Integrable Surface Classes and Primitive Harmonic Maps from Riemann Surfaces to k-Symmetric Spaces via Loop Groups

Josef Dorfmeister (TU München)

Texas Tech University, Lubbock, 18-02-2017

Topics

We will discuss the following topics:

- Surfaces, Gauss maps, Associated Families
- the Loop Group Method for Harmonic Maps
- Some Applications to Surface Theory

The 6 types of surfaces mentioned in this talk will be

- CMC surfaces in \mathbb{R}^3
- spacelike CMC surfaces in Minkowski space $\mathbb{R}^{2,1}$
- CMC surfaces in \mathbb{H}^3 , case 0 < H < 1
- minimal Lagrangian surfaces in $\mathbb{C}P^2$
- minimal surfaces in Nil₃
- Willmore surfaces in S^{n+2}

I will talk exclusively about surfaces which can be described best in conformal coordinates.

Consider the following situation for surfaces in \mathbb{R}^3 :

where

$$\mathcal{G}_f = \frac{\partial_x f \times \partial_y f}{||\partial_x f \times \partial_y f||}$$

is the Gauss map of f.

Consider the following situation for surfaces in \mathbb{R}^3 :

where

$$\mathcal{G}_f = \frac{\partial_x f \times \partial_y f}{||\partial_x f \times \partial_y f||}$$

is the Gauss map of f.

Theorem (Ruh)

f is CMC $\Leftrightarrow \mathcal{G}_f$ is harmonic

Consider the following situation for spacelike surfaces in $\mathbb{R}^{2,1}$:

where

$$\mathcal{G}_f = \frac{\partial_x f \times \partial_y f}{||\partial_x f \times \partial_y f||}$$

is the Gauss map of f.

Consider the following situation for spacelike surfaces in $\mathbb{R}^{2,1}$:

where

$$\mathcal{G}_f = \frac{\partial_x f \times \partial_y f}{||\partial_x f \times \partial_y f||}$$

is the Gauss map of f.

Theorem (T.K.Milnor)

f is spacelike CMC in $\mathbb{R}^{1,2} \Leftrightarrow \mathcal{G}_f$ is harmonic

Consider the following situation for surfaces in \mathbb{H}^3 :

$$\begin{array}{c} \mathbb{H}^{3} \\ \uparrow \\ f \\ \mathbb{D} \xrightarrow{\mathcal{G}_{f}} U\mathbb{H}^{3} = Sl(2,\mathbb{C})/U(1) \end{array}$$

where

$$\mathcal{G}_f = (f, n_f)$$

is the "normal Gauss map" of f, where n_f is the normal of f in \mathbb{H}^3 .

Consider the following situation for surfaces in \mathbb{H}^3 :

$$\begin{array}{c} \mathbb{H}^{3} \\ \uparrow \\ f \\ \mathbb{D} \xrightarrow{\mathcal{G}_{f}} U\mathbb{H}^{3} = Sl(2,\mathbb{C})/U(1) \end{array}$$

where

$$\mathcal{G}_f = (f, n_f)$$

is the "normal Gauss map" of f, where n_f is the normal of f in \mathbb{H}^3 .

Theorem (T.Ishihara)

f is CMC in $\mathbb{H}^3 \Leftrightarrow \mathcal{G}_f$ is harmonic

Consider the following situation for Lagrangian surfaces in $\mathbb{C}P^2$ and their "horizontal lift" \hat{f} into S^5 respectively:

where

$$\mathcal{G}_f \equiv (-ie^{-\frac{u}{2}}\hat{f}_z, -ie^{-\frac{u}{2}}\hat{f}_{\bar{z}}, \hat{f}) \bmod U(1)$$

is a "horizontal lift" of f.

Consider the following situation for Lagrangian surfaces in $\mathbb{C}P^2$ and their "horizontal lift" \hat{f} into S^5 respectively:

where

$$\mathcal{G}_f \equiv (-ie^{-\frac{u}{2}}\hat{f}_z, -ie^{-\frac{u}{2}}\hat{f}_{\bar{z}}, \hat{f}) \bmod U(1)$$

is a "horizontal lift" of f.

Theorem (H.Ma-Y.Ma)

f is a minimal Lagrangian surface in $\mathbb{C}P^2 \Leftrightarrow \mathcal{G}_f$ is harmonic

Consider the following situation for surfaces in Nil_3 :

$$\begin{array}{c} \operatorname{Nil}_{3} \\ f \\ \\ \mathbb{D} \xrightarrow{\mathcal{G}_{f}} & \mathbb{H}^{2} = Sl(2,\mathbb{R})/SO(2) \end{array}$$

where

$$\mathcal{G}_f = f^{-1}n$$

is the "normal Gauss map" of f, where n is the normal to f in Nil_3

Note: While in general $\mathcal{G}_f = f^{-1}n$ takes values in the sphere S^2 in the Lie algebra of Nil₃, for non-singular, i.e. non-vertical, minimal surfaces it takes values in \mathbb{H}^2 .

Consider the following situation for surfaces in Nil_3 :

$$\begin{array}{c} \operatorname{Nil}_{3} \\ f \\ \\ \mathbb{D} \xrightarrow{\mathcal{G}_{f}} & \mathbb{H}^{2} = Sl(2,\mathbb{R})/SO(2) \end{array}$$

where

$$\mathcal{G}_f = f^{-1}n$$

is the "normal Gauss map" of f, where n is the normal to f in Nil_3

Note: While in general $\mathcal{G}_f = f^{-1}n$ takes values in the sphere S^2 in the Lie algebra of Nil₃, for non-singular, i.e. non-vertical, minimal surfaces it takes values in \mathbb{H}^2 .

Theorem (B.Daniel)

f is nowhere vertical and minimal in $Nil_3 \Leftrightarrow \mathcal{G}_f$ is harmonic

Consider the following situation for surfaces in S^{n+2} :

$$\begin{array}{c} S^{n+2} \\ \uparrow \\ \mathbb{D} \xrightarrow{\mathcal{G}_f} & Gr_{1,3}(\mathbb{R}^{1,n+3}) = SO^+(1,n+3)/SO^+(1,3) \times SO(n) \end{array}$$

where

$$\mathcal{G}_f = span\langle Y, Y_z, Y_{\bar{z}}, Y_{z\bar{z}}, \rangle$$

is the "conformal Gauss map" of f

and where Y denotes a canonical lift of f into the light cone $S^{n+2} \subset C^{n+3} \subset R^{1,n+3}$.

Consider the following situation for surfaces in S^{n+2} :

$$\begin{array}{c} S^{n+2} \\ \uparrow \\ \mathbb{D} \xrightarrow{\mathcal{G}_f} & Gr_{1,3}(\mathbb{R}^{1,n+3}) = SO^+(1,n+3)/SO^+(1,3) \times SO(n) \end{array}$$

where

$$\mathcal{G}_f = span\langle Y, Y_z, Y_{\bar{z}}, Y_{z\bar{z}}, \rangle$$

is the "conformal Gauss map" of f

and where Y denotes a canonical lift of f into the light cone $S^{n+2} \subset C^{n+3} \subset R^{1,n+3}$.

Theorem (Blaschke, Bryant, Eijiri, Rigoli)

f is a Willmore immersion into $S^{n+2} \Leftrightarrow \mathcal{G}_f$ is harmonic

Harmonic maps from Riemann surfaces to k-symmetric spaces: harmonic maps

Let

(M,g) Riemannian manifold w.l.g. orientable (\hat{M}, \hat{g}) pseudo-Riemannian manifold $N: M \rightarrow \hat{M}$ differentiable map

Then the map N is called harmonic iff for all domains $\mathcal{D} \subset M$ with compact closure and all variations N_t of N with compact support in \mathcal{D} we have

$$\frac{d}{dt}E(N_t,\mathcal{D})|_{t=0} = 0,$$

where

$$E(h, \mathcal{D}) = \int_{\mathcal{D}} ||dh||^2 dvol^M.$$

Harmonic maps from Riemann surfaces to k-symmetric spaces: harmonic maps

Let

(M,g) Riemannian manifold w.l.g. orientable (\hat{M}, \hat{g}) pseudo-Riemannian manifold $N: M \rightarrow \hat{M}$ differentiable map

Then the map N is called harmonic iff for all domains $\mathcal{D} \subset M$ with compact closure and all variations N_t of N with compact support in \mathcal{D} we have

$$\frac{d}{dt}E(N_t,\mathcal{D})|_{t=0} = 0,$$

where

$$E(h, \mathcal{D}) = \int_{\mathcal{D}} ||dh||^2 dvol^M.$$

Theorem

If dim M = 2, then w.l.g. \mathcal{D} an open subset of \mathbb{C} with euclidean metric.

k-symmetric spaces

- *G* real semi-simple Lie group (finite dimensional)
- $Fix_{\tau}(G)^0 \subset K \subset Fix_{\tau}(G)$ K closed subgroup

G/K~ is called a $~{\bf k}-{\rm symmetric}$ space

k-symmetric spaces

G real semi-simple Lie group (finite dimensional)
 τ automorphism of G of finite order k
 Fix_τ(G)⁰ ⊂ K ⊂ Fix_τ(G) K closed subgroup

G/K is called a **k**-symmetric space

infinitesimally

 $\begin{array}{l} \bullet \quad \mathfrak{g} = Lie(G) \\ \bullet \quad \mathfrak{k} = Lie(K) \\ \bullet \quad \mathfrak{g}^{\mathbb{C}} = \sum_{j=0}^{k-1} \mathfrak{g}_{j}^{\mathbb{C}}, \quad \mathfrak{g}_{j}^{\mathbb{C}} \text{ an eigenspace of } d\tau \equiv \tau, \\ \bullet \quad \mathfrak{g}_{0}^{\mathbb{C}} = \mathfrak{k}^{\mathbb{C}}, \quad \mathfrak{m}^{\mathbb{C}} = \sum_{j=1}^{k-1} \mathfrak{g}_{j}^{\mathbb{C}}, \\ \bullet \quad \mathfrak{g}_{0} = \mathfrak{k}, \quad \mathfrak{m} = (\sum_{j=1}^{k-1} \mathfrak{g}_{j}^{\mathbb{C}}) \cap \mathfrak{g} \quad , \quad \mathfrak{g} = \mathfrak{k} \oplus \mathfrak{m} \end{array}$

Harmonic $N : \mathbb{D} \to G/K$: general case

Consider the following diagram:

Put

 $\alpha = F^{-1}dF = \alpha_{\mathfrak{k}} + \alpha_{\mathfrak{m}}$

and decompose into (1,0)-part and (0,1)-part

 $\alpha_{\mathfrak{k}} = \alpha'_{\mathfrak{k}} + \alpha''_{\mathfrak{k}} \text{ and } \alpha_{\mathfrak{m}} = \alpha'_{\mathfrak{m}} + \alpha''_{\mathfrak{m}}$

Harmonic $N : \mathbb{D} \to G/K$: general case

Consider the following diagram:

Put

 $\alpha = F^{-1}dF = \alpha_{\mathfrak{k}} + \alpha_{\mathfrak{m}}$

and decompose into (1,0)-part and (0,1)-part

 $\alpha_{\mathfrak{k}} = \alpha'_{\mathfrak{k}} + \alpha''_{\mathfrak{k}} \ \, \text{and} \ \ \, \alpha_{\mathfrak{m}} = \alpha'_{\mathfrak{m}} + \alpha''_{\mathfrak{m}}$

Theorem

N is harmonic if and only if

$$d\alpha'_{\mathfrak{m}} + [\alpha_{\mathfrak{k}} \wedge \alpha'_{\mathfrak{m}}] = d\alpha''_{\mathfrak{m}} + [\alpha_{\mathfrak{k}} \wedge \alpha''_{\mathfrak{m}}] = -\frac{1}{2} [\alpha'_{\mathfrak{m}} \wedge \alpha''_{\mathfrak{m}}]|_{\mathfrak{m}}$$

$$a_{\mathfrak{k}} + \frac{1}{2} [\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{k}}] + [\alpha'_{\mathfrak{m}} \wedge \alpha''_{\mathfrak{m}}]|_{\mathfrak{k}} = 0$$

Primitive Harmonic Maps

Theorem

N is harmonic if and only if

•
$$d\alpha'_{\mathfrak{m}} + [\alpha_{\mathfrak{k}} \wedge \alpha'_{\mathfrak{m}}] = d\alpha''_{\mathfrak{m}} + [\alpha_{\mathfrak{k}} \wedge \alpha''_{\mathfrak{m}}] = -\frac{1}{2} [\alpha'_{\mathfrak{m}} \wedge \alpha''_{\mathfrak{m}}]|_{\mathfrak{m}}$$

• $d\alpha_{\mathfrak{k}} + \frac{1}{2} [\alpha_{\mathfrak{k}} \wedge \alpha_{\mathfrak{k}}] + [\alpha'_{\mathfrak{m}} \wedge \alpha''_{\mathfrak{m}}]|_{\mathfrak{k}} = 0$

Theorem

Assume G/K is symmetric or, more generally, we have $\alpha'_{\mathfrak{m}} \in \mathfrak{g}_{-1}$.

Then
$$\alpha''_{\mathfrak{m}} \in \mathfrak{g}_{+1}$$
 and putting $\alpha_{\lambda} = \lambda^{-1} \alpha'_{\mathfrak{m}} + \alpha_{\mathfrak{k}} + \lambda \alpha''_{\mathfrak{m}}$ we obtain:

N is harmonic if and only if $d\alpha_{\lambda} + \frac{1}{2}[\alpha_{\lambda} \wedge \alpha_{\lambda}] = 0$ for all $\lambda \in S^1$.

Definition

A harmonic map is called primitive harmonic, iff $\alpha'_{\mathfrak{m}} \in \mathfrak{g}_{-1}$.

Primitive harmonic maps and extended frames

Assume $N : \mathbb{D} \to G/K$ is primitive harmonic.

Recall

 $\text{Recall } \alpha = F^{-1}dF \quad \text{ and } \quad \alpha_\lambda = \lambda^{-1}\alpha'_\mathfrak{m} + \alpha_\mathfrak{k} + \lambda\alpha''_\mathfrak{m}$

Assuming primitive harmonic, i.e. $\alpha'_{\mathfrak{m}} \in \mathfrak{g}_{-1}$.

We have (equivalently) the integrability condition $d\alpha_{\lambda} + \frac{1}{2}[\alpha_{\lambda} \wedge \alpha_{\lambda}] = 0$

Theorem

If $N : \mathbb{D} \to G/K$ is primitive harmonic, then there exists an S^1 -family of harmonic maps N_{λ} with frames F_{λ} satisfying $F_{\lambda}^{-1}dF_{\lambda} = \alpha_{\lambda}$ and $N_{\lambda} \equiv F_{\lambda} \mod K$. The "associated family" F_{λ} is called **extended frame**.

Theorem

Conversely, consider some family of integrable differential one-forms $\alpha_{\lambda} = \lambda^{-1} \alpha'_{-1} + \alpha_{\mathfrak{k}} + \lambda \alpha''_{1}$ on \mathbb{D} and the corresponding frames F_{λ} satisfying $\alpha_{\lambda} = F_{\lambda}^{-1} dF_{\lambda}$. Then $N_{\lambda} \equiv F_{\lambda} \mod K$ defines an S^{1} -family of primitive harmonic maps $N_{\lambda} : \mathbb{D} \to G/K$.

Theorem

Conversely, consider some family of integrable differential one-forms $\alpha_{\lambda} = \lambda^{-1} \alpha'_{-1} + \alpha_{\mathfrak{k}} + \lambda \alpha''_{1}$ on \mathbb{D} and the corresponding frames F_{λ} satisfying $\alpha_{\lambda} = F_{\lambda}^{-1} dF_{\lambda}$. Then $N_{\lambda} \equiv F_{\lambda} \mod K$ defines an S^{1} -family of primitive harmonic maps $N_{\lambda} : \mathbb{D} \to G/K$.

UPSHOT:

primitive harmonic maps $\mathbb{D} \to G/K$

\Leftrightarrow

integrable differential one forms $\alpha_{\lambda} = \lambda^{-1} \alpha'_{-1} + \alpha_{\mathfrak{k}} + \lambda \alpha''_{1}$ on \mathbb{D}

with values in $\Lambda \mathfrak{g}_{\sigma}$. "twisted loops in \mathfrak{g} "

Let f be an immersion of one of the six integrable surface classes discussed above.

For each of the surface types under consideration one has a so-called **"Hopf differential"**. This is a differential r-form:

- $\textbf{O} \quad \mathsf{CMC} \text{ surface in } \mathbb{R}^3: \text{ quadratic holomorphic differential}$
- **2** spacelike CMC surface in $R^{1,2}$: quadratic holomorphic differential
- $\textcircled{O} CMC \text{ surface in } \mathbb{H}^3: \text{ quadratic holomorphic differential}$
- minimal Lagrangian surface in $\mathbb{C}P^2$: cubic holomorphic differential
- **o** minimal surfaces in Nil₃: quadratic holomorphic differential
- Willmore surfaces in S^{n+2} : real analytic quadratic differential

For each of the surface types $\rightsquigarrow S^1$ -family of surfaces of the same type **the associated family**. If κ denotes the Hopf differential of f, then the associated family f_{λ} is essentially determined by the Hopf differential $\kappa_{\lambda} = \lambda^{-2} \kappa$

The associated family will be denoted by f_{λ} or $f(z, \lambda)$ etc. One has, moreover, $f = f_{\lambda=1}$

Extended frames : Integrable Surface Point of View : 2

Consider the following diagram:

where

• $\mathcal{G}^{\lambda}_{f}$ is the "Gauss type map" of f_{λ}

• ΛG_{σ} is the group of loops in G, i.e. all maps $S^1 \to G$ with some topology and some twisting.

- $\Lambda G_{\sigma} :\to G/K$ is, for fixed λ , the natural projection $g \to g(\lambda)modK$
- F_{λ} is the **natural lift** of $\mathcal{G}_{f}^{\lambda}$ and is called the **extended frame** of f. Recall: the homogeneous spaces G/K are k-symmetric spaces in general.

Extended Frames: Integrable Surface Point of View: 3 : Sym formulas

We want to complete the surface diagram

where we look for some Sym formula $\mathcal{S}(F^{\mathcal{G}}_{\lambda})$

This means:

• start from some (λ -dependent) primitive harmonic map $\mathcal{G} = \mathcal{G}_{\lambda}$ into G/H

- lift to the extended frame $F_{\lambda}^{\mathcal{G}}:\mathbb{D}\to\Lambda G_{\sigma}$
- apply the Sym formula
- obtain a surface of the desired type

Sym formulas: a survey

Sym formulas are known in all the six surface types discussed so far.

$$f_{\mathcal{G}} = \mathcal{S}(F_{\lambda}^{\mathcal{G}}) = [F_{\lambda}e_3]$$

**minimal in Nil₃
**Willmore surfaces in Sⁿ⁺²

Cartier Dorfmeister-Peng Wang integrable surface classes \iff

primitive harmonic maps

\$

 \Leftrightarrow

associated families integrable surface classes associated families of primitive harmonic maps,

 \checkmark \nearrow

extended frames

How to construct all extended frames: The loop group method: primitive harmonic \rightsquigarrow potential

```
\eta will be called a "holomorphic potential"

\eta = C^{-1}dC = \lambda^{-1}\eta_{-1} + \lambda^0\eta_0 + \lambda^1\eta_1 + \ldots \in \Lambda \mathfrak{g}_{\sigma}^{\mathbb{C}},

\uparrow

C(z,\lambda) holomorphic extended frame

\uparrow

decompose F_{\lambda} = CV_+, with C holomorphic in z \in \mathbb{D} and
```

 V_+ holomorphic in λ for $|\lambda| < 1$ (The matrix V_+ is a global solution to some $\bar{\partial}$ -problem on \mathbb{D} .)

 $\Uparrow F_{\lambda}: \mathbb{D} \to \Lambda G_{\sigma}$

Consider the extended frame F_{λ} of f.

 $f:\mathbb{D}\to Y$ Let's start from some surface

↑

 $N: \mathbb{D} \to G/K$ Let's start from some primitive harmonic map.

```
Let's start from some "holomorphic potential" \xi

\xi = \lambda^{-1}\xi_{-1} + \lambda^{0}\xi_{0} + \lambda^{1}\xi_{1} + \dots \in \Lambda \mathfrak{g}_{\sigma}^{\mathbb{C}}

\downarrow

C(z, \lambda) " holomorphic extended frame", solution to the ODE dC = C\xi.

\downarrow

Decompose C = F_{\lambda} \cdot (V_{+})^{-1}. This is a at least locally an "Iwasawa
```

```
splitting" = infinite dimensional "Gram-Schmidt" procedure
```

₩

 $F_{\lambda}: \mathbb{D}^{\star} \to \Lambda G_{\sigma}$

Extended frame of the primitive harmonic map $N_{\lambda} : \mathbb{D}^* \to G/K$ given by $N_{\lambda} \equiv F_{\lambda} \mod K$.

Combining both directions

$$\eta = C^{-1}dC =$$

$$\lambda^{-1}\eta_{-1} + \lambda^0\eta_0 + \lambda^1\eta_1 + \dots$$

"holomorphic potential"

≙ $C(z,\lambda)$ hol. extended frame ♠ $F_{\lambda} = CV_{+},$ C holomorphic in z V_+ holomorphic for $|\lambda| < 1$. ♠ $F_{\lambda}: \mathbb{D} \to \Lambda G_{\sigma}$ extended frame ♠ Consider $N : \mathbb{D} \to G/K$ primitive

harmonic

Primitive Harmonic \Rightarrow Potential Potential \Rightarrow Primitive Harmonic

$$\label{eq:states} \begin{split} \xi &= \lambda^{-1}\xi_{-1} + \lambda^0\xi_0 + \lambda^1\xi_1 + \ldots. \\ \text{``holomorphic potential''} \end{split}$$

∜ Solve the ODE $dC = C\xi$. 1 $C = F_{\lambda} \cdot (V_{+})^{-1}.$ Iwasawa splitting \leftrightarrow Gram-Schmidt ∜ $F_{\lambda}: \mathbb{D}^* \to \Lambda G_{\sigma}$ extended frame ∜ $N_{\lambda} \equiv F_{\lambda} \mod K$

primitive harmonic

Remarks about general $N: M \to G/K$

Theorem

Let M be a non-compact Riemann surface with universal cover \mathbb{D} and G/K a k-symmetric space.

Let $N: M \to G/K$ be a primitive harmonic map and $\tilde{N}: \mathbb{D} \to G/K$ its lift.

Then \tilde{N} can be derived from some invariant holomorphic potential η on $\mathbb D$

 $\gamma^*\eta = \eta$ for all $\gamma \in \pi_1(M)$

About the construction of primitive harmonic maps: 1

Step 1: Choose some invariant holomorphic potential η on \mathbb{D} ,

i.e. we know $\gamma^*\eta = \eta$ for all $\gamma \in \pi_1(M)$.

Step 2: Solve the ODE $dC = C\eta$

Step 3: Decompose $C = FV_+$.

Lemma

For all $\gamma \in \pi_1(M)$ $\gamma^* F(z, \overline{z}, \lambda) = \rho(\gamma, \lambda) F(z, \overline{z}, \lambda) \iff \rho(\gamma, \lambda) \in \Lambda G_{\sigma}$

Theorem

Assume $M\,$ non-compact and

1 η holomorphic potential defined on $\mathbb D$

2
$$\gamma^*\eta = \eta$$
 for all $\gamma \in \pi_1(M)$.

 $\label{eq:constraint} \bullet \ \gamma^* C(z,\lambda) = \rho(\gamma,\lambda) C(z,\lambda) \ \text{and} \ \rho(\gamma,\lambda) \in \Lambda G_\sigma \ \text{for all} \ \gamma \in \pi_1(M).$

Decomposing $C = FV_+$ and putting $\tilde{N} \equiv F \mod K$ we obtain the primitive harmonic map $\tilde{N} : \mathbb{D} \to G/K$ defined by η . It satisfies

$$\gamma^* \tilde{N}(z, \bar{z}, \lambda) = \rho(\gamma, \lambda) \tilde{N}(z, \bar{z}, \lambda)$$
 for all $\gamma \in \pi_1(M)$

Moreover,

 \tilde{N} descends (say for $\lambda = 1$) to a primitive harmonic map $N : M \to G/K$ $\iff \rho(\gamma, \lambda = 1)$ is in the center of G.

Some Applications to minimal Lagrangian surfaces in $\mathbb{C}P^2$

• alternative and simplified proof for a result of Costa and Urbano on translationally equivariant minimal Lagrangian immersions , $f(z+t) = g_t f(z)$. (Explicit formulas involving elliptic functions.)

• new examples of generalized equivariant surfaces (metric is a solution to Painleve $PIII(D_7)$)

• construction of all minimal Lagrangian surfaces possessing finite order symmetries around a fixed point

 \bullet construction of all minimal immersions with translational symmetry: f(z+1)=g.f(z) for all $z\in\mathbb{D}$

• Any minimal Lagrangian immersion $f : \mathbb{C} \to \mathbb{C}P^2$ which is rotationally equivariant, $f(e^{ict}z) = g_t f(z), z \in \mathbb{C}$, is totally geodesic in $\mathbb{C}P^2$.

• construction of a minimal Lagrangian trinoid with equivariant cylindrical ends

- singling out those conformally harmonic maps which occur as Gauss type maps of Willmore immersions
- characterizing those potentials which produce Willmore two-spheres
- constructing explicit, new, Willmore two-spheres

As an example, here is a new, unbranched, non-S-Willmore Willmore two-sphere in S^6 .

This is a counterexample to a conjecture of Eijiri, 1988, LMS Proceedings

Explicit example of a Willmore two-sphere in S^6

After projectivization, the family x_{λ} , $\lambda \in S^1$,

$$x_{\lambda} = \frac{1}{\left(1 + r^2 + \frac{5r^4}{4} + \frac{4r^6}{9} + \frac{r^8}{36}\right)} \begin{pmatrix} \left(1 - r^2 - \frac{3r^4}{4} + \frac{4r^6}{9} - \frac{r^8}{36}\right) \\ -i\left(z - \bar{z}\right)\left(1 + \frac{r^6}{9}\right)\right) \\ \left(z + \bar{z}\right)\left(1 + \frac{r^6}{9}\right) \\ -i\left(\left(\lambda^{-1}z^2 - \lambda\bar{z}^2\right)\left(1 - \frac{r^4}{12}\right)\right) \\ \left(\left(\lambda^{-1}z^2 + \lambda\bar{z}^2\right)\left(1 - \frac{r^4}{12}\right)\right) \\ -i\frac{r^2}{2}\left(\lambda^{-1}z - \lambda\bar{z}\right)\left(1 + \frac{4r^2}{3}\right) \\ \frac{r^2}{2}\left(\lambda^{-1}z + \lambda\bar{z}\right)\left(1 + \frac{4r^2}{3}\right) \end{pmatrix}$$

with $r = |z|, x_1 = x_{\lambda}|_{\lambda=1}$, yields an

associated family of Willmore two-spheres in S^6 which is full, non S-Willmore, and totally isotropic. In particular,

 x_{λ} does not have any branch points.