The Gopakumar-Vafa conjecture for symplectic manifolds

Eleny Ionel

based on joint work with Tom Parker/Penka Georgieva

TGTC conference, February 2017

Background: GW invariants

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$
c_{1}(X)=0, \quad \operatorname{dim}_{\mathbb{R}} X=6
$$

Background: GW invariants

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$
c_{1}(X)=0, \quad \operatorname{dim}_{\mathbb{R}} X=6 .
$$

$\overline{\mathcal{M}}_{A, g}(X)=$ moduli space of J-holo genus g curves representing $A \in H_{2}(X)$:

Background: GW invariants

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$
c_{1}(X)=0, \quad \operatorname{dim}_{\mathbb{R}} X=6 .
$$

$\overline{\mathcal{M}}_{A, g}(X)=$ moduli space of J-holo genus g curves representing $A \in H_{2}(X)$:

$\operatorname{dim} \overline{\mathcal{M}}_{A, g}(X)=2 c_{1}(X) A+\left(\operatorname{dim}_{\mathbb{R}} X-6\right)(1-g) \equiv 0$

Background: GW invariants

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$
c_{1}(X)=0, \quad \operatorname{dim}_{\mathbb{R}} X=6 .
$$

$\overline{\mathcal{M}}_{A, g}(X)=$ moduli space of J-holo genus g curves representing $A \in H_{2}(X)$:

$\operatorname{dim} \overline{\mathcal{M}}_{A, g}(X)=2 c_{1}(X) A+\left(\operatorname{dim}_{\mathbb{R}} X-6\right)(1-g) \equiv 0$
$G W_{A, g}=\#^{\text {vir }}\left\{\overline{\mathcal{M}}_{A, g}(X)\right.$ with sign and weight $\left.\frac{1}{\# A u t}\right\} \in \mathbb{Q}$

Background: GW invariants

Let X be a symplectic Calabi-Yau 3-fold, i.e.

$$
c_{1}(X)=0, \quad \operatorname{dim}_{\mathbb{R}} X=6 .
$$

$\overline{\mathcal{M}}_{A, g}(X)=$ moduli space of J-holo genus g curves representing $A \in H_{2}(X)$:

$\operatorname{dim} \overline{\mathcal{M}}_{A, g}(X)=2 c_{1}(X) A+\left(\operatorname{dim}_{\mathbb{R}} X-6\right)(1-g) \equiv 0$

$$
G W_{A, g}=\int_{\left[\overline{\mathcal{M}}_{A, g}(X)\right]^{\text {ir }}} 1 \in \mathbb{Q}
$$

Gopakumar-Vafa Conjecture. For any (complex) CY 3-fold, the GW generating function

$$
\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}
$$

Gopakumar-Vafa Conjecture. For any (complex) CY 3-fold, the GW generating function

$$
\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}
$$

Gopakumar-Vafa Conjecture. For any (complex) CY 3 -fold, the GW generating function
$\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}$
where
(a) (integrality) $n_{A, g}$ are INTEGERS.

Gopakumar-Vafa Conjecture. For any (complex) CY 3 -fold, the GW generating function
$\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}$
where
(a) (integrality) $n_{A, g}$ are INTEGERS.
(b) (finiteness) $n_{A, g}=0$ for $g \geq g_{A}$.

Gopakumar-Vafa Conjecture. For any (complex) CY 3 -fold, the GW generating function
$\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}$
where
(a) (integrality) $n_{A, g}$ are INTEGERS.
(b) (finiteness) $n_{A, g}=0$ for $g \geq g_{A}$.

$$
\left\{G W_{A, g}\right\} \underset{\text { GV transform }}{\longleftrightarrow}\left\{n_{A, g}\right\}
$$

Gopakumar-Vafa Conjecture. For any (complex) CY 3-fold, the GW generating function

$$
\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}
$$

where
(a) (integrality) $n_{A, g}$ are INTEGERS.
(b) (finiteness) $n_{A, g}=0$ for $g \geq g_{A}$.

$$
\left\{G W_{A, g}\right\} \underset{\text { GV transform }}{\longleftrightarrow}\left\{n_{A, g}\right\}
$$

- similar to 4-dim case: $G W \underset{\text { Taubes Thm }}{\overleftrightarrow{\longrightarrow}} S W$.

Gopakumar-Vafa Conjecture. For any (complex) CY 3-fold, the GW generating function

$$
\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}
$$

where
(a) (integrality) $n_{A, g}$ are $I N T E G E R S$.
(b) (finiteness) $n_{A, g}=0$ for $g \geq g_{A}$.

$$
\left\{G W_{A, g}\right\} \underset{\text { GV transform }}{\longleftrightarrow}\left\{n_{A, g}\right\}
$$

- similar to 4-dim case: GW $\underset{\text { Taubes Thm }}{\longleftrightarrow}$ SW.
- related conj. for real GW, open GW, higher dim CYs

Gopakumar-Vafa Conjecture. For any (complex) CY 3-fold, the GW generating function

$$
\sum_{\substack{A \neq 0, g}} G W_{A, g} t^{2 g-2} q^{A}=\sum_{\substack{A \neq 0, g}} n_{A, g} \sum_{k=1}^{\infty} \frac{1}{k}\left(2 \sin \frac{k t}{2}\right)^{2 g-2} q^{k A}
$$

where
(a) (integrality) $n_{A, g}$ are $I N T E G E R S$.
(b) (finiteness) $n_{A, g}=0$ for $g \geq g_{A}$.

$$
\left\{G W_{A, g}\right\} \underset{\text { GV transform }}{\longleftrightarrow}\left\{n_{A, g}\right\}
$$

- similar to 4-dim case: GW $\underset{\text { Taubes Thm }}{\longleftrightarrow}$ SW.
- related conj. for real GW, open GW, higher dim CYs
- massive computational evidence supporting it.

Structure Theorem. (1.-Parker) For any symplectic CY 3-fold

Structure Theorem. (1.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right)
$$

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_{g} satisfies (a) and (b).

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_{g} satisfies (a) and (b).
- for $g=0 \Longrightarrow n_{1,0}=1$ and the rest are 0 .

Structure Theorem. (I.-Parker) For any symplectic CY 3-fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_{g} satisfies (a) and (b).
- for $g=0 \Longrightarrow n_{1,0}=1$ and the rest are 0 .
- for $g=1 \Longrightarrow n_{d, 1}=1$ for all $d \geq 1$ and the rest are 0 .

Structure Theorem. (I.-Parker) For any symplectic CY 3 -fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_{g} satisfies (a) and (b).
- for $g=0 \Longrightarrow n_{1,0}=1$ and the rest are 0 .
- for $g=1 \Longrightarrow n_{d, 1}=1$ for all $d \geq 1$ and the rest are 0 .
\Longrightarrow GV Conjecture (integrality part only).

Structure Theorem. (1.-Parker) For any symplectic CY 3 -fold \exists ! elementary invariants $e_{A, g} \in \mathbb{Z}$ such that

$$
\begin{array}{r}
G W_{X}=\sum_{A \neq 0} \sum_{g} e_{A, g} G_{g}\left(t, q^{A}\right), \quad \text { where } \\
G_{g}(t, q)=\log \left(1+\sum_{d \geq 1} \sum_{\mu \vdash d} \prod_{\square \in \mu}\left(2 \sin \frac{h(\square) t}{2}\right)^{2 g-2} q^{d}\right)
\end{array}
$$

is the local GW invar contribution of an ideal genus g curve (related to a calculation by Bryan-Pandharipande).

- the GV transform of G_{g} satisfies (a) and (b).
- for $g=0 \Longrightarrow n_{1,0}=1$ and the rest are 0 .
- for $g=1 \Longrightarrow n_{d, 1}=1$ for all $d \geq 1$ and the rest are 0 .
\Longrightarrow GV Conjecture (integrality part only). Finiteness is still open, but reduced to finiteness of $e_{A, g}$.

We also proved extensions (w/ Tom Parker)

We also proved extensions (w/ Tom Parker) for

- any (closed) symplectic 6-dim manifold

We also proved extensions (w/ Tom Parker) for

- any (closed) symplectic 6-dim manifold
- $g=0 \mathrm{GW}$ invar of semipositive symplectic manifolds

We also proved extensions (w/ Tom Parker) for

- any (closed) symplectic 6-dim manifold
- $g=0 \mathrm{GW}$ invar of semipositive symplectic manifolds
- we expect a more general structure theorem

We also proved extensions (w/ Tom Parker) for

- any (closed) symplectic 6-dim manifold
- $g=0 \mathrm{GW}$ invar of semipositive symplectic manifolds
- we expect a more general structure theorem

Work in progress (w/ Penka Georgieva)

We also proved extensions (w/ Tom Parker) for

- any (closed) symplectic 6-dim manifold
- $g=0 \mathrm{GW}$ invar of semipositive symplectic manifolds
- we expect a more general structure theorem

Work in progress (w/ Penka Georgieva) on a related structure theorem for Real GW invariants.

Real GW invariants

A Real structure on X

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real i.e. $c_{X}^{*} J=-J$.

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real i.e. $c_{X}^{*} J=-J$.
Real GW invariants $G W^{\mathbb{R}}$

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real i.e. $c_{X}^{*} J=-J$.
Real GW invariants $G W^{\mathbb{R}}$ count Real maps

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real ie. $c_{X}^{*} J=-J$.
Real GW invariants $G W^{\mathbb{R}}$ count Real maps

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real ie. $c_{X}^{*} J=-J$.
Real GW invariants $G W^{\mathbb{R}}$ count Real maps

$f:(C, c) \rightarrow\left(X, c_{X}\right)$
such that

$$
f \circ c=c_{X} \circ f
$$

for some Real str con C.

Real GW invariants

A Real structure on X is an anti-symplectic involution c_{X}.
Choose J real i.e. $c_{X}^{*} J=-J$.
Real GW invariants $G W^{\mathbb{R}}$ count Real maps

$$
\begin{aligned}
& f:(C, c) \rightarrow\left(X, c_{X}\right) \\
& \text { such that } \\
& \qquad f \circ c=c_{X} \circ f
\end{aligned}
$$

for some Real str con C.
(Need to fix extra data to orient these moduli spaces.)
\Longrightarrow Real GW invariants $G W^{\mathbb{R}}(X) \in \mathbb{Q}$.

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

$$
R_{0}=\sum_{k \text { odd }} \frac{1}{k}\left(2 \sinh \frac{k t}{2}\right)^{-1} q^{k}
$$

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

$$
\begin{aligned}
R_{0} & =\sum_{k \text { odd }} \frac{1}{k}\left(2 \sinh \frac{k t}{2}\right)^{-1} q^{k} \\
R_{1} & =\sum_{d \geq 1} \sum_{k \text { odd }} \frac{1}{k} q^{k d}
\end{aligned}
$$

Structure Theorem.*(Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

$$
\begin{aligned}
& R_{0}=\sum_{k \text { odd }} \frac{1}{k}\left(2 \sinh \frac{k t}{2}\right)^{-1} q^{k} \\
& R_{1}=\sum_{d \geq 1} \sum_{k \text { odd }} \frac{1}{k} q^{k d}
\end{aligned}
$$

\Longrightarrow Walcher-GV Conjecture for $g=0,1$.

Structure Theorem. ${ }^{*}$ (Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

$$
\begin{aligned}
R_{0} & =\sum_{k \text { odd }} \frac{1}{k}\left(2 \sinh \frac{k t}{2}\right)^{-1} q^{k} \\
R_{1} & =\sum_{d \geq 1} \sum_{k \text { odd }} \frac{1}{k} q^{k d}
\end{aligned}
$$

\Longrightarrow Walcher-GV Conjecture for $g=0,1$.
Proved by A. Zarmozaev for $\mathrm{g}=0$ under extra assumptions.

Structure Theorem. ${ }^{*}$ (Georgieva-I) For any symplectic Real CY 3-fold \exists ! elementary invariants $e_{A, g}^{\mathbb{R}} \in \mathbb{Z}$ such that

$$
G W_{X}^{\mathbb{R}}=\sum_{A, g} e_{A, g}^{\mathbb{R}} R_{g}\left(t, q^{A}\right), \quad \text { where }
$$

R_{g} the local RGW contrib of an ideal genus g Real curve.

$$
\begin{aligned}
R_{0} & =\sum_{k \text { odd }} \frac{1}{k}\left(2 \sinh \frac{k t}{2}\right)^{-1} q^{k} \\
R_{1} & =\sum_{d \geq 1} \sum_{k \text { odd }} \frac{1}{k} q^{k d}
\end{aligned}
$$

\Longrightarrow Walcher-GV Conjecture for $g=0,1$.
Proved by A. Zarmozaev for $\mathrm{g}=0$ under extra assumptions.
Work in progress (w/P. Georgieva): understand R_{g} for $g \geq 2$.

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
2. construct an elementary local model Jelem such that

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
2. construct an elementary local model Jelem such that

- can calculate its local contribution G_{g} to GW invar

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
2. construct an elementary local model Jelem such that

- can calculate its local contribution G_{g} to GW invar
- verify it satisfies local GV conjecture

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
2. construct an elementary local model Jelem such that

- can calculate its local contribution G_{g} to GW invar
- verify it satisfies local GV conjecture

3. locally deform J to $J^{e l e m}$ and prove wall-crossing formulas for local contributions.

Proof of the GV/Real GV conjecture

Main steps:

1. reduce to proving a local version of the GV conjecture (in a neighborhood of an embedded curve)
2. construct an elementary local model Jelem such that - can calculate its local contribution G_{g} to GW invar

- verify it satisfies local GV conjecture

3. locally deform J to $J^{e l e m}$ and prove wall-crossing formulas for local contributions.
4. conclude that each local contribution is a linear combination with integer coef of elementary contributions.

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$
\Longrightarrow G W_{A, g} \in \mathbb{Q}
$$

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$
\Longrightarrow G W_{A, g} \in \mathbb{Q}
$$

Seems like:

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$
\Longrightarrow G W_{A, g} \in \mathbb{Q}
$$

Seems like:

- $n_{A, g}$ counts embeddings and

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Multiple covers typically

- come in families.
- are not cut transversally.
- have nontrivial automorphisms.

$$
\Longrightarrow G W_{A, g} \in \mathbb{Q}
$$

Seems like:

- $n_{A, g}$ counts embeddings and
- factor is the "contribution of the mc"

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Seems like:

- $n_{A, g}$ counts embeddings and
- factor is the "contribution of the mc"

Problem: Embeddings can accumulate as mc of embeddings!

Structure of the moduli space

Thm. For generic J, all J-holomorphic maps are (branched) covers of disjoint embeddings.

Seems like:

- $n_{A, g}$ counts embeddings and
- factor is the "contribution of the mc"

Problem: Embeddings can accumulate as mc of embeddings! But only on lower level ones.

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

By induction on level,

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

> By induction on level,
> $\quad \quad$ decompose $\overline{\mathcal{M}}(X)=\bigsqcup \mathcal{O}_{i}$

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

By induction on level,

- decompose $\overline{\mathcal{M}}(X)=\bigsqcup \mathcal{O}_{i}$.
- every cluster \mathcal{O} has well defined contribution $G W(\mathcal{O})$.

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

By induction on level,

- decompose $\overline{\mathcal{M}}(X)=\bigsqcup \mathcal{O}_{i}$.
- every cluster \mathcal{O} has well defined contribution $G W(\mathcal{O})$.
Therefore

$$
G W_{X}=\sum_{i} G W\left(\mathcal{O}_{i}\right)
$$

Cluster decomposition

Solution: Package into "clusters of curves" $\mathcal{O}=B(C, \varepsilon)$.

By induction on level,

- decompose $\overline{\mathcal{M}}(X)=\bigsqcup \mathcal{O}_{i}$.
- every cluster \mathcal{O} has well defined contribution $G W(\mathcal{O})$.
Therefore

$$
G W_{X}=\sum_{i} G W\left(\mathcal{O}_{i}\right) .
$$

\Longrightarrow reduce to proving local GV Conj (for every cluster).

Behaviour under deformations

For generic deformation of J

Behaviour under deformations

For generic deformation of J

- higher level curves may exit/enter the cluster.

Behaviour under deformations

For generic deformation of J

- higher level curves may exit/enter the cluster.
- birth/death of the core curve.

Behaviour under deformations

For generic deformation of J

- higher level curves may exit/enter the cluster.
- birth/death of the core curve.

Behaviour under deformations

For generic deformation of J

- higher level curves may exit/enter the cluster.
- birth/death of the core curve.

$$
\begin{aligned}
& G W\left(\mathcal{O}_{-}\right)+G W\left(\mathcal{O}_{+}\right) \approx 0 \\
& \text { (up to higher level clusters) }
\end{aligned}
$$

Wall Crossings

But core should survive as we deform J to $J_{\text {elem }}$!

Wall Crossings

But core should survive as we deform J to $J_{\text {elem }}$!
Deform J keeping the core pseudo-holomorphic:

Wall Crossings

But core should survive as we deform J to $J_{\text {elem }}$!
Deform J keeping the core pseudo-holomorphic:

generic singularity: core crossing.

Wall Crossings

But core should survive as we deform J to $J_{\text {elem }}$!
Deform J keeping the core pseudo-holomorphic:

generic singularity: core crossing.

Bifurcation analysis: Kuranishi local model (quadratic) \Longrightarrow

$$
G W\left(\mathcal{O}_{-}\right) \approx-G W\left(\mathcal{O}_{+}\right)
$$

up to higher level clusters.

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:
(1) the core C is super-rigid \Longrightarrow

- the only curves in the cluster are mc of C

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:
(1) the core C is super-rigid \Longrightarrow

- the only curves in the cluster are mc of C
- the local contribution is

$$
G W\left(\mathcal{O}^{e l e m}\right)=\int_{[\overline{\mathcal{M}}(C)]^{\text {vir }}} e(O b)
$$

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:
(1) the core C is super-rigid \Longrightarrow

- the only curves in the cluster are mc of C
- the local contribution is

$$
G W\left(\mathcal{O}^{e l e m}\right)=\int_{[\overline{\mathcal{M}}(C)]^{\text {vir }}} e(O b)
$$

(2) can use deformation arguments - relate it to

- a K-theory calculation/equivariant localization

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:
(1) the core C is super-rigid \Longrightarrow

- the only curves in the cluster are mc of C
- the local contribution is

$$
G W\left(\mathcal{O}^{e l e m}\right)=\int_{[\overline{\mathcal{M}}(C)]^{\text {vir }}} e(O b)
$$

(2) can use deformation arguments - relate it to

- a K-theory calculation/equivariant localization
- a TQFT calculation by Bryan-Pandharipande

Elementary Clusters

For every smooth curve C, adapt a 4-dim constr by Junho Lee to construct an elementary local model $\mathrm{J}^{\text {elem }}$ for which we can verify the local GV conjecture:
(1) the core C is super-rigid \Longrightarrow

- the only curves in the cluster are mc of C
- the local contribution is

$$
G W\left(\mathcal{O}^{e l e m}\right)=\int_{[\overline{\mathcal{M}}(C)]^{\text {vir }}} e(O b)
$$

(2) can use deformation arguments - relate it to

- a K-theory calculation/equivariant localization
- a TQFT calculation by Bryan-Pandharipande via degenerating the core curve to a nodal one.

