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Jacobian problem:

Given: Ω ⊂
open

Rn, with a fixed coordinate system u = (u1, . . . , un), a point

ū ∈ Ω and vector fields

R = {r1, . . . , rm}, 1 ≤ m ≤ n,

independent at ū.
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ū ∈ Ω and vector fields

R = {r1, . . . , rm}, 1 ≤ m ≤ n,

independent at ū.
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Given: Ω ⊂
open

Rn, with a fixed coordinate system u = (u1, . . . , un), a point

ū ∈ Ω and vector fields

R = {r1, . . . , rm}, 1 ≤ m ≤ n,

independent at ū.

Find: all maps f = [f1, . . . , fn]T : Ω′ → Rn from some open nbhd. Ω′ of ū,
such that R is a (partial) set of eigenvector-fields of the Jacobian matrix

[Duf ] =

 grad(f1)
...

grad(fn)



I.e. ∃ smooth functions λi : Ω′ → R, s. t. for i = 1, . . . ,m and ∀u ∈ Ω′

[Duf ] ri(u) = λi(u) ri(u). F(R)-system
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F(R)-system: [Duf ] ri(u) = λi(u) ri(u) , i = 1, . . . ,m.
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F(R)-system: [Duf ] ri(u) = λi(u) ri(u) , i = 1, . . . ,m.

• R = {r1, . . . , rm}, 1 ≤ m ≤ n, is called a partial (local) frame.

• f is called a flux.

– f is called hyperbolic if the Jacobian matrix [Duf ] is diagonalizable
over R at ū, otherwise f is called non-hyperbolic.

– f is called strictly hyperbolic if the eigenvalues λ1(u), . . . , λn(u) of
[Duf ] are real and distinct for at ū.

• F(R) denotes the set of all fluxes corresponding to a partial frame R.
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Motivation for the Jacobian problem

• By solving the Jacobian problem, we can construct and study the set
of systems conservations laws ut + f(u)x = 0 with prescribed
rarefaction curves and analyze how the geometry of these curves
determines behavior of the solutions of conservation laws.

• It is an interesting geometric problem on its own.

• It leads to interesting overdetermined systems of PDE’s.
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What do we mean by “finding all fluxes”?
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What do we mean by “finding all fluxes”?

• Setting up a system of PDE’s for f and then solving it by hand or by
computer software?

• What if this fails? Even when we get some solutions, did we find them all?

• Is there any relation between a geometry the partial frame R and the size
of F(R)?

• What types of fluxes F(R) contains? Hyperbolic? Strictly hyperbolic?
Non-hyperbolic?

Goals:

• to determine how the ”size” of F(R) (in terms of the number of arbitrary
functions and constants) depends on the geometric properties of R.

• to determine whether or not F(R) contains strictly hyperbolic fluxes.
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Observations about F(R)-system: [Duf ] ri = λi ri .
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Observations about F(R)-system: [Duf ] ri = λi ri .

• mn first order PDEs on m+ n unknown functions:
λi, i = 1, . . . ,m and n components of f .

• overdetermined for all n ≥ m, such that n > 2 and m ≥ 2.

• F(R) is (possibly infinite dimensional) vector space over R.

• for all R, the set F(R) contains (n+1)-dimensional subspace Ftriv of
trivial fluxes:

f(u) = λ̄

 u1

...
un

+

 a1...
an

, λ̄, a1, . . . , an ∈ R,

because [Duf ] = λ̄I.

• scaling invariance: F(r1, . . . , rm) = F(α1 r1, . . . , α
mrm)

for any nowhere zero smooth functions αi on Ω.
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Examples of full frames on R3 (m = n = 3, coordinates (u, v, w))

(1) • r1 =

 0
1
u

 , r2 =

 w0
1

 , r3 =

 u
0
−w


(integral curves: lines, parabolas, circles)

8



Examples of full frames on R3 (m = n = 3, coordinates (u, v, w))

(1) • r1 =

 0
1
u

 , r2 =

 w0
1

 , r3 =

 u
0
−w


(integral curves: lines, parabolas, circles)

f(u) = λ̄

 u
v
w

+

 a1
a2
a3

, λ̄, a1, a2, a3 ∈ R,

• only trivial fluxes: F(R) = F triv.
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(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)
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(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)

• F(R)/F triv is a 1-dimensional space

f = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

8



(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)

• F(R)/F triv is a 1-dimensional space

f = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

λ1 = 3 c u v + λ̄, λ2 = −3 c u v + λ̄, λ3 = λ̄.
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(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)

• F(R)/F triv is a 1-dimensional space

f = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

λ1 = 3 c u v + λ̄, λ2 = −3 c u v + λ̄, λ3 = λ̄.

• There are strictly hyperbolic fluxes in a neighborhood of (ū, v̄, w̄) ∈ Ω.
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(3) (the coordinate frame)

•

r1 =

 1
0
0

 , r2 =

 0
1
0

 , r3 =

 0
0
1
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0
1



•

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

F(R) is a∞-dimensional space
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(3) (the coordinate frame)

•

r1 =

 1
0
0

 , r2 =

 0
1
0

 , r3 =

 0
0
1



•

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

F(R) is a∞-dimensional space

•

λ1 =
(
φ1
)′

(u), λ2 =
(
φ2
)′

(v), λ3 =
(
φ3
)′

(w).

All fluxes are hyperbolic, and almost all are strictly hyperbolic.

8



What if we prescribe an incomplete eigenframe?

(1) r1 = [0,1, u]T , r2 = [w,0,1]T , r3 = [u,0,−w]T only trivial fluxes.

(1a) r1 = [0,1, u]T , r2 = [w,0,1]T
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What if we prescribe an incomplete eigenframe?

(1) r1 = [0,1, u]T , r2 = [w,0,1]T , r3 = [u,0,−w]T only trivial fluxes.

(1a) r1 = [0,1, u]T , r2 = [w,0,1]T

again only trivial fluxes!

(1b) r1 = [0,1, u]T , r3 = [u,0,−w]T .

F(R)/F triv is 2-dimensional:

f = c1


ln(u)

0
1
2

(
w
u − v

)
+ c2

 −
1
3 u

3

uw

w u2

+ trivial fluxes

λ1 = c2 u
2 + λ̄, λ3 = c1

1

u
− c2 u2 + λ̄
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What if we prescribe an incomplete eigenframe?

(1) r1 = [0,1, u]T , r2 = [w,0,1]T , r3 = [u,0,−w]T only trivial fluxes.

(1a) r1 = [0,1, u]T , r2 = [w,0,1]T

again only trivial fluxes!

(1b) r1 = [0,1, u]T , r3 = [u,0,−w]T .

F(R)/F triv is 2-dimensional:

f = c1


ln(u)

0
1
2

(
w
u − v

)
+ c2

 −
1
3 u

3

uw

w u2

+ trivial fluxes

λ1 = c2 u
2 + λ̄, λ3 = c1

1

u
− c2 u2 + λ̄

(1c) r2 = [w,0,1]T , r3 = [u,0,−w]T .

F(R) is∞-dimensional !
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What about the coordinate frame example?

(3) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T , r3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 = (φ1)′(u), λ2 = (φ2)′(v), λ3 = (φ3)′(w).
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(3) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T , r3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 = (φ1)′(u), λ2 = (φ2)′(v), λ3 = (φ3)′(w).

(3a) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T .

f =
[
φ1(u,w), φ2(v, w), φ3(w)

]T
, φ1, φ2 : R2 → R; φ3 : R→ R

λ1 =
∂φ1

∂u
, λ2 =

∂φ2

∂v
.
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What about the coordinate frame example?

(3) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T , r3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 = (φ1)′(u), λ2 = (φ2)′(v), λ3 = (φ3)′(w).

(3a) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T .

f =
[
φ1(u,w), φ2(v, w), φ3(w)

]T
, φ1, φ2 : R2 → R; φ3 : R→ R

λ1 =
∂φ1

∂u
, λ2 =

∂φ2

∂v
.

(3b) r1 = [1, 0, 0]T .

f =
[
φ1(u, v, w), φ2(v, w), φ3(v, w)

]T
, φ1 : R3 → R; φ2, φ3 : R2 → R

λ1 =
∂φ1

∂u
.
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Coordinate dependence of the problem formulation.
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Coordinate dependence of the problem formulation.

• Assume f(u) ∈ F(R) for R = {r1, . . . , rm}, i.e: there exist
λ1(u), . . . , λm(u), such that

[Du f ] = λi(u) ri.

• Let a change of variables be described by a local diffeomorphism

u = Φ(w).

• It is not true that f(Φ(w)) belongs to F(Φ∗R), where Φ∗R =

{Φ∗r1, . . . ,Φ
∗rm}, i.e, in general there may not exists functions

κ1(w), . . . , κm(w), such that

[Dw f(Φ(w))] = κi(u) Φ∗ri.
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Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

R = {r1, . . . , rm}, 1 ≤ m ≤ n

on Ω ⊂
open

Rn, with a fixed flat, symmetric∗ connection ∇, and a point ū ∈ Ω

∗Coordinate-free formulation makes sense for non-flat connections, but is not considered here.
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Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

R = {r1, . . . , rm}, 1 ≤ m ≤ n

on Ω ⊂
open

Rn, with a fixed flat, symmetric∗ connection ∇, and a point ū ∈ Ω

Find: all local smooth vector fields f (“fluxes”), defined on some nbhd Ω′ of ū ,
for which there exist smooth functions λi : Ω′ → R, such that

∇ri f = λi ri, for i = 1, . . . ,m. ”new” F(R)-system

∗Coordinate-free formulation makes sense for non-flat connections, but is not considered here.
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Observations:

∇ri f = λi ri, for i = 1, . . . ,m . ”new” F(R)-system

• Written out in an affine system of coordinates: (∇ ∂
∂ui

∂
∂uj

= 0, ∀i, j)

the ”new” F(R)-system is the same as the “old” one.

• Integrability conditions for F(R)-system correspond to the flatness
conditions

∇ri∇rj f −∇rj∇rif = ∇[ri,rj]
f

13



Goals :

• to determine the ”size” of F(R).

• to determine whether or not F(R) contains strictly hyperbolic fluxes.

Methods :

• for the size: C1 Frobenius and Darboux theorems (and their
generalizations), and as the last resort analytic Cartan-Kähler theorem.

• for strict hyperbolicity: a careful examination of integrability conditions.
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Involutivity and richness

Definitions: A partial frame R = {r1, . . . , rm} is:

• in involution if [ri, rj] ∈ spanC∞(Ω)R for all 1 ≤ i, j ≤ m.

• rich if [ri, rj] ∈ spanC∞(Ω){ri, rj} (pairwise in involution).
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Summary of the results:
• Results for all n and all m ≤ n:
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Summary of the results:
• Results for all n and all m ≤ n:

– Necessary conditions for F(R) to contain strict. hyp. fluxes.

∇rirj ∈ spanC∞(Ω′){ri, rj} if and only if[ri, rj] ∈ spanC∞(Ω′){ri, rj}

– For rich partial frames: we have necessary and sufficient conditions for
F(R) to contain strictly hyperbolic fluxes and for those we know the
size of F(R) (∞-dim.)

• Low dimensional results:

– n = 1 or n = 2 or m = 1 fall under rich category.

– non rich, but in involution:
∗ n = 3 non-rich full frame (m = 3) completely analyzed in:

K. Jenssen and I.K. (2010)

1. necessary and sufficient conditions for F(R) to contain strictly
hyperbolic fluxes

2. under these conditions: dimF(R)/F triv = 1 (unique flux up to
scaling)
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∗ for m = 3, n > 3 we have necessary and sufficient conditions for
F(R) to contain strictly hyperbolic fluxes and for those we know the
size of F(R) (∞-dim.)
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∗ for m = 3, n > 3 we have necessary and sufficient conditions for
F(R) to contain strictly hyperbolic fluxes and for those we know the
size of F(R) (∞-dim.)

– not in involution: for m = 2, n = 3 we have:
1. (necessary conditions for strict hyperbolicity)
F(R) contains strictly hyperbolic fluxes only if :

∇r1r2 /∈ spanC∞{r1, r2} and ∇r2r1 /∈ spanC∞{r1, r2} (∗∗∗∗)

2. Under(****), F(R)/F triv contains only strictly hyperbolic and
possibly a 1-dimensional subspace of non-hyperbolic fluxes (but no
hyperbolic fluxes with repeated eigenfunctions).

3. (size) Under (****) and

Γ3
22(ū) Γ3

11(ū)− 9 Γ3
12(ū) Γ3

21(ū) 6= 0,

4 ≤ dim(F(R)) ≤ 8 (we have examples in all dimensions
4, . . . ,8).

4. If dimF(R) > 5, then F(R) must contain strictly hyperbolic fluxes.
16



We don’t have a sufficient condition for F(R) to contain non-trivial fluxes,

unless 1) R is rich or 2) R is in involution with m = 3.
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We don’t have a sufficient condition for F(R) to contain non-trivial fluxes,

unless 1) R is rich or 2) R is in involution with m = 3.

Remark: For all n ≥ m, such that n > 2 and m ≥ 2, almost all frames admit
only trivial fluxes!
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Jacobian problem for rich partial frames R = {r1, . . . , rm}:
Recall:

• rich means that [ri, rj] ∈ spanC∞(Ω){ri, rj} 1 ≤ i, j ≤ m.

• F(R) consists of f ’s, for which ∃λi : Ω→ R such that

∇ri f = λi ri, for i = 1, . . . ,m.

Theorem:

1. (necessary and sufficient conditions for strict hyperbolicity)
If R is rich then F(R) contains strictly hyperbolic fluxes iff

∇rirj ∈ spanC∞(Ω){ri, rj} for all 1 ≤ i, j ≤ m. (∗)

2. (size) Under (*), F(R) depends on:
m arbitrary functions of n−m+ 1

(the degree of freedom of prescribing λ’s)
and
n functions of n−m variables

(the degree of freedom for prescribing f for the chosen λ’s)
18



Jacobian problem for involutive partial frames
R = {r1, . . . , rm}:

Recall:

• involutive means that [ri, rj] ∈ spanC∞(Ω)R for 1 ≤ i, j ≤ m.

• F(R) consists of f ’s, for which ∃λi : Ω→ R such that

∇ri f = λi ri, for i = 1, . . . ,m.

Theorem:

1. (necessary conditions for strict hyperbolicity for arbitrary m)
If R is involutive then F(R) contains strictly hyperbolic fluxes only if
for all 1 ≤ i 6= j ≤ m

∇rirj ∈ spanC∞(Ω)R (∗∗)
∇rirj ∈ spanC∞(Ω){ri, rj} ⇐⇒ [ri, rj] ∈ spanC∞(Ω){ri, rj}

2. for m = 3 in non-rich case (**) can be completed to necessary
and sufficient conditions (***). Under (***), F(R) depends on
n+ 2 arbitrary functions of n− 3 variables .
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Jacobian problem for non-involutive partial frames
simplest case: R = {r1, r2} in R3.

Recall:
• non-involutive means that [r1, r2] /∈ spanC∞{r1, r2}.

• F(R) consists of f ’s, for which ∃λ1, λ2 : Ω→ R such that

∇r1 f = λ1 r1 and ∇r2 f = λ2 r2.

Theorem:

1. (necessary conditions for strict hyperbolicity)
F(R) contains strictly hyperbolic fluxes only if :

∇r1r2 /∈ spanC∞{r1, r2} and ∇r2r1 /∈ spanC∞{r1, r2} (∗ ∗ ∗∗)

2. Under(****), F(R)/F triv contains only strictly hyperbolic and possibly a 1-
dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes
with repeated eigenfunctions).
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3. (size) Under (****) and

Γ3
22(ū) Γ3

11(ū)− 9 Γ3
12(ū) Γ3

21(ū) 6= 0,

4 ≤ dim(F(R)) ≤ 8 (we have examples in all dimensions 4, . . . ,8).

4. If dimF(R) > 5, then F(R) must contain strictly hyperbolic fluxes.
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Darboux Integrability Theorem [Leçons sur les systèmes
orthogonaux et les coordonnées curvilignes. (1910)]

21



Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

∂φi

∂uj
= hij(u, φ(u)) , i = 1, . . . , p; j ∈ α(i), (1)

where:
1. Ω ⊂

open
Rn (the space of independent variables u’s)

2. Θ ⊂
open

Rp (the space of dependent variables φ’s)

3. α(i) ⊂ {1, . . . , n} for each i = 1, . . . , p .

4. hij(u
1, . . . , un, φ1, . . . , φp), i = 1, . . . , p, j ∈ α(i) are C1 functions on

Ω ×Θ → R, with certain combinatorial restrictions on which φ’s each of
the hij may depend so that (2) become algebraic.

If integrability conditions

∂

∂uk

(
∂

∂uj
(φi)

)
−

∂

∂uj

(
∂

∂uk
(φi)

)
= 0 for all j, k ∈ α(i) (2)

are identically satisfied on Ω ×Θ after substitution of hij(u, φ) for ∂
∂uj

(φi) for
all i = 1, . . . , p, j ∈ α(i) as prescribed by system (1)

Then ∃! smooth local solution of (1) around ū, for any C1 initial data for φi

prescribed along submanifold Ξi = {uj = ūj, j ∈ αi} ⊂ Rn of dimension
n− |αi|.
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Example of a Darboux system:
• three unknown functions (dependent variables) φ, ψ and ξ.

• two independent variables u and v.

• system:
φu = F (u, v, φ, ψ, ξ)

ψv = G(u, v, φ, ψ, ξ)

ξu = f(u, v, ψ, ξ) ( no φ)
ξv = g(u, v, φ, ξ) ( no ψ)

• the integrability condition:

fv + fψG+ fξ g = gu + gφ F + gξ f.

• initial data near (ū, v̄):

φ(ū, v) = a(v)

ψ(u, v̄) = b(u)

ξ(ū, v̄) = c a constant.

• here F , G f , g, a and b are given C1 functions of their arguments.
23



Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown
function is differentiated with respect to all variables.
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Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown
function is differentiated with respect to all variables.

Alternatively, given a full frameR = {r1, . . . , rn}, we can prescribe derivatives
with respect to each of the frame directions. The integrability conditions then
become:

rk
(
rj(φ

i)
)
− rj

(
rk(φi)

)
=

n∑
l=1

clkjrk(φi). (3)
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PDE version: Is a special case of Darboux Theorem, when each unknown
function is differentiated with respect to all variables.

Alternatively, given a full frameR = {r1, . . . , rn}, we can prescribe derivatives
with respect to each of the frame directions. The integrability conditions then
become:

rk
(
rj(φ

i)
)
− rj

(
rk(φi)

)
=

n∑
l=1

clkjrk(φi). (3)

If (3) are satisfied then there is a unique solution with any initial data

φi(ū) = ci.
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Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown
function is differentiated with respect to all variables.

Alternatively, given a full frameR = {r1, . . . , rn}, we can prescribe derivatives
with respect to each of the frame directions. The integrability conditions then
become:

rk
(
rj(φ

i)
)
− rj

(
rk(φi)

)
=

n∑
l=1

clkjrk(φi). (3)

If (3) are satisfied then there is a unique solution with any initial data

φi(ū) = ci.

There are equivalent diff. form version and vector field formulation versions
about foliating Rn+p by n-dimensional integrable manifolds.
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Generalized Frobenius, PDE version [M. Benfield (2016)]:
Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

rj(φ
i(u)) = hij(u, φ(u)) , i = 1, . . . , p; j = 1, . . . ,m, (4)

where:

1. R = {r1, . . . , rm} – a partial frame in involution on Ω ⊂
open

Rn.

2. Θ ⊂
open

Rp is the space of dependent variables φ’s.

3. hij(u, φ), i = 1, . . . , p, j = 1, . . . ,m smooth functions on Ω×Θ→ R.

If integrability conditions

rk
(
rj(φ

i)
)
−rj

(
rk(φi)

)
=

m∑
l=1

cljkrl(φ) i = 1, . . . , p; j, k = 1, . . . ,m (5)

are identically satisfied on Ω×Θ after substitution of hij(u, φ) for rj(φi) for all
i = 1, . . . , p, j = 1, . . . ,m as prescribed by system (4).

Then ∃! smooth local solution of (4), for any smooth initial data prescribed
along any embedded submanifold Ξ ⊂ Ω of dimension n −m transversal to
R.
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Generalized Frobenius vector field version (local)
[Benfield, I. K., Jenssen (2016)]:

Given:

1. s1, . . . , sm – a partial frame in involution on an open O ⊂ Rn+p, where
1 ≤ m ≤ n and p ≥ 1.

2. Λ ⊂ O be an (n−m)-dimensional embedded submanifold, such that

spanR{s1|z, . . . , sm|z} ⊕ TzΛ ∼= Rn ∀z ∈ Λ.

Then for ∀z̄ ∈ Λ, there exists a unique local extension of Λ to an n-dimensional
submanifold Γz̄ of Rn+p, tangent to s1, . . . , sm

In the classical local Frobenius theorem, m = n and Λ = {z̄}.
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Motivation: systems of conservation laws

ut + f(u)x = 0 . (1a)

• n equations on n unknown functions u(x, t) ∈ Ω ⊂ Rn.

• one space-variable x ∈ R; one time-variable: t ∈ R.

• f(u): Ω→ Rn smooth flux.
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Motivation: systems of conservation laws

ut + f(u)x = 0 . (1a)

• n equations on n unknown functions u(x, t) ∈ Ω ⊂ Rn.

• one space-variable x ∈ R; one time-variable: t ∈ R.

• f(u): Ω→ Rn smooth flux.

Equivalently:

ut + [Duf ]ux = 0 (1b)
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

Vt − Ux = 0

Ut + px = 0

St = 0 .

V = 1
ρ is volume per unit mass, U is velocity, S is entropy per unit mass,

p(V, S) > 0 is pressure as a given function, s.t pV < 0 .
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

Vt − Ux = 0

Ut + px = 0

St = 0 .

V = 1
ρ is volume per unit mass, U is velocity, S is entropy per unit mass,

p(V, S) > 0 is pressure as a given function, s.t pV < 0 .

• ut + f(u)x = 0, where u = [V, U, S]T and f(u) = [−U, p(V, S),0]T .
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

Vt − Ux = 0

Ut + px = 0

St = 0 .

V = 1
ρ is volume per unit mass, U is velocity, S is entropy per unit mass,

p(V, S) > 0 is pressure as a given function, s.t pV < 0 .

• ut + f(u)x = 0, where u = [V, U, S]T and f(u) = [−U, p(V, S),0]T .

• eigenvectors of [Duf ] are:
r1 = [ 1,

√
−pV , 0 ]T , r2 = [−pS, 0, pV ]T , r3 = [ 1, −

√
−pV , 0 ]T
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

Vt − Ux = 0

Ut + px = 0

St = 0 .

V = 1
ρ is volume per unit mass, U is velocity, S is entropy per unit mass,

p(V, S) > 0 is pressure as a given function, s.t pV < 0 .

• ut + f(u)x = 0, where u = [V, U, S]T and f(u) = [−U, p(V, S),0]T .

• eigenvectors of [Duf ] are:
r1 = [ 1,

√
−pV , 0 ]T , r2 = [−pS, 0, pV ]T , r3 = [ 1, −

√
−pV , 0 ]T

• eigenvalues of [Duf ] are λ1 = −
√
−pV , λ2 ≡ 0 , λ3 =

√
−pV .
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Wave curves
are used to construct solution of ut + f(u)x = 0.
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Wave curves
are used to construct solution of ut + f(u)x = 0.

A wave curve consists of two parts:
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Wave curves
are used to construct solution of ut + f(u)x = 0.

A wave curve consists of two parts:

• rarefaction curve - the integral curve of an eigenvector field of
[Duf ] - correspond to the smooth part of the self-similar solutions

u(x, t) = ζ
(
x
t

)
.

29



Wave curves
are used to construct solution of ut + f(u)x = 0.

A wave curve consists of two parts:

• rarefaction curve - the integral curve of an eigenvector field of
[Duf ] - correspond to the smooth part of the self-similar solutions

u(x, t) = ζ
(
x
t

)
.

• shock curve – a solution of Rankine-Hugoniot conditions:

{u ∈ Ω | ∃ s ∈ R : f(u)− f(ū) = s · (u− ū) }.

A shock curve describes the discontinuous part of the solutions.
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Wave curves
are used to construct solution of ut + f(u)x = 0.

A wave curve consists of two parts:

• rarefaction curve - the integral curve of an eigenvector field of
[Duf ] - correspond to the smooth part of the self-similar solutions

u(x, t) = ζ
(
x
t

)
.

• shock curve – a solution of Rankine-Hugoniot conditions:

{u ∈ Ω | ∃ s ∈ R : f(u)− f(ū) = s · (u− ū) }.

A shock curve describes the discontinuous part of the solutions.

Through each strictly hyperbolic state ū ∈ Ω, there exists n wave curves.
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Wave curves are building blocks for the solutions of Cauchy
problems:

ut + f(u)x = 0, u(x,0) = u0(x).

30



Wave curves are building blocks for the solutions of Cauchy
problems:

ut + f(u)x = 0, u(x,0) = u0(x).

Lax (1957) under certain condition on f and when u− and u+ are close, the
solution to the Riemann problem:

u0(x) =

{
u− , x < 0
u+ , x > 0 .

is determined by the wave curves.

Glimm (1965) for u0 with small total variation, the solutions to the Cauchy
problems is determined by solutions of Riemann problems.
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Example: The Jacobian problem for the Euler frame.
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Example: The Jacobian problem for the Euler frame.

Given:
• (V, U, S) are coordinate functions in R3.

• p(V, S) > 0 , s.t -pV < 0

• vector fields r1 =

 1√
−pV
0

 , r2 =

 −pS0
pV

 , r3 =

 1
−
√
−pV
0
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Example: The Jacobian problem for the Euler frame.

Given:
• (V, U, S) are coordinate functions in R3.

• p(V, S) > 0 , s.t -pV < 0

• vector fields r1 =

 1√
−pV
0

 , r2 =

 −pS0
pV

 , r3 =

 1
−
√
−pV
0



Find: the set F(R) of all maps f : R3 → R3, such that R = {r1, r2, r3} is a
set of eigenvector-fields of the Jacobian matrix [Duf ].
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Answer:
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Answer:

• If
(
pS
pV

)
V
6= 0

f = c

 −U
p(v, S)

0

+ λ̄

 VU
S

+

 a1
a2
a3

 = c

 −U
p(v, S)

0

+ trivial flux.
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Answer:

• If
(
pS
pV

)
V
6= 0

f = c

 −U
p(v, S)

0

+ λ̄

 VU
S

+

 a1
a2
a3

 = c

 −U
p(v, S)

0

+ trivial flux.

eigenvalues: λ1 = −c
√
−pV + λ̄ , λ2 ≡ λ̄ , λ3 = c

√
−pV + λ̄.
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Answer:

• If
(
pS
pV

)
V
6= 0

f = c

 −U
p(v, S)

0

+ λ̄

 VU
S

+

 a1
a2
a3

 = c

 −U
p(v, S)

0

+ trivial flux.

eigenvalues: λ1 = −c
√
−pV + λ̄ , λ2 ≡ λ̄ , λ3 = c

√
−pV + λ̄.

• If
(
pS
pV

)
V
≡ 0, then F(R) depends on 3 arbitrary functions of one variable.
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How geometry of the eigenframe of [Duf ] affects the
properties of hyperbolic conservative systems and their
solutions?

• We analyzed relationship between the geometry of the eigenframe and the
number of companion conservation laws a system possesses.

Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws

Communications in PDE’s, No. 37, (2012) , pp. 1096 – 1140.

• We would like to better understand relationship between the geometry of
the eigenframe and wave interaction patterns, as well as blow-up of the
solutions in finite time phenomena.
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1. Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed
eigencurves. J. of Hyperbolic Differential Equations (JHDE) Vol. 7, No. 2.,
(2010) pp. 211– 254.

2. Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws
Communications in PDE’s, No. 37, (2012) , pp. 1096 – 1140.

3. Benfield, M., Some Geometric Aspects of Hyperbolic Conservation Laws
Ph.D. thesis, NCSU, (2016)

4. Benfield, M., Jenssen, H. K., Kogan, I. A., Jacobians with prescribed
eignvectors, in preparation.

Thank you!

33



Additional slides
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Rich partial frames: [ri, rj] ∈ spanC∞(Ω){ri, rj}

Properties

• ∃ smooth functions αi : Ω→ R, i = 1, . . . ,m such that

r̃1 := α1(u) r1, . . . , r̃m := αn rm

commute.

⇓

• ∃ coordinates w1, . . . , wn = ρ(u) (called Riemann invariants)

r̃i =
∂

∂wi
, i = 1, . . . ,m.
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Necessary condition for strict hyperbolicity

For R = {r1, . . . , rm}, the exists strictly hyperbolic flux f ∈ F(R) only if for
each pair of indices i 6= j ∈ {1, . . . ,m} the following equivalence holds:

∇rirj ∈ spanC∞(Ω′){ri, rj} ⇐⇒ [ri, rj] ∈ spanC∞(Ω′){ri, rj}
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Differential-Algebraic system (the λ(R)-system) for full
frames ∗

n(n− 1) linear, 1st order PDEs and n(n−1)(n−2)
2 algebraic equations:

ri(λ
j) = Γjji(λ

i − λj) i 6= j, (λ(R)-diff)

Γkji (λi − λk) = Γkij (λj − λk) i < j, i 6= k, j 6= k (λ(R)-alg),

where Γkij := Lk(DRj)Ri are the Christoffel symbols of the connection

∇ ∂
∂ui

∂
∂uj

= 0 computed relative to the frame R i.e. ∇rirj =
n∑

k=1

Γkijrk.

cikm = Γikm − Γimk (Symmetry)

rm
(
Γjki

)
− rk

(
Γjmi

)
=

n∑
s=1

(
ΓjksΓ

s
mi − ΓjmsΓ

s
ki − c

s
kmΓjsi

)
(Flatness).

∗In different contexts the λ-system appeared in Sévannec (1994), Tsarëv (1985).
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Rich system with non-trivial algebraic constraints

∂iλ
j = Γjji(λ

i − λj) for 1 ≤ i 6= j ≤ n, ∂i :=
∂

∂wi
.

Γkij(λ
j − λi) = 0 for 1 ≤ k 6= i < j 6= k ≤ n.

• ∃ distinct i, j, k s.t. Γkij 6= 0

• multiplicity conditions on eigenvalues are implied by the algebro-differential
system (no strictly hyperbolic conservation laws in this case).

• Darboux theorem ⇒ general solution depends on s0 constants and
s1 functions of one variable, where

– s0 is the number of distinct eigenvalues of multiplicity > 1,

– s1 is the number of eigenvalues of multiplicity 1.
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λ(R)-system for n = 3

I. rank(λ(R)-alg) = 0 ⇒ R is rich; a general solution of λ(R) depends
on 3 functions of 1 variable; ∃ strictly hyperbolic conservative system with
eigenframe R.

II. rank(λ(R)-alg) = 1 (a single algebraic constraint):

IIa. All three λi appear in the algebraic constraint⇒ λ(R) can be analyzed
by Fronebious theorem; the solution of the λ-system is either trivial or
depends on 2 arbitrary constants; In the latter case, ∃ strictly hyperbolic
conservative system with eigenframe R; @ rich systems in class IIa.

IIb. Exactly two λi appear in the algebraic constraint ⇒ two λi coincide;
λ(R) can be analyzed by Cartan-Kähler theorem; the general solution
is either trivial or depends on 1 arbitrary function of 1 variables and 1
constant;@ strictly hyperbolic conservative system with eigenframe R;
but ∃ rich systems, in class IIb.

III. rank(λ(R)-alg) = 2⇒ only trivial solutions λ1(u) = λ2(u) = λ3(u) =
λ̄ ∈ R.
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The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

vt − ux = 0

ut + px = 0

St = 0 .

v = 1
ρ is volume per unit mass, u is velocity, S is entropy per unit mass,

p(v, S) > 0 is pressure as a given function of v and S, s.t pv < 0 .

• Ut + f(U)x = 0, where U = (v, u, S) and f(U) = (−u, p(v, S),0)T .

• eigenvalues of Df are λ1 = −
√
−pv , λ2 ≡ 0 , λ3 =

√
−pv.

• eigenvectors of Df are R1 =
[
1,
√
−pv, 0

]T ,
R2 = [−pS, 0, pv ]T , R3 =

[
1, −
√
−pv, 0

]T
40



Inverse problem: Coordinates U = (v, u, S)

• For a given pressure function p = p(v, S) > 0, with pv < 0 define a frame
R:

R1 =
[
1,
√
−pv, 0

]T , R2 = [−pS, 0, pv ]T , R3 =
[
1, −
√
−pv, 0

]T

• determine the class of conservative systems with eigenfields R by solving
the λ-system for λ1, λ2, λ3.

• Observation: frame is rich ⇔
(
pS
pv

)
v
≡ 0⇔ p(v, S) = Π(v+F (S)).
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λ-system:

• differential equations

r1(λ2) = 0

r1(λ3) = pvv
4pv

(λ3 − λ1)

r2(λ1) = pv
2

(
pS
pv

)
v
(λ1 − λ2)

r2(λ3) = pv
2

(
pS
pv

)
v
(λ3 − λ2)

r3(λ1) = pvv
4pv

(λ1 − λ3)

r3(λ2) = 0 .

• one independent algebraic equation:

pv
4

(
pS
pv

)
v
(λ1 + λ3 − 2λ2) = 0.

• Rich frame ⇔
(
pS
pv

)
v
≡ 0 ⇔ no algebraic constraints.
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Solution of the λ(R)-system:

in the non-rich case:

• λ(R)-alg consists of:

pv
4

(
pS
pv

)
v
(λ1 + λ3 − 2λ2) = 0⇔ λ2 = 1

2(λ1 + λ3)

that involves all three λ’s (case IIa) ⇒ the general solution depends
on two constants.

• from the differential part of λ-system we obtain:

λ1 = −C1
√
−pv + C2 , λ2 = C2 , λ3 = C1

√
−pv + C2 .

f(U) = C1

 −u
p(v, S)

0

+ C2

 v
u
S

+ v̄.
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Solution of the λ(R)-system:

in the rich case:, i.e.
(
pS
pv

)
v
≡ 0

• this is rich case with no algebraic constraints ⇒ solution depends on
3 arbitrary functions in one variable.

•
(
pS
pv

)
v
≡ 0 ⇔ p(v, S) = Π(ξ), where ξ = v + F (S).

• from the differential part of λ-system we obtain:

λ2 = λ2(S), λ1 = A(ξ, u), λ3 = B(ξ, u),

where

Aξ −
√
−Π′(ξ)Au = a (B −A) , Bξ +

√
−Π′(ξ)Bu = a (A−B)

and a = −pvv4pv
.
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Example: rich orthogonal frame (cylindrical coordinates)

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [0, 0, 1]T .

Riemann coordinates: (in the first octant):

w1 = 1
2 ln

[
(u1)2 + (u2)2

]
, w2 = arctan

(
u2

u1

)
, w3 = u3 .

λ1 = ψ1(w1),

λ2 = e−w
1
∫ ew1

∗
ψ1(ln(τ2)) dτ + e−w

1
ψ2(w2),

λ3 = ψ3(w3).
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Example: rich orthogonal frame (cylindrical coordinates)

R1 = [u1, u2, 0]T , R2 = [−u2, u1, 0]T , R3 = [0, 0, 1]T .

Riemann coordinates: (in the first octant):

w1 = 1
2 ln
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u1
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1
∫ ew1

∗
ψ1(ln(τ2)) dτ + e−w

1
ψ2(w2),

λ3 = ψ3(w3).
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Necessary condition for strict hyperbolicity

For R = {r1, . . . , rm}, the exists strictly hyperbolic flux f ∈ F(R) only if for
each pair of indices i 6= j ∈ {1, . . . ,m} the following equivalence holds:

∇rirj ∈ spanC∞(Ω′){ri, rj} ⇐⇒ [ri, rj] ∈ spanC∞(Ω′){ri, rj} (6)
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Coordinate-free definition of the Jacobian map:

Definition: The Jacobian of a vector field f on open Ω ⊂ Rn, relative to a flat,
symmetric connection on Ω connection ∇ is a map

Jf : X (Ω)→ X (Ω) defined byJf(r) = ∇rf

If f = F1 ∂
∂u1 +· · ·+Fn ∂

∂un and r = R1 ∂
∂u1 +· · ·+Rn ∂

∂un , where u1, . . . , un

are affine coordinates
(
∇ ∂
∂ui

∂
∂uj

= 0

)
then

Jf(r) = [DuF ]R,

where F = [F1, . . . , Fn]T and R = [R1, . . . , R
n]T .

Definition: f is called hyperbolic on Ω if eigenvector-fields of Jf form a frame
on Ω. (This implies that all eignefunctions of Jf are real)

f is called strictly hyperbolic if, in addition, at every point of Ω all n
eignefunctions of Jf have distinct values.
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Jacobian problem:
Given a partial frame R = {r1, . . . , rm} on open Ω ⊂ Rn (n ≥ m), and a
fixed point ū ∈ Ω, describe the set of smooth vector fields

F(R) = {f ∈ X (Ω′) | ū ∈ Ω′ ⊂ Ω}
s. t. there ∃ smooth functions λi : Ω′ → R for which

Jf(ri) := ∇ri f = λi ri, for i = 1, . . . ,m,

where ∇ is a flat, symmetric connection on Ω.

Elements of F(R) will be called fluxes.

• F(R) is, possibly∞-dimensional, R-vector space.

• scaling invariance: if R̃ = {φ1 r1, . . . , φ
m rm}, where φi : Ω → R are

nowhere zero, then F(R) = F(R̃).

• ∀R, the set F(R) contains a trivial fluxes:

(a u1 + b1)
∂

∂u1
+ · · ·+ (a un + bn)

∂

∂un
, for all a, b1, . . . , bn ∈ R.
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Explicit form of integrability conditions (5). For i = 1, . . . , p; j, k = 1, . . . ,m

rj
(
rk(φi)

)
− rk

(
rj(φ

i)
)

=
m∑
l=1

cljkrl(φ
i),

The 1st substitution of the derivatives of φ’s prescribed by (4) into (5):

rj
(
hik(u, φ(u)

)
− rk

(
hij(u, φ(u)

)
=

m∑
l=1

cljk h
i
l (u, φ(u))

The chain rule and the 2nd substitution for the derivatives of φ’s :

n∑
l=1

∂hik (u, φ)

∂ul
rj(u

l)−
∂hij (u, φ)

∂ul
rk(ul)

+
p∑

s=1

∂hik (u, φ)

∂φs
hsj (u, φ)−

∂hij (u, φ)

∂φs
hsk (u, φ)


=

m∑
l=1

cljk(u)hil (u, φ) . (7)
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Extensions and entropies:

Assume that ∃ functions q : Ω→ R and η : Ω→ R, s.t.
grad q = grad η(Duf) , then multiplication of ut + f(u)x = 0 by grad η

from the left (assuming that u is smooth) leads to a companion conservation
law:

η(u)t + q(u)x = 0

η is called an extension of conservative system.

Proposition: η is an extension iff:

for each pair 1 ≤ i 6= j ≤ n : λj = λi or RTi

(
D2
uη
)
Rj = 0 .

An extension η is called an entropy if D2
uη is positive semidefinite and is called

strict entropy if D2
uη is positive definite.
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Admissibility criterion:

A weak solution of ut + f(u)x = 0 is admissible if it is a limit of smooth
solutions

uεt + f(uε)x = εuεxx , as ε ↓ 0.

If η is an entropy with flux q, then:

η(uε)t + q(uε)x ≤ εη(uε)xx (ε > 0)

A weak solution of ut + f(u)x = 0 is admissible if it satisfies the entropy
inequality

η(u)t + q(u)x ≤ 0 (distributional sense)
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