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Background: GW invariants
Let X be a symplectic Calabi-Yau 3-fold, i.e.

a(X)=0, dimpX = 6.

M ¢(X) = moduli space of J-holo genus g curves
representing A € Hy(X):

dim My ¢ (X) = 2c1(X)A + (dimgX — 6)(1 —g) =0

GWy g = / 1€Q
[Mag (X))
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where
(a) (integrality) na, are INTEGERS.

(b) (finiteness) nag =0 for g > ga.
{GWaet  <— {nag}

GV transform

» similar to 4-dim case: GW «+— SW.
Taubes Thm

» related conj. for real GW, open GW, higher dim CYs

» massive computational evidence supporting it.
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Structure Theorem. (l.-Parker) For any symplectic CY
3-fold 3! elementary invariants e o € 7 such that

GWx = Z Z eag Gg(t,q"),  where

A#£0 g

Gg(t,q) = log (1 + ZZ H (2sin h(?)t) g— qd>

d>1 u—d Oep

is the local GW invar contribution of an ideal genus g curve
(related to a calculation by Bryan-Pandharipande).

» the GV transform of G, satisfies (a) and (b).

» for g =0 = Ny =1 and the rest are 0.

» forg =1 = ng; =1forall d > 1 and the rest are 0.

— GV Conjecture (integrality part only). Finiteness is still
open, but reduced to finiteness of es .
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We also proved extensions (w/ Tom Parker) for
» any (closed) symplectic 6-dim manifold
» g =0 GW invar of semipositive symplectic manifolds

» we expect a more general structure theorem

Work in progress (w/ Penka Georgieva) on a related structure
theorem for Real GW invariants.
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Real GW invariants

A Real structure on X is an anti-symplectic involution cx.
Choose J real i.e. cxJ = —J.

Real GW invariants GW® count Real maps
f:(C,c)—= (X, cx)
= such that
. foc=cxof
for some Real str c on C.

(Need to fix extra data to orient these moduli spaces.)

—> Real GW invariants GW¥(X) € Q.
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CY 3-fold 3! elementary invariants ey , € 7 such that

GWy = Z eng Re(t,q"),  where

Ag

Rg the local RGW contrib of an ideal genus g Real curve.

1 kt\
Ry = Zk<25mh—t) g~

k odd

SR ITY

d>1 k odd

—> Walcher-GV Conjecture for g =0, 1.
Proved by A. Zarmozaev for g=0 under extra assumptions.
Work in progress (w/ P. Georgieva): understand R, for g > 2.
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Proof of the GV/Real GV conjecture

Main steps:
1. reduce to proving a local version of the GV conjecture (in
a neighborhood of an embedded curve)
2. construct an elementary local model J¥*™ such that
» can calculate its local contribution Gg to GW invar
» verify it satisfies local GV conjecture
3. locally deform J to J¢*™ and prove wall-crossing formulas
for local contributions.
4. conclude that each local contribution is a linear
combination with integer coef of elementary
contributions.
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Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched)
covers of disjoint embeddings.

Multiple covers typically
» come in families.
» are not cut transversally.
» have nontrivial automorphisms.
X — GWA7g € Q

Seems like:
> np, counts embeddings and
» factor is the " contribution of the mc”

Problem: Embeddings can accumulate as mc of embeddings!
But only on lower level ones.
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Cluster decomposition

Solution: Package into "clusters of curves” O = B(C,¢).

By induction on level,
» decompose M(X) = || O;.
» every cluster O has well defined
contribution GW(O).

Therefore

GWx = GW(0)).

— reduce to proving local GV Conj (for every cluster).
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Behaviour under deformations

For generic deformation of J

=

» higher level curves may exit/enter the cluster.

» birth/death of the core curve.

>

r~
O

GW(O_) + GW(O,) ~ 0

@ up to higher level clusters
. (uptohig )
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Wall Crossings

But core should survive as we deform J to Jejem!

Deform J keeping the core pseudo-holomorphic:

/ N
{ ~
e
A~ —
generic singularity: core crossing.
g Bifurcation analysis: Kuranishi
< s local model (quadratic) =
= | GW(O_) ~ —GW(0O,)

C_ < . O,

up to higher level clusters.
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Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee
to construct an elementary local model J¢*™ for which we can
verify the local GV conjecture:

(1) the core C is super-rigid =
» the only curves in the cluster are mc of C

» the local contribution is

GW(O%m) = e(Ob)
[M(O)]vr

(2) can use deformation arguments — relate it to
» a K-theory calculation/equivariant localization
» a TQFT calculation by Bryan-Pandharipande

via degenerating the core curve to a nodal one.



