Lubbock, TX, February 18, 2017
Jacobians with prescribed eignvectors.

Irina Kogan
North Carolina State University
joint work with
Michael Benfield, NC Sate/ San Diego State
and
Kris Jenssen, Penn State

Acknowledgement: This project was supported, in part, by NSF grant DMS-1311743 (PI: Kogan) and NSF grant DMS-1311353 (PI: Jenssen),

Jacobian problem:

Given: $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$, with a fixed coordinate system $u=\left(u^{1}, \ldots, u^{n}\right)$, a point $\bar{u} \in \Omega$ and vector fields

$$
\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n
$$

independent at \bar{u}.

Jacobian problem:

Given: $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$, with a fixed coordinate system $u=\left(u^{1}, \ldots, u^{n}\right)$, a point $\bar{u} \in \Omega$ and vector fields

$$
\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n
$$

independent at \bar{u}.

Find: all maps $f=\left[f^{1}, \ldots, f^{n}\right]^{T}: \Omega^{\prime} \rightarrow \mathbb{R}^{n}$ from some open nbhd. Ω^{\prime} of \bar{u}, such that \mathcal{R} is a (partial) set of eigenvector-fields of the Jacobian matrix

$$
\left[D_{u} f\right]=\left[\begin{array}{c}
\operatorname{grad}\left(f^{1}\right) \\
\vdots \\
\operatorname{grad}\left(f^{n}\right)
\end{array}\right]
$$

Jacobian problem:

Given: $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$, with a fixed coordinate system $u=\left(u^{1}, \ldots, u^{n}\right)$, a point $\bar{u} \in \Omega$ and vector fields

$$
\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n
$$

independent at \bar{u}.

Find: all maps $f=\left[f^{1}, \ldots, f^{n}\right]^{T}: \Omega^{\prime} \rightarrow \mathbb{R}^{n}$ from some open nbhd. Ω^{\prime} of \bar{u}, such that \mathcal{R} is a (partial) set of eigenvector-fields of the Jacobian matrix

$$
\left[D_{u} f\right]=\left[\begin{array}{c}
\operatorname{grad}\left(f^{1}\right) \\
\vdots \\
\operatorname{grad}\left(f^{n}\right)
\end{array}\right]
$$

I.e. \exists smooth functions $\lambda^{i}: \Omega^{\prime} \rightarrow \mathbb{R}$, s. t. for $i=1, \ldots, m$ and $\forall u \in \Omega^{\prime}$

$$
\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u) . \quad \mathcal{F}(\mathcal{R}) \text {-system }
$$

$\mathcal{F}(\mathcal{R})$-system:

$$
\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m
$$

$\mathcal{F}(\mathcal{R})$-system: $\quad\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m$.

- $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n$, is called a partial (local) frame.
$\mathcal{F}(\mathcal{R})$-system:

$$
\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m
$$

- $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n$, is called a partial (local) frame.
- f is called a flux.
$\mathcal{F}(\mathcal{R})$-system: $\quad\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m$.
- $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n$, is called a partial (local) frame.
- f is called a flux.
- f is called hyperbolic if the Jacobian matrix $\left[D_{u} f\right]$ is diagonalizable over \mathbb{R} at \bar{u}, otherwise f is called non-hyperbolic.
$\mathcal{F}(\mathcal{R})$-system: $\quad\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m$.
- $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n$, is called a partial (local) frame.
- f is called a flux.
- f is called hyperbolic if the Jacobian matrix $\left[D_{u} f\right.$] is diagonalizable over \mathbb{R} at \bar{u}, otherwise f is called non-hyperbolic.
- f is called strictly hyperbolic if the eigenvalues $\lambda^{1}(u), \ldots, \lambda^{n}(u)$ of [$D_{u} f$] are real and distinct for at \bar{u}.
$\mathcal{F}(\mathcal{R})$-system: $\quad\left[D_{u} f\right] \mathbf{r}_{i}(u)=\lambda^{i}(u) \mathbf{r}_{i}(u), \quad i=1, \ldots, m$.
- $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n$, is called a partial (local) frame.
- f is called a flux.
- f is called hyperbolic if the Jacobian matrix $\left[D_{u} f\right.$] is diagonalizable over \mathbb{R} at \bar{u}, otherwise f is called non-hyperbolic.
- f is called strictly hyperbolic if the eigenvalues $\lambda^{1}(u), \ldots, \lambda^{n}(u)$ of [$D_{u} f$] are real and distinct for at \bar{u}.
- $\mathcal{F}(\mathcal{R})$ denotes the set of all fluxes corresponding to a partial frame \mathcal{R}.

Motivation for the Jacobian problem

- By solving the Jacobian problem, we can construct and study the set of systems conservations laws $u_{t}+f(u)_{x}=0$ with prescribed rarefaction curves and analyze how the geometry of these curves determines behavior of the solutions of conservation laws.
- It is an interesting geometric problem on its own.
- It leads to interesting overdetermined systems of PDE's.

What do we mean by "finding all fluxes"?

What do we mean by "finding all fluxes"?

- Setting up a system of PDE's for f and then solving it by hand or by computer software?

What do we mean by "finding all fluxes"?

- Setting up a system of PDE's for f and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?

What do we mean by "finding all fluxes"?

- Setting up a system of PDE's for f and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame \mathcal{R} and the size of $\mathcal{F}(\mathcal{R})$?

What do we mean by "finding all fluxes"?

- Setting up a system of PDE's for f and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame \mathcal{R} and the size of $\mathcal{F}(\mathcal{R})$?
- What types of fluxes $\mathcal{F}(\mathcal{R})$ contains? Hyperbolic? Strictly hyperbolic? Non-hyperbolic?

What do we mean by "finding all fluxes"?

- Setting up a system of PDE's for f and then solving it by hand or by computer software?
- What if this fails? Even when we get some solutions, did we find them all?
- Is there any relation between a geometry the partial frame \mathcal{R} and the size of $\mathcal{F}(\mathcal{R})$?
- What types of fluxes $\mathcal{F}(\mathcal{R})$ contains? Hyperbolic? Strictly hyperbolic? Non-hyperbolic?

Goals:

- to determine how the "size" of $\mathcal{F}(\mathcal{R})$ (in terms of the number of arbitrary functions and constants) depends on the geometric properties of \mathcal{R}.
- to determine whether or not $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.
- overdetermined for all $n \geq m$, such that $n>2$ and $m \geq 2$.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.
- overdetermined for all $n \geq m$, such that $n>2$ and $m \geq 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R}.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.
- overdetermined for all $n \geq m$, such that $n>2$ and $m \geq 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R}.
- for all \mathcal{R}, the set $\mathcal{F}(\mathcal{R})$ contains ($\mathrm{n}+1$)-dimensional subspace $\mathcal{F}^{\text {triv }}$ of trivial fluxes:

$$
f(u)=\bar{\lambda}\left[\begin{array}{c}
u^{1} \\
\vdots \\
u^{n}
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], \quad \bar{\lambda}, a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.
- overdetermined for all $n \geq m$, such that $n>2$ and $m \geq 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R}.
- for all \mathcal{R}, the set $\mathcal{F}(\mathcal{R})$ contains ($\mathrm{n}+1$)-dimensional subspace $\mathcal{F}^{\text {triv }}$ of trivial fluxes:

$$
f(u)=\bar{\lambda}\left[\begin{array}{c}
u^{1} \\
\vdots \\
u^{n}
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], \quad \bar{\lambda}, a_{1}, \ldots, a_{n} \in \mathbb{R}
$$

because $\left[D_{u} f\right]=\bar{\lambda} I$.

Observations about $\mathcal{F}(\mathcal{R})$-system: $\left[D_{u} f\right] \mathbf{r}_{i}=\lambda^{i} \mathbf{r}_{i}$.

- $m n$ first order PDEs on $m+n$ unknown functions:
$\lambda^{i}, \quad i=1, \ldots, m$ and n components of f.
- overdetermined for all $n \geq m$, such that $n>2$ and $m \geq 2$.
- $\mathcal{F}(\mathcal{R})$ is (possibly infinite dimensional) vector space over \mathbb{R}.
- for all \mathcal{R}, the set $\mathcal{F}(\mathcal{R})$ contains ($\mathrm{n}+1$)-dimensional subspace $\mathcal{F}^{\text {triv }}$ of trivial fluxes:

$$
f(u)=\bar{\lambda}\left[\begin{array}{c}
u^{1} \\
\vdots \\
u^{n}
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right], \quad \bar{\lambda}, a_{1}, \ldots, a_{n} \in \mathbb{R},
$$

because $\left[D_{u} f\right]=\bar{\lambda} I$.

- scaling invariance: $\mathcal{F}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right)=\mathcal{F}\left(\alpha^{1} \mathbf{r}_{1}, \ldots, \alpha^{m} \mathbf{r}_{m}\right)$ for any nowhere zero smooth functions α^{i} on Ω.

Examples of full frames on $\mathbb{R}^{3}(m=n=3$, coordinates $(u, v, w))$
(1) $\bullet \mathbf{r}_{1}=\left[\begin{array}{l}0 \\ 1 \\ u\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{l}w \\ 0 \\ 1\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{c}u \\ 0 \\ -w\end{array}\right]$
(integral curves: lines, parabolas, circles)

Examples of full frames on $\mathbb{R}^{3}(m=n=3$, coordinates $(u, v, w))$
(1) $\bullet \mathbf{r}_{1}=\left[\begin{array}{l}0 \\ 1 \\ u\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{l}w \\ 0 \\ 1\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{c}u \\ 0 \\ -w\end{array}\right]$
(integral curves: lines, parabolas, circles)

$$
f(u)=\bar{\lambda}\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]+\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], \quad \bar{\lambda}, a_{1}, a_{2}, a_{3} \in \mathbb{R}
$$

- only trivial fluxes: $\mathcal{F}(\mathcal{R})=\mathcal{F}^{\text {triv }}$.
(2) • $\mathbf{r}_{1}=\left[\begin{array}{l}v \\ u \\ 1\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-v \\ u \\ 0\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on Ω, where $u v \neq 0$.
("hyperbolic spiral":

$$
u=\bar{u} \cosh t+\bar{v} \sinh t, v=\bar{u} \sinh t+\bar{v} \cosh t, w=\bar{w}+t
$$

circles, lines)
(2) $\quad \mathbf{r}_{1}=\left[\begin{array}{l}v \\ u \\ 1\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-v \\ u \\ 0\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on Ω, where $u v \neq 0$.
("hyperbolic spiral":

$$
u=\bar{u} \cosh t+\bar{v} \sinh t, v=\bar{u} \sinh t+\bar{v} \cosh t, w=\bar{w}+t
$$

circles, lines)

- $\mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ is a 1-dimensional space

$$
f=c\left[v^{3}, u^{3}, \frac{3}{4}\left(u^{2}+v^{2}\right)\right]^{T}+\text { a trivial flux }, \quad c \in \mathbb{R}
$$

(2) $\bullet \mathbf{r}_{1}=\left[\begin{array}{l}v \\ u \\ 1\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-v \\ u \\ 0\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on Ω, where $u v \neq 0$.
("hyperbolic spiral":

$$
u=\bar{u} \cosh t+\bar{v} \sinh t, v=\bar{u} \sinh t+\bar{v} \cosh t, w=\bar{w}+t
$$

circles, lines)

- $\mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ is a 1-dimensional space

$$
\begin{gathered}
f=c\left[v^{3}, u^{3}, \frac{3}{4}\left(u^{2}+v^{2}\right)\right]^{T}+\text { a trivial flux, } \quad c \in \mathbb{R} \\
\lambda^{1}=3 c u v+\bar{\lambda}, \quad \lambda^{2}=-3 c u v+\bar{\lambda}, \quad \lambda^{3}=\bar{\lambda}
\end{gathered}
$$

(2) $\bullet \mathbf{r}_{1}=\left[\begin{array}{l}v \\ u \\ 1\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-v \\ u \\ 0\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ on Ω, where $u v \neq 0$.
("hyperbolic spiral":

$$
u=\bar{u} \cosh t+\bar{v} \sinh t, v=\bar{u} \sinh t+\bar{v} \cosh t, w=\bar{w}+t
$$

circles, lines)

- $\mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ is a 1-dimensional space

$$
\begin{gathered}
f=c\left[v^{3}, u^{3}, \frac{3}{4}\left(u^{2}+v^{2}\right)\right]^{T}+\text { a trivial flux }, \quad c \in \mathbb{R} \\
\lambda^{1}=3 c u v+\bar{\lambda}, \quad \lambda^{2}=-3 c u v+\bar{\lambda}, \quad \lambda^{3}=\bar{\lambda} .
\end{gathered}
$$

- There are strictly hyperbolic fluxes in a neighborhood of $(\bar{u}, \bar{v}, \bar{w}) \in \Omega$.
(3) (the coordinate frame)

$$
\mathbf{r}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(3) (the coordinate frame)

$$
\mathbf{r}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
f=\left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i}: \mathbb{R} \rightarrow \mathbb{R} \text { arbitrary }
$$

$\mathcal{F}(\mathcal{R})$ is a ∞-dimensional space
(3) (the coordinate frame)

$$
\mathbf{r}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
f=\left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i}: \mathbb{R} \rightarrow \mathbb{R} \text { arbitrary }
$$

$\mathcal{F}(\mathcal{R})$ is a ∞-dimensional space

$$
\lambda^{1}=\left(\phi^{1}\right)^{\prime}(u), \quad \lambda^{2}=\left(\phi^{2}\right)^{\prime}(v), \quad \lambda^{3}=\left(\phi^{3}\right)^{\prime}(w) .
$$

All fluxes are hyperbolic, and almost all are strictly hyperbolic.

What if we prescribe an incomplete eigenframe?

(1) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}, \mathbf{r}_{3}=[u, 0,-w]^{T}$ only trivial fluxes.
(1a) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}$

What if we prescribe an incomplete eigenframe?

(1) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}, \mathbf{r}_{3}=[u, 0,-w]^{T}$ only trivial fluxes.
(1a) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}$
again only trivial fluxes!

What if we prescribe an incomplete eigenframe?

(1) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}, \mathbf{r}_{3}=[u, 0,-w]^{T}$ only trivial fluxes.
(1a) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}$
again only trivial fluxes!
(1b) $\mathrm{r}_{1}=[0,1, u]^{T}$,

$$
\mathbf{r}_{3}=[u, 0,-w]^{T}
$$

$\mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ is 2-dimensional:

$$
\begin{gathered}
f=c_{1}\left[\begin{array}{c}
\ln (u) \\
0 \\
\frac{1}{2}\left(\frac{w}{u}-v\right)
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{1}{3} u^{3} \\
u w \\
w u^{2}
\end{array}\right]+\text { trivial fluxes } \\
\lambda^{1}=c_{2} u^{2}+\bar{\lambda}, \quad \lambda^{3}=c_{1} \frac{1}{u}-c_{2} u^{2}+\bar{\lambda}
\end{gathered}
$$

What if we prescribe an incomplete eigenframe?

(1) $\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T}, \mathbf{r}_{3}=[u, 0,-w]^{T}$ only trivial fluxes.

$$
\begin{equation*}
\mathbf{r}_{1}=[0,1, u]^{T}, \mathbf{r}_{2}=[w, 0,1]^{T} \tag{1a}
\end{equation*}
$$

again only trivial fluxes!

$$
\begin{equation*}
\mathbf{r}_{3}=[u, 0,-w]^{T} . \tag{1b}
\end{equation*}
$$

$\mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ is 2-dimensional:

$$
\begin{gathered}
f=c_{1}\left[\begin{array}{c}
\ln (u) \\
0 \\
\frac{1}{2}\left(\frac{w}{u}-v\right)
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\frac{1}{3} u^{3} \\
u w \\
w u^{2}
\end{array}\right]+\text { trivial fluxes } \\
\lambda^{1}=c_{2} u^{2}+\bar{\lambda}, \quad \lambda^{3}=c_{1} \frac{1}{u}-c_{2} u^{2}+\bar{\lambda}
\end{gathered}
$$

(1c)

$$
\mathbf{r}_{2}=[w, 0,1]^{T}, \mathbf{r}_{3}=[u, 0,-w]^{T}
$$

$\mathcal{F}(\mathcal{R})$ is ∞-dimensional !

What about the coordinate frame example?

(3) $\mathbf{r}_{1}=[1,0,0]^{T}, \quad \mathbf{r}_{2}=[0,1,0]^{T}, \quad \mathbf{r}_{3}=[0,0,1]^{T}$

$$
\begin{aligned}
& f=\left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i}: \mathbb{R} \rightarrow \mathbb{R} \text { arbitrary } \\
& \lambda^{1}=\left(\phi^{1}\right)^{\prime}(u), \quad \lambda^{2}=\left(\phi^{2}\right)^{\prime}(v), \quad \lambda^{3}=\left(\phi^{3}\right)^{\prime}(w)
\end{aligned}
$$

What about the coordinate frame example?

(3) $\mathbf{r}_{1}=[1,0,0]^{T}, \quad \mathbf{r}_{2}=[0,1,0]^{T}, \quad \mathbf{r}_{3}=[0,0,1]^{T}$

$$
\begin{aligned}
& f=\left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i}: \mathbb{R} \rightarrow \mathbb{R} \text { arbitrary } \\
& \lambda^{1}=\left(\phi^{1}\right)^{\prime}(u), \quad \lambda^{2}=\left(\phi^{2}\right)^{\prime}(v), \quad \lambda^{3}=\left(\phi^{3}\right)^{\prime}(w)
\end{aligned}
$$

(3a) $\mathbf{r}_{1}=[1,0,0]^{T}, \quad \mathbf{r}_{2}=[0,1,0]^{T}$.

$$
\begin{gathered}
f=\left[\phi^{1}(u, w), \phi^{2}(v, w), \phi^{3}(w)\right]^{T}, \quad \phi^{1}, \phi^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R} ; \quad \phi^{3}: \mathbb{R} \rightarrow \mathbb{R} \\
\lambda^{1}=\frac{\partial \phi^{1}}{\partial u}, \quad \lambda^{2}=\frac{\partial \phi^{2}}{\partial v} .
\end{gathered}
$$

What about the coordinate frame example?

(3) $\mathbf{r}_{1}=[1,0,0]^{T}, \quad \mathbf{r}_{2}=[0,1,0]^{T}, \quad \mathbf{r}_{3}=[0,0,1]^{T}$

$$
\begin{aligned}
& f=\left[\phi^{1}(u), \phi^{2}(v), \phi^{3}(w)\right]^{T}, \quad \phi^{i}: \mathbb{R} \rightarrow \mathbb{R} \text { arbitrary } \\
& \lambda^{1}=\left(\phi^{1}\right)^{\prime}(u), \quad \lambda^{2}=\left(\phi^{2}\right)^{\prime}(v), \quad \lambda^{3}=\left(\phi^{3}\right)^{\prime}(w)
\end{aligned}
$$

(3a) $\mathrm{r}_{1}=[1,0,0]^{T}, \quad \mathrm{r}_{2}=[0,1,0]^{T}$.

$$
\begin{gathered}
f=\left[\phi^{1}(u, w), \phi^{2}(v, w), \phi^{3}(w)\right]^{T}, \quad \phi^{1}, \phi^{2}: \mathbb{R}^{2} \rightarrow \mathbb{R} ; \quad \phi^{3}: \mathbb{R} \rightarrow \mathbb{R} \\
\lambda^{1}=\frac{\partial \phi^{1}}{\partial u}, \quad \lambda^{2}=\frac{\partial \phi^{2}}{\partial v} .
\end{gathered}
$$

(3b) \square

$$
f=\left[\phi^{1}(u, v, w), \phi^{2}(v, w), \phi^{3}(v, w)\right]^{T}, \quad \phi^{1}: \mathbb{R}^{3} \rightarrow \mathbb{R} ; \quad \phi^{2}, \phi^{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

$$
\lambda^{1}=\frac{\partial \phi^{1}}{\partial u} .
$$

Coordinate dependence of the problem formulation.

Coordinate dependence of the problem formulation.

- Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$, i.e: there exist $\lambda^{1}(u), \ldots, \lambda^{m}(u)$, such that

$$
\left[D_{u} f\right]=\lambda^{i}(u) \mathbf{r}_{i} .
$$

Coordinate dependence of the problem formulation.

- Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$, i.e: there exist $\lambda^{1}(u), \ldots, \lambda^{m}(u)$, such that

$$
\left[D_{u} f\right]=\lambda^{i}(u) \mathbf{r}_{i} .
$$

- Let a change of variables be described by a local diffeomorphism

$$
u=\Phi(w)
$$

Coordinate dependence of the problem formulation.

- Assume $f(u) \in \mathcal{F}(\mathcal{R})$ for $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$, i.e: there exist $\lambda^{1}(u), \ldots, \lambda^{m}(u)$, such that

$$
\left[D_{u} f\right]=\lambda^{i}(u) \mathbf{r}_{i} .
$$

- Let a change of variables be described by a local diffeomorphism

$$
u=\Phi(w)
$$

- It is not true that $f(\Phi(w))$ belongs to $\mathcal{F}\left(\Phi^{*} \mathcal{R}\right)$, where $\Phi^{*} \mathcal{R}=$ $\left\{\Phi^{*} \mathbf{r}_{1}, \ldots, \Phi^{*} \mathbf{r}_{m}\right\}$, i.e, in general there may not exists functions $\kappa^{1}(w), \ldots, \kappa^{m}(w)$, such that

$$
\left[D_{w} f(\Phi(w))\right]=\kappa^{i}(u) \Phi^{*} \mathbf{r}_{i} .
$$

Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

$$
\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n
$$

on $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$, with a fixed flat, symmetrid $]^{\text {ºn }}$ connection ∇, and a point $\bar{u} \in \Omega$
*Coordinate-free formulation makes sense for non-flat connections, but is not considered here.

Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

$$
\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}, \quad 1 \leq m \leq n
$$

on $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$, with a fixed flat, symmetrid $]^{\text {n }}$ connection ∇, and a point $\bar{u} \in \Omega$

Find: all local smooth vector fields f ("fluxes"), defined on some nbhd Ω^{\prime} of \bar{u}, for which there exist smooth functions $\lambda^{i}: \Omega^{\prime} \rightarrow \mathbb{R}$, such that

$$
\nabla_{\mathbf{r}_{i}} \mathbf{f}=\lambda^{i} \mathbf{r}_{i}, \quad \text { for } i=1, \ldots, m . \quad \text { "new" } \mathcal{F}(\mathcal{R}) \text {-system }
$$

Observations:

$\nabla_{\mathbf{r}_{i}} \mathrm{f}=\lambda^{i} \mathbf{r}_{i}, \quad$ for $i=1, \ldots, m . \quad$ "new" $\mathcal{F}(\mathcal{R})$-system

- Written out in an affine system of coordinates: $\left(\nabla_{\frac{\partial}{\partial u^{i}}} \frac{\partial}{\partial u^{j}}=0, \quad \forall i, j\right)$ the "new" $\mathcal{F}(\mathcal{R})$-system is the same as the "old" one.
- Integrability conditions for $\mathcal{F}(\mathcal{R})$-system correspond to the flatness conditions

$$
\nabla_{\mathbf{r}_{i}} \nabla_{\mathbf{r}_{j}} \mathbf{f}-\nabla_{\mathbf{r}_{j}} \nabla_{\mathbf{r}_{i}} \mathbf{f}=\nabla_{\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right]} \mathrm{f}
$$

Goals :

- to determine the "size" of $\mathcal{F}(\mathcal{R})$.
- to determine whether or not $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes.

Methods :

- for the size: C^{1} Frobenius and Darboux theorems (and their generalizations), and as the last resort analytic Cartan-Kähler theorem.
- for strict hyperbolicity: a careful examination of integrability conditions.

Involutivity and richness

Definitions: A partial frame $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$ is:

- in involution if $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C \infty}(\Omega) \mathcal{R}$ for all $1 \leq i, j \leq m$.
- rich if $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}(\Omega)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}$ (pairwise in involution).

Summary of the results:

- Results for all n and all $m \leq n$:

Summary of the results:

- Results for all n and all $m \leq n$:
- Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.
$\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}$ if and only if $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}$

Summary of the results:

- Results for all n and all $m \leq n$:
- Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

$$
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \text { if and only if }\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)

Summary of the results:

- Results for all n and all $m \leq n$:
- Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

$$
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \text { if and only if }\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)
- Low dimensional results:

Summary of the results:

- Results for all n and all $m \leq n$:
- Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

$$
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \text { if and only if }\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)
- Low dimensional results:
- $n=1$ or $n=2$ or $m=1$ fall under rich category.

Summary of the results:

- Results for all n and all $m \leq n$:
- Necessary conditions for $\mathcal{F}(\mathcal{R})$ to contain strict. hyp. fluxes.

$$
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \text { if and only if }\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

- For rich partial frames: we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)
- Low dimensional results:
- $n=1$ or $n=2$ or $m=1$ fall under rich category.
- non rich, but in involution:
* $n=3$ non-rich full frame ($m=3$) completely analyzed in:
K. Jenssen and I.K. (2010)

1. necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes
2. under these conditions: $\operatorname{dim} \mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}=1$ (unique flux up to scaling)

* for $m=3, n>3$ we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)
* for $m=3, n>3$ we have necessary and sufficient conditions for $\mathcal{F}(\mathcal{R})$ to contain strictly hyperbolic fluxes and for those we know the size of $\mathcal{F}(\mathcal{R})(\infty$-dim.)
- not in involution: for $m=2, n=3$ we have:

1. (necessary conditions for strict hyperbolicity) $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if:
$\nabla_{\mathbf{r}_{1}} \mathbf{r}_{2} \notin \operatorname{span}_{C \infty}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\}$ and $\nabla_{\mathbf{r}_{2}} \mathbf{r}_{1} \notin \operatorname{span}_{C^{\infty}}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\} \quad(* * * *)$
2. Under $(* * * *), \mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ contains only strictly hyperbolic and possibly a 1 -dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes with repeated eigenfunctions).
3. (size) Under (${ }^{* * * *) ~ a n d ~}$

$$
\Gamma_{22}^{3}(\bar{u}) \Gamma_{11}^{3}(\bar{u})-9 \Gamma_{12}^{3}(\bar{u}) \Gamma_{21}^{3}(\bar{u}) \neq 0
$$

$4 \leq \operatorname{dim}(\mathcal{F}(\mathcal{R})) \leq 8$
$4, \ldots, 8)$. (we have examples in all dimensions
4. If $\operatorname{dim} \mathcal{F}(\mathcal{R})>5$, then $\mathcal{F}(\mathcal{R})$ must contain strictly hyperbolic fluxes.

We don't have a sufficient condition for $\mathcal{F}(\mathcal{R})$ to contain non-trivial fluxes,
unless 1) \mathcal{R} is rich or 2) \mathcal{R} is in involution with $m=3$.

We don't have a sufficient condition for $\mathcal{F}(\mathcal{R})$ to contain non-trivial fluxes,
unless 1) \mathcal{R} is rich or 2) \mathcal{R} is in involution with $m=3$.

Remark: For all $n \geq m$, such that $n>2$ and $m \geq 2$, almost all frames admit only trivial fluxes!

Jacobian problem for rich partial frames $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$: Recall:

- rich means that $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}(\Omega)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} 1 \leq i, j \leq m$.
- $\mathcal{F}(\mathcal{R})$ consists of f 's, for which $\exists \lambda^{i}: \Omega \rightarrow \mathbb{R}$ such that

$$
\nabla_{\mathbf{r}_{i}} \mathbf{f}=\lambda^{i} \mathbf{r}_{i}, \quad \text { for } i=1, \ldots, m
$$

Theorem:

1. (necessary and sufficient conditions for strict hyperbolicity) If \mathcal{R} is rich then $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes iff

$$
\begin{equation*}
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C}^{\infty(\Omega)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \text { for all } 1 \leq i, j \leq m \tag{*}
\end{equation*}
$$

2. (size) Under (*), $\mathcal{F}(\mathcal{R})$ depends on: m arbitrary functions of $n-m+1$
(the degree of freedom of prescribing λ 's)
and
n functions of $n-m$ variables
(the degree of freedom for prescribing f for the chosen λ 's)

Jacobian problem for involutive partial frames

 $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$:
Recall:

- involutive means that $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}(\Omega)} \mathcal{R}$ for $1 \leq i, j \leq m$.
- $\mathcal{F}(\mathcal{R})$ consists of f^{\prime} s, for which $\exists \lambda^{i}: \Omega \rightarrow \mathbb{R}$ such that

$$
\nabla_{\mathbf{r}_{i}} \mathbf{f}=\lambda^{i} \mathbf{r}_{i}, \quad \text { for } i=1, \ldots, m
$$

Theorem:

1. (necessary conditions for strict hyperbolicity for arbitrary m)

If \mathcal{R} is involutive then $\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if for all $1 \leq i \neq j \leq m$

$$
\left.\begin{array}{l}
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}(\Omega)}^{\mathcal{R}} \\
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C}^{\infty}(\Omega)
\end{array} \mathbf{r}_{i}, \mathbf{r}_{j}\right\} \Longleftrightarrow\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}(\Omega)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

2. for $m=3$ in non-rich case (**) can be completed to necessary and sufficient conditions (${ }^{* * *)}$. Under (${ }^{* * *)}$, $\mathcal{F}(\mathcal{R})$ depends on $n+2$ arbitrary functions of $n-3$ variables.

Jacobian problem for non-involutive partial frames

 simplest case: $\mathcal{R}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\}$ in \mathbb{R}^{3}.
Recall:

- non-involutive means that $\left[\mathrm{r}_{1}, \mathrm{r}_{2}\right] \notin \operatorname{span}_{C^{\infty}}\left\{\mathbf{r}_{1}, \mathrm{r}_{2}\right\}$.
- $\mathcal{F}(\mathcal{R})$ consists of f 's, for which $\exists \lambda^{1}, \lambda^{2}: \Omega \rightarrow \mathbb{R}$ such that

$$
\nabla_{\mathbf{r}_{1}} \mathbf{f}=\lambda^{1} \mathbf{r}_{1} \quad \text { and } \quad \nabla_{\mathbf{r}_{2}} \mathbf{f}=\lambda^{2} \mathbf{r}_{2}
$$

Theorem:

1. (necessary conditions for strict hyperbolicity)
$\mathcal{F}(\mathcal{R})$ contains strictly hyperbolic fluxes only if:

$$
\nabla_{\mathbf{r}_{1}} \mathbf{r}_{2} \notin \operatorname{span}_{C \infty}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\} \text { and } \nabla_{\mathbf{r}_{2}} \mathbf{r}_{1} \notin \operatorname{span}_{C \infty}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\} \quad(* * * *)
$$

2. Under $\left({ }^{(* * *)}\right), \mathcal{F}(\mathcal{R}) / \mathcal{F}^{\text {triv }}$ contains only strictly hyperbolic and possibly a 1 dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes with repeated eigenfunctions).
3. (size) Under (${ }^{* * * *) ~ a n d ~}$

$$
\Gamma_{22}^{3}(\bar{u}) \Gamma_{11}^{3}(\bar{u})-9 \Gamma_{12}^{3}(\bar{u}) \Gamma_{21}^{3}(\bar{u}) \neq 0,
$$

$4 \leq \operatorname{dim}(\mathcal{F}(\mathcal{R})) \leq 8$ (we have examples in all dimensions $4, \ldots, 8$).
4. If $\operatorname{dim} \mathcal{F}(\mathcal{R})>5$, then $\mathcal{F}(\mathcal{R})$ must contain strictly hyperbolic fluxes.

Darboux Integrability Theorem [Leçons sur les systèmes

 orthogonaux et les coordonnées curvilignes. (1910)]Consider a system of PDE's on $\left(\phi^{1}, \ldots \phi^{p}\right): \Omega \rightarrow \Theta$:

$$
\begin{equation*}
\frac{\partial \phi^{i}}{\partial u^{j}}=h_{j}^{i}(u, \phi(u)), \quad i=1, \ldots, p ; j \in \alpha(i), \tag{1}
\end{equation*}
$$

where:

1. $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{n}$ (the space of independent variables u 's)
2. $\Theta \underset{\text { open }}{\subset} \mathbb{R}^{p}$ (the space of dependent variables ϕ 's)
3. $\alpha(i) \subset\{1, \ldots, n\}$ for each $i=1, \ldots, p$.
4. $h_{j}^{i}\left(u^{1}, \ldots, u^{n}, \phi^{1}, \ldots, \phi^{p}\right), \quad i=1, \ldots, p, j \in \alpha(i)$ are C^{1} functions on $\Omega \times \Theta \rightarrow \mathbb{R}$, with certain combinatorial restrictions on which ϕ 's each of the h_{j}^{i} may depend so that (2) become algebraic.

If integrability conditions

$$
\begin{equation*}
\frac{\partial}{\partial u^{k}}\left(\frac{\partial}{\partial u^{j}}\left(\phi^{i}\right)\right)-\frac{\partial}{\partial u^{j}}\left(\frac{\partial}{\partial u^{k}}\left(\phi^{i}\right)\right)=0 \text { for all } j, k \in \alpha(i) \tag{2}
\end{equation*}
$$

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_{j}^{i}(u, \phi)$ for $\frac{\partial}{\partial u^{j}}\left(\phi^{i}\right)$ for all $i=1, \ldots, p, j \in \alpha(i)$ as prescribed by system (1)

Then \exists ! smooth local solution of (1) around \bar{u}, for any C^{1} initial data for ϕ^{i} prescribed along submanifold $\equiv_{i}=\left\{u^{j}=\bar{u}^{j}, j \in \alpha_{i}\right\} \subset \mathbb{R}^{n}$ of dimension $n-\left|\alpha_{i}\right|$.

Example of a Darboux system:

- three unknown functions (dependent variables) ϕ, ψ and ξ.
- two independent variables u and v.
- system:

$$
\begin{aligned}
\phi_{u} & =F(u, v, \phi, \psi, \xi) \\
\psi_{v} & =G(u, v, \phi, \psi, \xi) \\
\xi_{u} & =f(u, v, \psi, \xi) \quad(\text { no } \phi) \\
\xi_{v} & =g(u, v, \phi, \xi) \quad(\text { no } \psi)
\end{aligned}
$$

- the integrability condition:

$$
f_{v}+f_{\psi} G+f_{\xi} g=g_{u}+g_{\phi} F+g_{\xi} f .
$$

- initial data near (\bar{u}, \bar{v}) :

$$
\begin{aligned}
\phi(\bar{u}, v) & =a(v) \\
\psi(u, \bar{v}) & =b(u) \\
\xi(\bar{u}, \bar{v}) & =c \quad \text { a constant. }
\end{aligned}
$$

- here $F, G f, g, a$ and b are given C^{1} functions of their arguments.

Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{n}}\right\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$
\begin{equation*}
\mathbf{r}_{k}\left(\mathbf{r}_{j}\left(\phi^{i}\right)\right)-\mathbf{r}_{j}\left(\mathbf{r}_{k}\left(\phi^{i}\right)\right)=\sum_{l=1}^{n} c_{k j}^{l} \mathbf{r}_{k}\left(\phi^{i}\right) \tag{3}
\end{equation*}
$$

Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{n}}\right\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$
\begin{equation*}
\mathbf{r}_{k}\left(\mathbf{r}_{j}\left(\phi^{i}\right)\right)-\mathbf{r}_{j}\left(\mathbf{r}_{k}\left(\phi^{i}\right)\right)=\sum_{l=1}^{n} c_{k j}^{l} \mathbf{r}_{k}\left(\phi^{i}\right) \tag{3}
\end{equation*}
$$

If (3) are satisfied then there is a unique solution with any initial data

$$
\phi^{i}(\bar{u})=c_{i} .
$$

Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown function is differentiated with respect to all variables.

Alternatively, given a full frame $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{n}}\right\}$, we can prescribe derivatives with respect to each of the frame directions. The integrability conditions then become:

$$
\begin{equation*}
\mathbf{r}_{k}\left(\mathbf{r}_{j}\left(\phi^{i}\right)\right)-\mathbf{r}_{j}\left(\mathbf{r}_{k}\left(\phi^{i}\right)\right)=\sum_{l=1}^{n} c_{k j}^{l} \mathbf{r}_{k}\left(\phi^{i}\right) \tag{3}
\end{equation*}
$$

If (3) are satisfied then there is a unique solution with any initial data

$$
\phi^{i}(\bar{u})=c_{i} .
$$

There are equivalent diff. form version and vector field formulation versions about foliating \mathbb{R}^{n+p} by n-dimensional integrable manifolds.

Generalized Frobenius, PDE version [M. Benfield (2016)]:
Consider a system of PDE's on $\left(\phi^{1}, \ldots \phi^{p}\right): \Omega \rightarrow \Theta$:

$$
\begin{equation*}
\mathbf{r}_{j}\left(\phi^{i}(u)\right)=h_{j}^{i}(u, \phi(u)), \quad i=1, \ldots, p ; j=1, \ldots, m \tag{4}
\end{equation*}
$$

where:

1. $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{m}}\right\}$ - a partial frame in involution on $\Omega \underset{\text { open }}{\subset} \mathbb{R}^{\mathrm{n}}$.
2. $\Theta \underset{\text { open }}{\subset} \mathbb{R}^{p}$ is the space of dependent variables ϕ 's.
3. $h_{j}^{i}(u, \phi), \quad i=1, \ldots, p, j=1, \ldots, m$ smooth functions on $\Omega \times \Theta \rightarrow \mathbb{R}$.

If integrability conditions

$$
\begin{equation*}
\mathbf{r}_{k}\left(\mathbf{r}_{j}\left(\phi^{i}\right)\right)-\mathbf{r}_{j}\left(\mathbf{r}_{k}\left(\phi^{i}\right)\right)=\sum_{l=1}^{m} c_{j k}^{l} \mathbf{r}_{l}(\phi) \quad i=1, \ldots, p ; j, k=1, \ldots, m \tag{5}
\end{equation*}
$$

are identically satisfied on $\Omega \times \Theta$ after substitution of $h_{j}^{i}(u, \phi)$ for $\mathbf{r}_{j}\left(\phi^{i}\right)$ for all $i=1, \ldots, p, j=1, \ldots, m$ as prescribed by system (4).

Then \exists ! smooth local solution of (4), for any smooth initial data prescribed along any embedded submanifold $\equiv \subset \Omega$ of dimension $n-m$ transversal to \mathcal{R}.

Generalized Frobenius vector field version (local)
[Benfield, I. K., Jenssen (2016)]:

Given:

1. $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{m}$ - a partial frame in involution on an open $\mathcal{O} \subset \mathbb{R}^{n+p}$, where $1 \leq m \leq n$ and $p \geq 1$.
2. $\wedge \subset \mathcal{O}$ be an $(n-m)$-dimensional embedded submanifold, such that

$$
\operatorname{span}_{\mathbb{R}}\left\{\left.\mathrm{s}_{1}\right|_{z}, \ldots,\left.\mathrm{~s}_{m}\right|_{z}\right\} \oplus T_{z} \wedge \cong \mathbb{R}^{n} \quad \forall z \in \wedge
$$

Then for $\forall \bar{z} \in \wedge$, there exists a unique local extension of \wedge to an n-dimensional submanifold $\Gamma_{\bar{z}}$ of \mathbb{R}^{n+p}, tangent to $\mathrm{s}_{1}, \ldots, \mathrm{~s}_{m}$

In the classical local Frobenius theorem, $m=n$ and $\wedge=\{\bar{z}\}$.

Motivation: systems of conservation laws

$$
\begin{equation*}
u_{t}+f(u)_{x}=0 . \tag{1a}
\end{equation*}
$$

- n equations on n unknown functions $u(x, t) \in \Omega \subset \mathbb{R}^{n}$.
- one space-variable $x \in \mathbb{R}$; one time-variable: $t \in \mathbb{R}$.
- $f(u): \Omega \rightarrow \mathbb{R}^{n}$ smooth flux.

Motivation: systems of conservation laws

$$
\begin{equation*}
u_{t}+f(u)_{x}=0 . \tag{1a}
\end{equation*}
$$

- n equations on n unknown functions $u(x, t) \in \Omega \subset \mathbb{R}^{n}$.
- one space-variable $x \in \mathbb{R}$; one time-variable: $t \in \mathbb{R}$.
- $f(u): \Omega \rightarrow \mathbb{R}^{n}$ smooth flux.

Equivalently:

$$
\begin{equation*}
u_{t}+\left[D_{u} f\right] u_{x}=0 \tag{1b}
\end{equation*}
$$

Example: The Euler system for 1-dim. compressible flow

- Euler system in thermodynamic variables

$$
\begin{aligned}
V_{t}-U_{x} & =0 \\
U_{t}+p_{x} & =0 \\
S_{t} & =0
\end{aligned}
$$

$V=\frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass,
$p(V, S)>0$ is pressure as a given function, s.t $p_{V}<0$.

Example: The Euler system for 1-dim. compressible flow

- Euler system in thermodynamic variables

$$
\begin{aligned}
V_{t}-U_{x} & =0 \\
U_{t}+p_{x} & =0 \\
S_{t} & =0
\end{aligned}
$$

$V=\frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass,
$p(V, S)>0$ is pressure as a given function, s.t $p_{V}<0$.

- $u_{t}+f(u)_{x}=0$, where $u=[V, U, S]^{T}$ and $f(u)=[-U, p(V, S), 0]^{T}$.

Example: The Euler system for 1-dim. compressible flow

- Euler system in thermodynamic variables

$$
\begin{aligned}
V_{t}-U_{x} & =0 \\
U_{t}+p_{x} & =0 \\
S_{t} & =0
\end{aligned}
$$

$V=\frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass,
$p(V, S)>0$ is pressure as a given function, s.t $p_{V}<0$.

- $u_{t}+f(u)_{x}=0$, where $u=[V, U, S]^{T}$ and $f(u)=[-U, p(V, S), 0]^{T}$.
- eigenvectors of $\left[D_{u} f\right]$ are:

$$
\mathbf{r}_{1}=\left[1, \sqrt{-p_{V}}, 0\right]^{T}, \mathbf{r}_{2}=\left[-p_{S}, 0, p_{V}\right]^{T}, \mathbf{r}_{3}=\left[1,-\sqrt{-p_{V}}, 0\right]^{T}
$$

Example: The Euler system for 1-dim. compressible flow

- Euler system in thermodynamic variables

$$
\begin{aligned}
V_{t}-U_{x} & =0 \\
U_{t}+p_{x} & =0 \\
S_{t} & =0
\end{aligned}
$$

$V=\frac{1}{\rho}$ is volume per unit mass, U is velocity, S is entropy per unit mass, $p(V, S)>0$ is pressure as a given function, s.t $p_{V}<0$.

- $u_{t}+f(u)_{x}=0$, where $u=[V, U, S]^{T}$ and $f(u)=[-U, p(V, S), 0]^{T}$.
- eigenvectors of $\left[D_{u} f\right]$ are:

$$
\mathbf{r}_{1}=\left[1, \sqrt{-p_{V}}, 0\right]^{T}, \mathbf{r}_{2}=\left[-p_{S}, 0, p_{V}\right]^{T}, \mathbf{r}_{3}=\left[1,-\sqrt{-p_{V}}, 0\right]^{T}
$$

- eigenvalues of $\left[D_{u} f\right]$ are $\lambda^{1}=-\sqrt{-p_{V}}, \quad \lambda^{2} \equiv 0, \quad \lambda^{3}=\sqrt{-p_{V}}$.

Wave curves

are used to construct solution of $u_{t}+f(u)_{x}=0$.

Wave curves

are used to construct solution of $u_{t}+f(u)_{x}=0$.
A wave curve consists of two parts:

Wave curves

are used to construct solution of $u_{t}+f(u)_{x}=0$.

A wave curve consists of two parts:

- rarefaction curve - the integral curve of an eigenvector field of [$\left.D_{u} f\right]$ - correspond to the smooth part of the self-similar solutions $u(x, t)=\zeta\left(\frac{x}{t}\right)$.

Wave curves

are used to construct solution of $u_{t}+f(u)_{x}=0$.

A wave curve consists of two parts:

- rarefaction curve - the integral curve of an eigenvector field of [$\left.D_{u} f\right]$ - correspond to the smooth part of the self-similar solutions $u(x, t)=\zeta\left(\frac{x}{t}\right)$.
- shock curve - a solution of Rankine-Hugoniot conditions:

$$
\{u \in \Omega \mid \exists s \in \mathbb{R}: f(u)-f(\bar{u})=s \cdot(u-\bar{u})\}
$$

A shock curve describes the discontinuous part of the solutions.

Wave curves

are used to construct solution of $u_{t}+f(u)_{x}=0$.

A wave curve consists of two parts:

- rarefaction curve - the integral curve of an eigenvector field of [$\left.D_{u} f\right]$ - correspond to the smooth part of the self-similar solutions $u(x, t)=\zeta\left(\frac{x}{t}\right)$.
- shock curve - a solution of Rankine-Hugoniot conditions:

$$
\{u \in \Omega \mid \exists s \in \mathbb{R}: f(u)-f(\bar{u})=s \cdot(u-\bar{u})\}
$$

A shock curve describes the discontinuous part of the solutions.

Through each strictly hyperbolic state $\bar{u} \in \Omega$, there exists n wave curves.

Wave curves are building blocks for the solutions of Cauchy problems:

$$
u_{t}+f(u)_{x}=0, \quad u(x, 0)=u_{0}(x)
$$

Wave curves are building blocks for the solutions of Cauchy

 problems:$$
u_{t}+f(u)_{x}=0, \quad u(x, 0)=u_{0}(x) .
$$

Lax (1957) under certain condition on f and when u_{-}and u_{+}are close, the solution to the Riemann problem:

$$
u_{0}(x)= \begin{cases}u_{-}, & x<0 \\ u_{+}, & x>0\end{cases}
$$

is determined by the wave curves.
Glimm (1965) for u_{0} with small total variation, the solutions to the Cauchy problems is determined by solutions of Riemann problems.

Example: The Jacobian problem for the Euler frame.

Example: The Jacobian problem for the Euler frame.

Given:

- (V, U, S) are coordinate functions in \mathbb{R}^{3}.
- $p(V, S)>0$, s.t $-p_{V}<0$
- vector fields $\mathbf{r}_{1}=\left[\begin{array}{c}1 \\ \sqrt{-p_{V}} \\ 0\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-p_{S} \\ 0 \\ p_{V}\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{c}1 \\ -\sqrt{-p_{V}} \\ 0\end{array}\right]$

Example: The Jacobian problem for the Euler frame.

Given:

- ($V, U, S)$ are coordinate functions in \mathbb{R}^{3}.
- $p(V, S)>0$, s.t $-p_{V}<0$
- vector fields $\mathbf{r}_{1}=\left[\begin{array}{c}1 \\ \sqrt{-p_{V}} \\ 0\end{array}\right], \quad \mathbf{r}_{2}=\left[\begin{array}{c}-p_{S} \\ 0 \\ p_{V}\end{array}\right], \quad \mathbf{r}_{3}=\left[\begin{array}{c}1 \\ -\sqrt{-p_{V}} \\ 0\end{array}\right]$

Find: the set $\mathcal{F}(\mathcal{R})$ of all maps $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, such that $\mathcal{R}=\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right\}$ is a set of eigenvector-fields of the Jacobian matrix $\left[D_{u} f\right]$.

Answer:

Answer:

- If $\left(\frac{p_{S}}{p_{V}}\right)_{V} \neq 0$

$$
f=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\bar{\lambda}\left[\begin{array}{l}
V \\
U \\
S
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\text { trivial flux. }
$$

Answer:

- If $\left(\frac{p_{S}}{p_{V}}\right)_{V} \neq 0$

$$
f=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\bar{\lambda}\left[\begin{array}{l}
V \\
U \\
S
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\text { trivial flux. }
$$

eigenvalues: $\lambda^{1}=-c \sqrt{-p_{V}}+\bar{\lambda}, \quad \lambda^{2} \equiv \bar{\lambda}, \quad \lambda^{3}=c \sqrt{-p_{V}}+\bar{\lambda}$.

- If $\left(\frac{p_{S}}{p_{V}}\right)_{V} \neq 0$

$$
f=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\bar{\lambda}\left[\begin{array}{l}
V \\
U \\
S
\end{array}\right]+\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=c\left[\begin{array}{c}
-U \\
p(v, S) \\
0
\end{array}\right]+\text { trivial flux. }
$$

eigenvalues: $\lambda^{1}=-c \sqrt{-p_{V}}+\bar{\lambda}, \quad \lambda^{2} \equiv \bar{\lambda}, \quad \lambda^{3}=c \sqrt{-p_{V}}+\bar{\lambda}$.

- If $\left(\frac{p_{S}}{p_{V}}\right)_{V} \equiv 0$, then $\mathcal{F}(\mathcal{R})$ depends on 3 arbitrary functions of one variable.

How geometry of the eigenframe of $\left[D_{u} f\right]$ affects the

 properties of hyperbolic conservative systems and their solutions?- We analyzed relationship between the geometry of the eigenframe and the number of companion conservation laws a system possesses.

Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws Communications in PDE's, No. 37, (2012) , pp. 1096-1140.

- We would like to better understand relationship between the geometry of the eigenframe and wave interaction patterns, as well as blow-up of the solutions in finite time phenomena.

1. Jenssen, H. K., Kogan, I. A., Conservation laws with prescribed eigencurves. J. of Hyperbolic Differential Equations (JHDE) Vol. 7, No. 2., (2010) pp. 211-254.
2. Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws Communications in PDE's, No. 37, (2012) , pp. 1096-1140.
3. Benfield, M., Some Geometric Aspects of Hyperbolic Conservation Laws Ph.D. thesis, NCSU, (2016)
4. Benfield, M., Jenssen, H. K., Kogan, I. A., Jacobians with prescribed eignvectors, in preparation.

Thank you!

Additional slides

Rich partial frames: $\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}(\Omega)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}$

Properties

- \exists smooth functions $\alpha^{i}: \Omega \rightarrow \mathbb{R}, i=1, \ldots, m$ such that

$$
\tilde{\mathbf{r}}_{1}:=\alpha^{1}(u) \mathbf{r}_{1}, \quad \ldots, \quad \tilde{\mathbf{r}}_{m}:=\alpha^{n} \mathbf{r}_{m}
$$

commute.

- \exists coordinates $w^{1}, \ldots, w^{n}=\rho(u)$ (called Riemann invariants)

$$
\tilde{r}_{i}=\frac{\partial}{\partial w^{i}}, \quad i=1, \ldots, m
$$

Necessary condition for strict hyperbolicity

For $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$, the exists strictly hyperbolic flux $\mathbf{f} \in \mathcal{F}(\mathcal{R})$ only if for each pair of indices $i \neq j \in\{1, \ldots, m\}$ the following equivalence holds:

$$
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \Longleftrightarrow\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\}
$$

Differential-Algebraic system (the $\lambda(\mathcal{R})$-system) for full frames *

$n(n-1)$ linear, 1 st order PDEs and $\frac{n(n-1)(n-2)}{2}$ algebraic equations:

$$
\left\{\begin{array}{lcc}
r_{i}\left(\lambda^{j}\right)=\Gamma_{j i}^{j}\left(\lambda^{i}-\lambda^{j}\right) & i \neq j, & (\lambda(\mathcal{R}) \text {-diff }) \\
\Gamma_{j i}^{k}\left(\lambda^{i}-\lambda^{k}\right)=\Gamma_{i j}^{k}\left(\lambda^{j}-\lambda^{k}\right) & i<j, i \neq k, j \neq k & (\lambda(\mathcal{R}) \text {-alg }),
\end{array}\right.
$$

where $\Gamma_{i j}^{k}:=L^{k}\left(D R_{j}\right) R_{i}$ are the Christoffel symbols of the connection $\nabla_{\frac{\partial}{\partial u^{i}}} \frac{\partial}{\partial u^{j}}=0$ computed relative to the frame \mathcal{R} i.e. $\nabla_{r_{i}} r_{j}=\sum_{k=1}^{n} \Gamma_{i j}^{k} r_{k}$.

$$
\begin{aligned}
c_{k m}^{i} & =\Gamma_{k m}^{i}-\Gamma_{m k}^{i} \quad(\text { Symmetry }) \\
r_{m}\left(\Gamma_{k i}^{j}\right)-r_{k}\left(\Gamma_{m i}^{j}\right)= & \sum_{s=1}^{n}\left(\Gamma_{k s}^{j} \Gamma_{m i}^{s}-\Gamma_{m s}^{j} \Gamma_{k i}^{s}-c_{k m}^{s} \Gamma_{s i}^{j}\right) \text { (Flatness). }
\end{aligned}
$$

[^0]
Rich system with non-trivial algebraic constraints

$$
\begin{array}{lll}
\partial_{i} \lambda^{j}=\Gamma_{j i}^{j}\left(\lambda^{i}-\lambda^{j}\right) & \text { for } & 1 \leq i \neq j \leq n, \quad \partial_{i}:=\frac{\partial}{\partial w_{i}} \\
\Gamma_{i j}^{k}\left(\lambda^{j}-\lambda^{i}\right)=0 & \text { for } & 1 \leq k \neq i<j \neq k \leq n
\end{array}
$$

- \exists distinct i, j, k s.t. $\Gamma_{i j}^{k} \neq 0$
- multiplicity conditions on eigenvalues are implied by the algebro-differential system (no strictly hyperbolic conservation laws in this case).
- Darboux theorem \Rightarrow general solution depends on s_{0} constants and s_{1} functions of one variable, where
- s_{0} is the number of distinct eigenvalues of multiplicity >1,
$-s_{1}$ is the number of eigenvalues of multiplicity 1.

$\lambda(\mathcal{R})$-system for $n=3$

I. $\operatorname{rank}(\lambda(\mathcal{R})$-alg $)=0 \Rightarrow \mathcal{R}$ is rich; a general solution of $\lambda(\mathfrak{R})$ depends on 3 functions of 1 variable; \exists strictly hyperbolic conservative system with eigenframe \mathcal{R}.
II. $\operatorname{rank}(\lambda(\mathcal{R})-$ alg $)=1$ (a single algebraic constraint):

Ila. All three λ^{i} appear in the algebraic constraint $\Rightarrow \lambda(\mathcal{R})$ can be analyzed by Fronebious theorem; the solution of the λ-system is either trivial or depends on 2 arbitrary constants; In the latter case, \exists strictly hyperbolic conservative system with eigenframe $\mathcal{R} ; \nexists$ rich systems in class Ila.

Ilb. Exactly two λ^{i} appear in the algebraic constraint \Rightarrow two λ^{i} coincide; $\lambda(\mathcal{R})$ can be analyzed by Cartan-Kähler theorem; the general solution is either trivial or depends on 1 arbitrary function of 1 variables and 1 constant; \nexists strictly hyperbolic conservative system with eigenframe \mathcal{R}; but \exists rich systems, in class llb.
III. $\operatorname{rank}(\lambda(\mathcal{R})$-alg $)=2 \Rightarrow$ only trivial solutions $\lambda^{1}(u)=\lambda^{2}(u)=\lambda^{3}(u)=$ $\bar{\lambda} \in \mathbb{R}$.

The Euler system for 1-dim. compressible flow

- Euler system in thermodynamic variables

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p_{x} & =0 \\
S_{t} & =0
\end{aligned}
$$

$v=\frac{1}{\rho}$ is volume per unit mass, u is velocity, S is entropy per unit mass, $p(v, S)>0$ is pressure as a given function of v and S, s.t $p_{v}<0$.

- $U_{t}+f(U)_{x}=0$, where $U=(v, u, S)$ and $f(U)=(-u, p(v, S), 0)^{T}$.
- eigenvalues of $D f$ are $\lambda^{1}=-\sqrt{-p_{v}}, \quad \lambda^{2} \equiv 0, \quad \lambda^{3}=\sqrt{-p_{v}}$.
- eigenvectors of D_{f} are $R_{1}=\left[1, \sqrt{-p_{v}}, 0\right]^{T}$, $R_{2}=\left[-p_{S}, 0, p_{v}\right]^{T}, R_{3}=\left[1,-\sqrt{-p_{v}}, 0\right]^{T}$

Inverse problem: Coordinates $U=(v, u, S)$

- For a given pressure function $p=p(v, S)>0$, with $p_{v}<0$ define a frame \mathcal{R} :

$$
R_{1}=\left[1, \sqrt{-p_{v}}, 0\right]^{T}, R_{2}=\left[-p_{S}, 0, p_{v}\right]^{T}, R_{3}=\left[1,-\sqrt{-p_{v}}, 0\right]^{T}
$$

- determine the class of conservative systems with eigenfields \mathcal{R} by solving the λ-system for $\lambda^{1}, \lambda^{2}, \lambda^{3}$.
- Observation: frame is rich $\Leftrightarrow\left(\frac{p_{S}}{p_{v}}\right)_{v} \equiv 0 \Leftrightarrow p(v, S)=\Pi(v+F(S))$.

λ-system:

- differential equations

$$
\begin{aligned}
r_{1}\left(\lambda^{2}\right) & =0 \\
r_{1}\left(\lambda^{3}\right) & =\frac{p_{v v}}{4 p_{v}}\left(\lambda^{3}-\lambda^{1}\right) \\
r_{2}\left(\lambda^{1}\right) & =\frac{p_{v}}{2}\left(\frac{p_{S}}{p_{v}}\right)_{v}\left(\lambda^{1}-\lambda^{2}\right) \\
r_{2}\left(\lambda^{3}\right) & =\frac{p_{v}}{2}\left(\frac{p_{S}}{p_{v}}\right)_{v}\left(\lambda^{3}-\lambda^{2}\right) \\
r_{3}\left(\lambda^{1}\right) & =\frac{p_{v v}}{4 p_{v}}\left(\lambda^{1}-\lambda^{3}\right) \\
r_{3}\left(\lambda^{2}\right) & =0 .
\end{aligned}
$$

- one independent algebraic equation:

$$
\frac{p_{v}}{4}\left(\frac{p_{S}}{p_{v}}\right)_{v}\left(\lambda^{1}+\lambda^{3}-2 \lambda^{2}\right)=0 .
$$

- Rich frame $\Leftrightarrow\left(\frac{p_{S}}{p_{v}}\right)_{v} \equiv 0 \quad \Leftrightarrow$ no algebraic constraints.

Solution of the $\lambda(\mathcal{R})$-system:

in the non-rich case:

- $\lambda(\mathcal{R})$-alg consists of:

$$
\frac{p_{v}}{4}\left(\frac{p_{S}}{p_{v}}\right)_{v}\left(\lambda^{1}+\lambda^{3}-2 \lambda^{2}\right)=0 \Leftrightarrow \lambda^{2}=\frac{1}{2}\left(\lambda^{1}+\lambda^{3}\right)
$$

that involves all three λ 's (case IIa) \Rightarrow the general solution depends on two constants.

- from the differential part of λ-system we obtain:

$$
\begin{gathered}
\lambda^{1}=-C_{1} \sqrt{-p_{v}}+C_{2}, \quad \lambda^{2}=C_{2}, \quad \lambda^{3}=C_{1} \sqrt{-p_{v}}+C_{2} \\
f(U)=C_{1}\left(\begin{array}{c}
-u \\
p(v, S) \\
0
\end{array}\right)+C_{2}\left(\begin{array}{c}
v \\
u \\
S
\end{array}\right)+\bar{v}
\end{gathered}
$$

Solution of the $\lambda(\mathcal{R})$-system:

in the rich case:, i.e. $\left(\frac{p_{S}}{p_{v}}\right)_{v} \equiv 0$

- this is rich case with no algebraic constraints \Rightarrow solution depends on 3 arbitrary functions in one variable.
- $\left(\frac{p_{S}}{p_{v}}\right)_{v} \equiv 0 \quad \Leftrightarrow \quad p(v, S)=\Pi(\xi)$, where $\xi=v+F(S)$.
- from the differential part of λ-system we obtain:

$$
\lambda^{2}=\lambda^{2}(S), \quad \lambda^{1}=A(\xi, u), \quad \lambda^{3}=B(\xi, u),
$$

where

$$
A_{\xi}-\sqrt{-\Pi^{\prime}(\xi)} A_{u}=a(B-A), B_{\xi}+\sqrt{-\Pi^{\prime}(\xi)} B_{u}=a(A-B)
$$

and $a=-\frac{p_{v v}}{4 p_{v}}$.

Example: rich orthogonal frame (cylindrical coordinates)

$$
R_{1}=\left[u^{1}, u^{2}, 0\right]^{T}, \quad R_{2}=\left[-u^{2}, u^{1}, 0\right]^{T}, \quad R_{3}=[0,0,1]^{T}
$$

Riemann coordinates: (in the first octant):

$$
\begin{aligned}
w^{1}=\frac{1}{2} \ln & {\left[\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right], \quad w^{2}=\arctan \left(\frac{u^{2}}{u^{1}}\right), \quad w^{3}=u^{3} . } \\
\lambda^{1} & =\psi_{1}\left(w^{1}\right), \\
\lambda^{2} & =e^{-w^{1}} \int_{*}^{e^{w^{1}}} \psi_{1}\left(\ln \left(\tau^{2}\right)\right) d \tau+e^{-w^{1}} \psi_{2}\left(w^{2}\right), \\
\lambda^{3} & =\psi_{3}\left(w^{3}\right) .
\end{aligned}
$$

Example: rich orthogonal frame (cylindrical coordinates)

$$
R_{1}=\left[u^{1}, u^{2}, 0\right]^{T}, \quad R_{2}=\left[-u^{2}, u^{1}, 0\right]^{T}, \quad R_{3}=[0,0,1]^{T}
$$

Riemann coordinates: (in the first octant):

$$
\begin{aligned}
w^{1}=\frac{1}{2} \ln & {\left[\left(u^{1}\right)^{2}+\left(u^{2}\right)^{2}\right], \quad w^{2}=\arctan \left(\frac{u^{2}}{u^{1}}\right), \quad w^{3}=u^{3} . } \\
\lambda^{1} & =\psi_{1}\left(w^{1}\right), \\
\lambda^{2} & =e^{-w^{1}} \int_{*}^{e^{w^{1}}} \psi_{1}\left(\ln \left(\tau^{2}\right)\right) d \tau+e^{-w^{1}} \psi_{2}\left(w^{2}\right), \\
\lambda^{3} & =\psi_{3}\left(w^{3}\right) .
\end{aligned}
$$

Necessary condition for strict hyperbolicity

For $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$, the exists strictly hyperbolic flux $\mathbf{f} \in \mathcal{F}(\mathcal{R})$ only if for each pair of indices $i \neq j \in\{1, \ldots, m\}$ the following equivalence holds:

$$
\begin{equation*}
\nabla_{\mathbf{r}_{i}} \mathbf{r}_{j} \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \Longleftrightarrow\left[\mathbf{r}_{i}, \mathbf{r}_{j}\right] \in \operatorname{span}_{C^{\infty}\left(\Omega^{\prime}\right)}\left\{\mathbf{r}_{i}, \mathbf{r}_{j}\right\} \tag{6}
\end{equation*}
$$

Coordinate-free definition of the Jacobian map:

Definition: The Jacobian of a vector field f on open $\Omega \subset \mathbb{R}^{n}$, relative to a flat, symmetric connection on Ω connection ∇ is a map

$$
J \mathrm{f}: \mathcal{X}(\Omega) \rightarrow \mathcal{X}(\Omega) \text { defined by } J \mathrm{f}(\mathrm{r})=\nabla_{\mathrm{r}} \mathrm{f}
$$

If $\mathrm{f}=F^{1} \frac{\partial}{\partial u^{1}}+\cdots+F^{n} \frac{\partial}{\partial u^{n}}$ and $\mathbf{r}=R^{1} \frac{\partial}{\partial u^{1}}+\cdots+R^{n} \frac{\partial}{\partial u^{n}}$, where u^{1}, \ldots, u^{n} are affine coordinates $\left(\nabla_{\frac{\partial}{\partial u^{i}}} \frac{\partial}{\partial u^{j}}=0\right)$ then

$$
J \mathbf{f}(\mathbf{r})=\left[D_{u} F\right] R,
$$

where $F=\left[F^{1}, \ldots, F^{n}\right]^{T}$ and $R=\left[R_{1}, \ldots, R^{n}\right]^{T}$.

Definition: f is called hyperbolic on Ω if eigenvector-fields of $J \mathrm{f}$ form a frame on Ω. (This implies that all eignefunctions of $J f$ are real)
f is called strictly hyperbolic if, in addition, at every point of Ω all n eignefunctions of J f have distinct values.

Jacobian problem:

Given a partial frame $\mathcal{R}=\left\{\mathbf{r}_{1}, \ldots, \mathbf{r}_{m}\right\}$ on open $\Omega \subset \mathbb{R}^{n}(n \geq m)$, and a fixed point $\bar{u} \in \Omega$, describe the set of smooth vector fields

$$
\mathcal{F}(\mathcal{R})=\left\{\mathbf{f} \in \mathcal{X}\left(\Omega^{\prime}\right) \mid \bar{u} \in \Omega^{\prime} \subset \Omega\right\}
$$

s. t. there \exists smooth functions $\lambda^{i}: \Omega^{\prime} \rightarrow \mathbb{R}$ for which

$$
J \mathbf{f}\left(\mathbf{r}_{i}\right):=\nabla_{\mathbf{r}_{i}} \mathbf{f}=\lambda^{i} \mathbf{r}_{i}, \quad \text { for } i=1, \ldots, m
$$

where ∇ is a flat, symmetric connection on Ω.

Elements of $\mathcal{F}(\mathcal{R})$ will be called fluxes.

- $\mathcal{F}(\mathcal{R})$ is, possibly ∞-dimensional, \mathbb{R}-vector space.
- scaling invariance: if $\widetilde{\mathcal{R}}=\left\{\phi^{1} \mathbf{r}_{1}, \ldots, \phi^{m} \mathbf{r}_{m}\right\}$, where $\phi^{i}: \Omega \rightarrow \mathbb{R}$ are nowhere zero, then $\mathcal{F}(\mathcal{R})=\mathcal{F}(\tilde{\mathcal{R}})$.
- $\forall \mathcal{R}$, the set $\mathcal{F}(\mathcal{R})$ contains a trivial fluxes:

$$
\left(a u^{1}+b^{1}\right) \frac{\partial}{\partial u^{1}}+\cdots+\left(a u^{n}+b^{n}\right) \frac{\partial}{\partial u^{n}}, \text { for all } a, b^{1}, \ldots, b^{n} \in \mathbb{R}
$$

Explicit form of integrability conditions (5). For $i=1, \ldots, p ; j, k=1, \ldots, m$

$$
\mathbf{r}_{j}\left(\mathbf{r}_{k}\left(\phi^{i}\right)\right)-\mathbf{r}_{k}\left(\mathbf{r}_{j}\left(\phi^{i}\right)\right)=\sum_{l=1}^{m} c_{j k}^{l} \mathbf{r}_{l}\left(\phi^{i}\right),
$$

The 1st substitution of the derivatives of ϕ 's prescribed by (4) into (5):

$$
\mathbf{r}_{j}\left(h_{k}^{i}(u, \phi(u))-\mathbf{r}_{k}\left(h_{j}^{i}(u, \phi(u))=\sum_{l=1}^{m} c_{j k}^{l} h_{l}^{i}(u, \phi(u))\right.\right.
$$

The chain rule and the 2nd substitution for the derivatives of ϕ 's:

$$
\begin{aligned}
& \sum_{l=1}^{n}\left(\frac{\partial h_{k}^{i}(u, \phi)}{\partial u^{l}} \mathbf{r}_{j}\left(u^{l}\right)-\frac{\partial h_{j}^{i}(u, \phi)}{\partial u^{l}} \mathbf{r}_{k}\left(u^{l}\right)\right)+\sum_{s=1}^{p}\left(\frac{\partial h_{k}^{i}(u, \phi)}{\partial \phi^{s}} h_{j}^{s}(u, \phi)-\right. \\
= & \sum_{l=1}^{m} c_{j k}^{l}(u) h_{l}^{i}(u, \phi) .
\end{aligned}
$$

Extensions and entropies:

Assume that \exists functions $q: \Omega \rightarrow \mathbb{R}$ and $\eta: \Omega \rightarrow \mathbb{R}$, s.t. $\operatorname{grad} q=\operatorname{grad} \eta\left(D_{u} f\right)$, then multiplication of $u_{t}+f(u)_{x}=0$ by grad η from the left (assuming that u is smooth) leads to a companion conservation law:

$$
\eta(u)_{t}+q(u)_{x}=0
$$

η is called an extension of conservative system.

Proposition: η is an extension iff:

$$
\text { for each pair } 1 \leq i \neq j \leq n: \quad \lambda^{j}=\lambda^{i} \text { or } R_{i}^{T}\left(D_{u}^{2} \eta\right) R_{j}=0
$$

An extension η is called an entropy if $D_{u}^{2} \eta$ is positive semidefinite and is called strict entropy if $D_{u}^{2} \eta$ is positive definite.

Admissibility criterion:

A weak solution of $u_{t}+f(u)_{x}=0$ is admissible if it is a limit of smooth solutions

$$
u_{t}^{\varepsilon}+f\left(u^{\varepsilon}\right)_{x}=\varepsilon u_{x x}^{\varepsilon}, \quad \text { as } \varepsilon \downarrow 0 .
$$

If η is an entropy with flux q, then:

$$
\eta\left(u^{\varepsilon}\right)_{t}+q\left(u^{\varepsilon}\right)_{x} \leq \varepsilon \eta\left(u^{\varepsilon}\right)_{x x} \quad(\varepsilon>0)
$$

A weak solution of $u_{t}+f(u)_{x}=0$ is admissible if it satisfies the entropy inequality

$$
\eta(u)_{t}+q(u)_{x} \leq 0 \quad \text { (distributional sense) }
$$

[^0]: *In different contexts the λ-system appeared in Sévannec (1994), Tsarëv (1985).

