The Gopakumar-Vafa conjecture for symplectic manifolds

Eleny Ionel

based on joint work with Tom Parker/Penka Georgieva

TGTC conference, February 2017

Let X be a symplectic Calabi-Yau 3-fold, i.e.

 $c_1(X) = 0$, $\dim_{\mathbb{R}} X = 6$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$c_1(X) = 0, \quad \dim_{\mathbb{R}} X = 6.$$

 $\overline{\mathcal{M}}_{A,g}(X) = \text{moduli space of } J\text{-holo genus } g \text{ curves}$ representing $A \in H_2(X)$:

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$c_1(X) = 0, \quad \dim_{\mathbb{R}} X = 6.$$

 $\overline{\mathcal{M}}_{A,g}(X) = \text{moduli space of } J\text{-holo genus } g \text{ curves}$ representing $A \in H_2(X)$:

・ロト ・ 雪 ト ・ ヨ ト

 $\dim \overline{\mathcal{M}}_{A,g}(X) = 2c_1(X)A + (\dim_{\mathbb{R}} X - 6)(1 - g) \equiv 0$

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$c_1(X) = 0, \quad \dim_{\mathbb{R}} X = 6.$$

 $\overline{\mathcal{M}}_{A,g}(X) = \text{moduli space of } J\text{-holo genus } g \text{ curves}$ representing $A \in H_2(X)$:

 $\dim \overline{\mathcal{M}}_{A,g}(X) = 2c_1(X)A + (\dim_{\mathbb{R}} X - 6)(1 - g) \equiv 0$

$$GW_{A,g} = \#^{vir} \left\{ \overline{\mathcal{M}}_{A,g}(X) \text{ with sign and weight } \frac{1}{\#Aut} \right\} \in \mathbb{Q}$$

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$c_1(X) = 0, \quad \dim_{\mathbb{R}} X = 6.$$

 $\overline{\mathcal{M}}_{A,g}(X) =$ moduli space of *J*-holo genus *g* curves representing $A \in H_2(X)$:

 $\dim \overline{\mathcal{M}}_{A,g}(X) = 2c_1(X)A + (\dim_{\mathbb{R}} X - 6)(1 - g) \equiv 0$

$$GW_{A,g} = \int_{[\overline{\mathcal{M}}_{A,g}(X)]^{vir}} 1 \in \mathbb{Q}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sum_{A\neq 0, \atop g} GW_{A,g} t^{2g-2}q^A$$

$$\sum_{\substack{A \neq 0, \\ g}} \frac{GW_{A,g}}{g} t^{2g-2} q^A = \sum_{\substack{A \neq 0, \\ g}} \frac{n_{A,g}}{k} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\sum_{\substack{A \neq 0, \\ g}} GW_{A,g} t^{2g-2} q^{A} = \sum_{\substack{A \neq 0, \\ g}} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS.

$$\sum_{\substack{A \neq 0, \\ g}} GW_{A,g} t^{2g-2} q^{A} = \sum_{\substack{A \neq 0, \\ g}} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS. (b) (finiteness) $n_{A,g} = 0$ for $g \ge g_A$.

$$\sum_{\substack{A \neq 0, \\ g}} GW_{A,g} t^{2g-2} q^{A} = \sum_{\substack{A \neq 0, \\ g}} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS. (b) (finiteness) $n_{A,g} = 0$ for $g \ge g_A$.

$$\{GW_{A,g}\} \underset{\text{GV transform}}{\longleftrightarrow} \{n_{A,g}\}$$

$$\sum_{\substack{A \neq 0, \\ g}} GW_{A,g} t^{2g-2} q^{A} = \sum_{\substack{A \neq 0, \\ g}} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS. (b) (finiteness) $n_{A,g} = 0$ for $g \ge g_A$.

$$\{GW_{A,g}\} \underset{\text{GV transform}}{\longleftrightarrow} \{n_{A,g}\}$$

 $\blacktriangleright \text{ similar to 4-dim case: } GW \underset{\text{Taubes Thm}}{\longleftrightarrow} SW.$

$$\sum_{A \neq 0, g \atop g} GW_{A,g} t^{2g-2} q^{A} = \sum_{A \neq 0, g \atop g} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS. (b) (finiteness) $n_{A,g} = 0$ for $g \ge g_A$.

$$\{GW_{A,g}\} \underset{\text{GV transform}}{\longleftrightarrow} \{n_{A,g}\}$$

- ▶ similar to 4-dim case: $GW \underset{\text{Taubes Thm}}{\longleftrightarrow} SW$.
- related conj. for real GW, open GW, higher dim CYs

$$\sum_{\substack{A \neq 0, \\ g}} GW_{A,g} t^{2g-2} q^{A} = \sum_{\substack{A \neq 0, \\ g}} n_{A,g} \sum_{k=1}^{\infty} \frac{1}{k} \left(2\sin \frac{kt}{2} \right)^{2g-2} q^{kA}$$

where

(a) (integrality) $n_{A,g}$ are INTEGERS. (b) (finiteness) $n_{A,g} = 0$ for $g \ge g_A$.

$$\{GW_{A,g}\} \underset{\text{GV transform}}{\longleftrightarrow} \{n_{A,g}\}$$

- ▶ similar to 4-dim case: $GW \underset{\text{Taubes Thm}}{\longleftrightarrow} SW$.
- related conj. for real GW, open GW, higher dim CYs
- massive computational evidence supporting it.

Structure Theorem. (I.-Parker) *For any symplectic CY 3-fold*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$GW_X = \sum_{A \neq 0} \sum_g e_{A,g} G_g(t, q^A),$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$GW_X = \sum_{A \neq 0} \sum_g e_{A,g} \ G_g(t, q^A), \quad \text{where}$$
$$G_g(t, q) = \log \left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\Box \in \mu} \left(2 \sin \frac{h(\Box)t}{2} \right)^{2g-2} q^d \right)$$

is the local GW invar contribution of an ideal genus g curve

$$GW_X = \sum_{A \neq 0} \sum_g e_{A,g} G_g(t, q^A), \quad \text{where}$$

$$G_g(t,q) = \log\left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\Box \in \mu} \left(2\sin \frac{h(\Box)t}{2}\right)^{2g-2} q^d\right)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

$$GW_X = \sum_{A
eq 0} \sum_g e_{A,g} \ G_g(t,q^A), \quad \textit{where}$$

$$G_g(t,q) = \log\left(1 + \sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu} \left(2\sinrac{h(\square)t}{2}
ight)^{2g-2} q^d
ight)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

• the GV transform of G_g satisfies (a) and (b).

$${\it GW}_X = \sum_{A
eq 0} \sum_g e_{A,g} \; {\it G}_g(t,q^A), \quad {\it where}$$

$$G_g(t,q) = \log\left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\square \in \mu} \left(2\sinrac{h(\square)t}{2}
ight)^{2g-2} q^d
ight)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_g satisfies (a) and (b).
- for $g = 0 \implies n_{1,0} = 1$ and the rest are 0.

$${\it GW}_X = \sum_{A
eq 0} \sum_g e_{A,g} \; {\it G}_g(t,q^A), \quad {\it where}$$

$$G_g(t,q) = \log\left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\square \in \mu} \left(2\sinrac{h(\square)t}{2}
ight)^{2g-2} q^d
ight)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_g satisfies (a) and (b).
- for $g = 0 \implies n_{1,0} = 1$ and the rest are 0.
- for $g = 1 \implies n_{d,1} = 1$ for all $d \ge 1$ and the rest are 0.

$${\it GW}_X = \sum_{A
eq 0} \sum_g e_{A,g} \; {\it G}_g(t,q^A), \quad {\it where}$$

$$G_g(t,q) = \log\left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\Box \in \mu} \left(2\sinrac{h(\Box)t}{2}
ight)^{2g-2} q^d
ight)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_g satisfies (a) and (b).
- for $g = 0 \implies n_{1,0} = 1$ and the rest are 0.
- ▶ for $g = 1 \implies n_{d,1} = 1$ for all $d \ge 1$ and the rest are 0.

 \implies GV Conjecture (integrality part only).

$$GW_X = \sum_{A \neq 0} \sum_g e_{A,g} G_g(t, q^A),$$
 where

$$G_g(t,q) = \log\left(1 + \sum_{d \ge 1} \sum_{\mu \vdash d} \prod_{\Box \in \mu} \left(2\sinrac{h(\Box)t}{2}
ight)^{2g-2} q^d
ight)$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_g satisfies (a) and (b).
- for $g = 0 \implies n_{1,0} = 1$ and the rest are 0.
- ▶ for $g = 1 \implies n_{d,1} = 1$ for all $d \ge 1$ and the rest are 0.

 \implies GV Conjecture (integrality part only). Finiteness is still open, but reduced to finiteness of $e_{A,g}$.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ any (closed) symplectic 6-dim manifold

- ▶ any (closed) symplectic 6-dim manifold
- g = 0 GW invar of semipositive symplectic manifolds

- ▶ any (closed) symplectic 6-dim manifold
- g = 0 GW invar of semipositive symplectic manifolds

we expect a more general structure theorem

- ▶ any (closed) symplectic 6-dim manifold
- g = 0 GW invar of semipositive symplectic manifolds

we expect a more general structure theorem

Work in progress (w/ Penka Georgieva)

- ▶ any (closed) symplectic 6-dim manifold
- g = 0 GW invar of semipositive symplectic manifolds
- we expect a more general structure theorem

Work in progress (w/ Penka Georgieva) on a related structure theorem for Real GW invariants.

A Real structure on X

A Real structure on X is an anti-symplectic involution c_X .

A Real structure on X is an anti-symplectic involution c_X . Choose J real i.e. $c_X^* J = -J$.

A Real structure on X is an anti-symplectic involution c_X .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choose J real i.e. $c_X^* J = -J$.

Real GW invariants $GW^{\mathbb{R}}$

A Real structure on X is an anti-symplectic involution c_X . Choose J real i.e. $c_X^*J = -J$.

Real GW invariants $GW^{\mathbb{R}}$ count Real maps

A Real structure on X is an anti-symplectic involution c_X . Choose J real i.e. $c_X^* J = -J$.

Real GW invariants $GW^{\mathbb{R}}$ count Real maps

Real GW invariants

A Real structure on X is an anti-symplectic involution c_X . Choose J real i.e. $c_X^* J = -J$.

Real GW invariants $GW^{\mathbb{R}}$ count Real maps

$$f:(C,c)\to(X,c_X)$$

$$f \circ c = c_X \circ f$$

for *some* Real str c on C.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real GW invariants

A Real structure on X is an anti-symplectic involution c_X . Choose J real i.e. $c_x^* J = -J$.

Real GW invariants $GW^{\mathbb{R}}$ count Real maps

$$f \circ c = c_X \circ f$$

for *some* Real str c on C.

(Need to fix extra data to orient these moduli spaces.)

 \implies Real GW invariants $GW^{\mathbb{R}}(X) \in \mathbb{Q}$.

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$R_0 = \sum_{k \text{ odd}} \frac{1}{k} \left(2 \sinh \frac{kt}{2} \right)^{-1} q^k$$

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$R_{0} = \sum_{k \text{ odd}} \frac{1}{k} \left(2 \sinh \frac{kt}{2} \right)^{-1} q^{k}$$
$$R_{1} = \sum_{d \ge 1} \sum_{k \text{ odd}} \frac{1}{k} q^{kd}$$

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$R_{0} = \sum_{k \text{ odd}} \frac{1}{k} \left(2 \sinh \frac{kt}{2} \right)^{-1} q^{k}$$
$$R_{1} = \sum_{d \ge 1} \sum_{k \text{ odd}} \frac{1}{k} q^{kd}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 \implies Walcher-GV Conjecture for g = 0, 1.

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$R_{0} = \sum_{k \text{ odd}} \frac{1}{k} \left(2 \sinh \frac{kt}{2} \right)^{-1} q^{k}$$
$$R_{1} = \sum_{d \ge 1} \sum_{k \text{ odd}} \frac{1}{k} q^{kd}$$

 \implies Walcher-GV Conjecture for g = 0, 1. Proved by A. Zarmozaev for g=0 under extra assumptions.

$$GW_X^{\mathbb{R}} = \sum_{A,g} e_{A,g}^{\mathbb{R}} R_g(t,q^A), \quad ext{where}$$

 R_g the local RGW contrib of an ideal genus g Real curve.

$$R_{0} = \sum_{k \text{ odd}} \frac{1}{k} \left(2 \sinh \frac{kt}{2} \right)^{-1} q^{k}$$
$$R_{1} = \sum_{d \ge 1} \sum_{k \text{ odd}} \frac{1}{k} q^{kd}$$

 \implies Walcher-GV Conjecture for g = 0, 1. Proved by A. Zarmozaev for g=0 under extra assumptions. Work in progress (w/ P. Georgieva): understand R_g for $g \ge 2$.

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)

2. construct an *elementary local model J^{elem}* such that

Main steps:

- 1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
- 2. construct an *elementary local model J^{elem}* such that
 - can calculate its local contribution G_g to GW invar

Main steps:

- 1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
- 2. construct an *elementary local model J^{elem}* such that
 - can calculate its local contribution G_g to GW invar

verify it satisfies local GV conjecture

Main steps:

- 1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
- 2. construct an *elementary local model* J^{elem} such that
 - can calculate its local contribution G_g to GW invar
 - verify it satisfies local GV conjecture
- 3. locally deform J to J^{elem} and prove wall-crossing formulas for local contributions.

Main steps:

- 1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
- 2. construct an *elementary local model J^{elem}* such that
 - can calculate its local contribution G_g to GW invar
 - verify it satisfies local GV conjecture
- 3. locally deform J to J^{elem} and prove wall-crossing formulas for local contributions.

(日) (同) (三) (三) (三) (○) (○)

 conclude that each local contribution is a linear combination with *integer* coef of elementary contributions.

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

イロト 不得下 イヨト イヨト

э

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

► come in families.

(日) (同) (日) (日)

-

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.

イロト イポト イヨト イヨト

-

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

イロト 不得下 イヨト イヨト

э

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- ► come in families.
- are not cut transversally.
- have nontrivial automorphisms.

ヘロン 人間と ヘヨン ヘヨン

-

 $\implies GW_{A,g} \in \mathbb{Q}.$

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- ► come in families.
- are not cut transversally.
- have nontrivial automorphisms.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 $\Rightarrow GW_{A,g} \in \mathbb{Q}.$

Seems like:

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$\implies GW_{A,g} \in \mathbb{Q}.$$

Seems like:

*n*_{A,g} counts embeddings and

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- ► come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$\implies GW_{A,g} \in \mathbb{Q}.$$

Seems like:

- *n*_{A,g} counts embeddings and
- factor is the "contribution of the mc"

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- ► come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$\implies GW_{A,g} \in \mathbb{Q}.$$

Seems like:

- *n*_{A,g} counts embeddings and
- factor is the "contribution of the mc"

Problem: Embeddings can accumulate as mc of embeddings!

Thm. For generic *J*, all *J*-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- ► come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$\implies GW_{A,g} \in \mathbb{Q}.$$

Seems like:

- *n*_{A,g} counts embeddings and
- factor is the "contribution of the mc"

Problem: Embeddings can accumulate as mc of embeddings! But *only* on lower level ones.

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

By induction on level,

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

By induction on *level*,

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

By induction on *level*,

- decompose $\overline{\mathcal{M}}(X) = \bigsqcup \mathcal{O}_i$.
- ► every cluster O has well defined contribution GW(O).

Solution: Package into "clusters of curves" $\mathcal{O} = B(C, \varepsilon)$.

By induction on level,

- decompose $\overline{\mathcal{M}}(X) = \bigsqcup \mathcal{O}_i$.
- ► every cluster O has well defined contribution GW(O).

Therefore

$$GW_X = \sum_i GW(\mathcal{O}_i).$$

Solution: Package into "clusters of curves" $\mathcal{O} = B(\mathcal{C}, \varepsilon)$.

By induction on level,

- decompose $\overline{\mathcal{M}}(X) = \bigsqcup \mathcal{O}_i$.
- ► every cluster O has well defined contribution GW(O).

Therefore

$$GW_X = \sum_i GW(\mathcal{O}_i).$$

 \implies reduce to proving local GV Conj (for every cluster).

Behaviour under deformations

For generic deformation of J

Behaviour under deformations

higher level curves may exit/enter the cluster.

Behaviour under deformations

higher level curves may exit/enter the cluster.

birth/death of the core curve.

Behaviour under deformations

higher level curves may exit/enter the cluster.

birth/death of the core curve.

Behaviour under deformations

- higher level curves may exit/enter the cluster.
- birth/death of the core curve.

 $GW(\mathcal{O}_{-}) + GW(\mathcal{O}_{+}) \approx 0$ (up to higher level clusters)

・ロト ・四ト ・ヨト ・ヨ

But core should survive as we deform J to J_{elem} !

But core should survive as we deform J to J_{elem} ! Deform J keeping the core pseudo-holomorphic:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

But core should survive as we deform J to J_{elem} ! Deform J keeping the core pseudo-holomorphic:

< ロ > < 同 > < 回 > < 回 >

generic singularity: core crossing.

But core should survive as we deform J to J_{elem} ! Deform J keeping the core pseudo-holomorphic:

generic singularity: core crossing.

Bifurcation analysis: Kuranishi local model (quadratic) \implies

$${\it GW}(\mathcal{O}_-)pprox -{\it GW}(\mathcal{O}_+)$$

up to higher level clusters.

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

(1) the core C is super-rigid \implies

▶ the only curves in the cluster are mc of C

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(1) the core C is super-rigid \implies

- the only curves in the cluster are mc of C
- ► the local contribution is $GW(\mathcal{O}^{elem}) = \int_{[\overline{\mathcal{M}}(C)]^{vir}} e(Ob)$

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

(1) the core C is super-rigid \implies

- the only curves in the cluster are mc of C
- the local contribution is $GW(\mathcal{O}^{elem}) = \int_{[\overline{\mathcal{M}}(C)]^{vir}} e(Ob)$

(2) can use deformation arguments – relate it to

► a K-theory calculation/equivariant localization

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

(1) the core C is super-rigid \implies

- the only curves in the cluster are mc of C
- the local contribution is $GW(\mathcal{O}^{elem}) = \int_{[\overline{\mathcal{M}}(C)]^{vir}} e(Ob)$

(2) can use deformation arguments – relate it to

- ► a K-theory calculation/equivariant localization
- ► a TQFT calculation by Bryan-Pandharipande

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary *local* model J^{elem} for which we can verify the local GV conjecture:

(1) the core C is super-rigid \implies

- the only curves in the cluster are mc of C
- the local contribution is $GW(\mathcal{O}^{elem}) = \int_{[\overline{\mathcal{M}}(C)]^{vir}} e(Ob)$

(2) can use deformation arguments – relate it to

- ► a K-theory calculation/equivariant localization
- ▶ a TQFT calculation by Bryan-Pandharipande

via degenerating the core curve to a nodal one.