),$$

$$\lambda^{2} = e^{-w^{1}} \int_{*}^{e^{w^{1}}} \psi_{1}(\ln(\tau^{2})) d\tau + e^{-w^{1}} \psi_{2}(w^{2}),$$

$$\lambda^{3} = \psi_{3}(w^{3}).$$

Example: rich orthogonal frame (cylindrical coordinates)

$$R_1 = [u^1, u^2, 0]^T, \quad R_2 = [-u^2, u^1, 0]^T, \quad R_3 = [0, 0, 1]^T.$$

Riemann coordinates: (in the first octant):

$$w^{1} = \frac{1}{2} \ln \left[(u^{1})^{2} + (u^{2})^{2} \right], \quad w^{2} = \arctan \left(\frac{u^{2}}{u^{1}} \right), \quad w^{3} = u^{3}.$$

$$\lambda^{1} = \psi_{1}(w^{1}),$$

$$\lambda^{2} = e^{-w^{1}} \int_{*}^{e^{w^{1}}} \psi_{1}(\ln(\tau^{2})) d\tau + e^{-w^{1}} \psi_{2}(w^{2}),$$

$$\lambda^{3} = \psi_{3}(w^{3}).$$
Necessary condition for strict hyperbolicity

For $\mathcal{R} = {\mathbf{r}_1, \dots, \mathbf{r}_m}$, the exists strictly hyperbolic flux $\mathbf{f} \in \mathcal{F}(\mathcal{R})$ only if for each pair of indices $i \neq j \in {1, \dots, m}$ the following equivalence holds:

$$abla \mathbf{r}_i \mathbf{r}_j \in \mathsf{span}_{C^{\infty}(\Omega')}\{\mathbf{r}_i, \mathbf{r}_j\} \iff [\mathbf{r}_i, \mathbf{r}_j] \in \mathsf{span}_{C^{\infty}(\Omega')}\{\mathbf{r}_i, \mathbf{r}_j\}$$
 (6)

Coordinate-free definition of the Jacobian map:

Definition: The Jacobian of a vector field f on open $\Omega \subset \mathbb{R}^n$, relative to a flat, symmetric connection on Ω connection ∇ is a map

 $\mathit{J} f \colon \mathcal{X}(\Omega) \to \mathcal{X}(\Omega)$ defined by $\mathit{J} f(r) = \nabla_r f$

If
$$\mathbf{f} = F^1 \frac{\partial}{\partial u^1} + \dots + F^n \frac{\partial}{\partial u^n}$$
 and $\mathbf{r} = R^1 \frac{\partial}{\partial u^1} + \dots + R^n \frac{\partial}{\partial u^n}$, where u^1, \dots, u^n
are affine coordinates $\left(\nabla_{\frac{\partial}{\partial u^i}} \frac{\partial}{\partial u^j} = 0 \right)$ then
 $J\mathbf{f}(\mathbf{r}) = [D_u F] R$,
where $F = [F^1, \dots, F^n]^T$ and $R = [R_1, \dots, R^n]^T$.

Definition: f is called <u>hyperbolic</u> on Ω if eigenvector-fields of Jf form a frame on Ω . (This implies that all eignefunctions of Jf are real)

f is called strictly hyperbolic if, in addition, at every point of Ω all *n* eignefunctions of *J*f have distinct values.

Jacobian problem:

<u>Given</u> a partial frame $\mathcal{R} = \{\mathbf{r}_1, \dots, \mathbf{r}_m\}$ on open $\Omega \subset \mathbb{R}^n$ $(n \ge m)$, and a fixed point $\overline{u} \in \Omega$, <u>describe</u> the set of smooth vector fields

 $\mathcal{F}(\mathcal{R}) = \{\mathbf{f} \in \mathcal{X}(\Omega') \, | \, \bar{u} \in \Omega' \subset \Omega\}$

s. t. there \exists smooth functions $\lambda^i \colon \Omega' \to \mathbb{R}$ for which

$$J\mathbf{f}(\mathbf{r}_i) := \nabla_{\mathbf{r}_i} \mathbf{f} = \lambda^i \mathbf{r}_i, \quad \text{for } i = 1, \dots, m,$$

where ∇ is a flat, symmetric connection on Ω .

Elements of $\mathcal{F}(\mathcal{R})$ will be called <u>fluxes</u>.

- $\mathcal{F}(\mathcal{R})$ is, possibly ∞ -dimensional, \mathbb{R} -vector space.
- scaling invariance: if $\tilde{\mathcal{R}} = \{\phi^1 \mathbf{r}_1, \dots, \phi^m \mathbf{r}_m\}$, where $\phi^i \colon \Omega \to \mathbb{R}$ are nowhere zero, then $\mathcal{F}(\mathcal{R}) = \mathcal{F}(\tilde{\mathcal{R}})$.
- $\forall \mathcal{R}$, the set $\mathcal{F}(\mathcal{R})$ contains a trivial fluxes:

$$(a u^{1} + b^{1}) \frac{\partial}{\partial u^{1}} + \dots + (a u^{n} + b^{n}) \frac{\partial}{\partial u^{n}}, \text{ for all } a, b^{1}, \dots, b^{n} \in \mathbb{R}.$$

Explicit form of integrability conditions (5). For i = 1, ..., p; j, k = 1, ..., m

$$\mathbf{r}_j\left(\mathbf{r}_k(\phi^i)\right) - \mathbf{r}_k\left(\mathbf{r}_j(\phi^i)\right) = \sum_{l=1}^m c_{jk}^l \mathbf{r}_l(\phi^i),$$

The 1st substitution of the derivatives of ϕ 's prescribed by (4) into (5):

$$\mathbf{r}_j\left(h_k^i(u,\phi(u)) - \mathbf{r}_k\left(h_j^i(u,\phi(u))\right) = \sum_{l=1}^m c_{jk}^l h_l^i(u,\phi(u))\right)$$

The chain rule and the 2nd substitution for the derivatives of ϕ 's :

$$\sum_{l=1}^{n} \left(\frac{\partial h_{k}^{i}(u,\phi)}{\partial u^{l}} \mathbf{r}_{j}(u^{l}) - \frac{\partial h_{j}^{i}(u,\phi)}{\partial u^{l}} \mathbf{r}_{k}(u^{l}) \right) + \sum_{s=1}^{p} \left(\frac{\partial h_{k}^{i}(u,\phi)}{\partial \phi^{s}} h_{j}^{s}(u,\phi) - \sum_{l=1}^{m} c_{jk}^{l}(u) h_{l}^{i}(u,\phi) \right)$$

Extensions and entropies:

Assume that \exists functions $q: \Omega \to \mathbb{R}$ and $\eta: \Omega \to \mathbb{R}$, s.t. $\left[\operatorname{grad} q = \operatorname{grad} \eta(D_u f) \right]$, then multiplication of $u_t + f(u)_x = 0$ by $\left[\operatorname{grad} \eta \right]$ from the left (assuming that u is smooth) leads to a companion conservation law:

$$\eta(u)_t + q(u)_x = 0$$

 η is called an extension of conservative system.

Proposition: η is an extension iff:

for each pair
$$1 \le i \ne j \le n$$
: $\lambda^j = \lambda^i$ or $R_i^T (D_u^2 \eta) R_j = 0$.

An extension η is called an entropy if $D_u^2 \eta$ is positive semidefinite and is called strict entropy if $D_u^2 \eta$ is positive definite.

Admissibility criterion:

A weak solution of $u_t + f(u)_x = 0$ is admissible if it is a limit of smooth solutions

$$u_t^{\varepsilon} + f(u^{\varepsilon})_x = \varepsilon u_{xx}^{\varepsilon}, \quad \text{as } \varepsilon \downarrow 0.$$

If η is an entropy with flux q, then:

$$\eta(u^{\varepsilon})_t + q(u^{\varepsilon})_x \le \varepsilon \eta(u^{\varepsilon})_{xx} \qquad (\varepsilon > 0)$$

A weak solution of $u_t + f(u)_x = 0$ is admissible if it satisfies the entropy inequality

 $\eta(u)_t + q(u)_x \le 0$ (distributional sense)