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Background: GW invariants
Let X be a symplectic Calabi-Yau 3-fold, i.e.

c1(X ) = 0, dimRX = 6.

MA,g (X ) = moduli space of J-holo genus g curves
representing A ∈ H2(X ):

f

X

Σ genus g
dimMA,g (X ) = 2c1(X )A + (dimRX − 6)(1− g) ≡ 0

GWA,g = #vir

{
MA,g (X ) with sign and weight

1

#Aut

}
∈ Q
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Gopakumar-Vafa Conjecture. For any (complex) CY
3-fold, the GW generating function∑
A 6=0,
g

GWA,g t2g−2qA

=
∑
A 6=0,
g

nA,g

∞∑
k=1

1

k

(
2 sin

kt

2

)2g−2
qkA

where

(a) (integrality) nA,g are INTEGERS.

(b) (finiteness) nA,g = 0 for g ≥ gA.

{GWA,g} ←→
GV transform

{nA,g}

I similar to 4-dim case: GW ←→
Taubes Thm

SW .

I related conj. for real GW, open GW, higher dim CYs

I massive computational evidence supporting it.
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Structure Theorem. (I.-Parker) For any symplectic CY
3-fold

∃! elementary invariants eA,g ∈ Z such that

GWX =
∑
A 6=0

∑
g

eA,g Gg (t, qA), where

Gg (t, q) = log

(
1 +

∑
d≥1

∑
µ`d

∏
�∈µ

(
2 sin

h(�)t

2

)2g−2
qd

)
is the local GW invar contribution of an ideal genus g curve
(related to a calculation by Bryan-Pandharipande).

I the GV transform of Gg satisfies (a) and (b).

I for g = 0 =⇒ n1,0 = 1 and the rest are 0.

I for g = 1 =⇒ nd ,1 = 1 for all d ≥ 1 and the rest are 0.

=⇒ GV Conjecture (integrality part only). Finiteness is still
open, but reduced to finiteness of eA,g .
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We also proved extensions (w/ Tom Parker)

for

I any (closed) symplectic 6-dim manifold

I g = 0 GW invar of semipositive symplectic manifolds

I we expect a more general structure theorem

Work in progress (w/ Penka Georgieva) on a related structure
theorem for Real GW invariants.
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Real GW invariants

A Real structure on X

is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R

count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Real GW invariants

A Real structure on X is an anti-symplectic involution cX .

Choose J real i.e. c∗XJ = −J .

Real GW invariants GW R count Real maps

f

X

Σ genus g

f : (C , c)→ (X , cX )

such that

f ◦ c = cX ◦ f

for some Real str c on C .

(Need to fix extra data to orient these moduli spaces.)

=⇒ Real GW invariants GW R(X ) ∈ Q.



Structure Theorem.∗(Georgieva-I) For any symplectic Real
CY 3-fold

∃! elementary invariants eRA,g ∈ Z such that

GW R
X =

∑
A,g

eRA,g Rg (t, qA), where

Rg the local RGW contrib of an ideal genus g Real curve.

R0 =
∑
k odd

1

k

(
2 sinh

kt

2

)−1
qk

R1 =
∑
d≥1

∑
k odd

1

k
qkd

=⇒ Walcher-GV Conjecture for g = 0, 1.

Proved by A. Zarmozaev for g=0 under extra assumptions.

Work in progress (w/ P. Georgieva): understand Rg for g ≥ 2.
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Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in
a neighborhood of an embedded curve)

2. construct an elementary local model Jelem such that

I can calculate its local contribution Gg to GW invar
I verify it satisfies local GV conjecture

3. locally deform J to Jelem and prove wall-crossing formulas
for local contributions.

4. conclude that each local contribution is a linear
combination with integer coef of elementary
contributions.
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Structure of the moduli space

Thm. For generic J , all J-holomorphic maps are (branched)
covers of disjoint embeddings.

X

Multiple covers typically

I come in families.

I are not cut transversally.

I have nontrivial automorphisms.

=⇒ GWA,g ∈ Q.

Seems like:

I nA,g counts embeddings and

I factor is the ”contribution of the mc”

Problem: Embeddings can accumulate as mc of embeddings!
But only on lower level ones.
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Cluster decomposition

Solution: Package into ”clusters of curves” O = B(C , ε).
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By induction on level,

I decompose M(X ) =
⊔
Oi .

I every cluster O has well defined
contribution GW (O).

Therefore

GWX =
∑
i

GW (Oi).

=⇒ reduce to proving local GV Conj (for every cluster).
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Behaviour under deformations

For generic deformation of J
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GW (O−) + GW (O+) ≈ 0

(up to higher level clusters)
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Wall Crossings

But core should survive as we deform J to Jelem!

Deform J keeping the core pseudo-holomorphic:

{

generic singularity: core crossing.

ss

b bb

C− C+

s

Bifurcation analysis: Kuranishi
local model (quadratic) =⇒

GW (O−) ≈ −GW (O+)

up to higher level clusters.
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Elementary Clusters

For every smooth curve C , adapt a 4-dim constr by Junho Lee
to construct an elementary local model Jelem for which we can
verify the local GV conjecture:

(1) the core C is super-rigid =⇒

I the only curves in the cluster are mc of C

I the local contribution is

GW (Oelem) =

∫
[M(C)]vir

e(Ob)

(2) can use deformation arguments – relate it to

I a K -theory calculation/equivariant localization

I a TQFT calculation by Bryan-Pandharipande

via degenerating the core curve to a nodal one.
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