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Topics

We will discuss the following topics:

Surfaces, Gauss maps, Associated Families

the Loop Group Method for Harmonic Maps
Some Applications to Surface Theory

The 6 types of surfaces mentioned in this talk will be

CMC surfaces in R3

spacelike CMC surfaces in Minkowski space R2,1

CMC surfaces in H3, case 0 < H < 1

minimal Lagrangian surfaces in CP 2

minimal surfaces in Nil3

Willmore surfaces in Sn+2

I will talk exclusively about surfaces which can be described best in
conformal coordinates.



Surface classes and harmonic Gauss maps: 1

Consider the following situation for surfaces in R3:

R3

D

f

OO

Gf // S2 = SU(2)/U(1)

where

Gf =
∂xf × ∂yf
||∂xf × ∂yf ||

is the Gauss map of f .

Theorem (Ruh)

f is CMC ⇔ Gf is harmonic
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Surface classes and harmonic Gauss maps: 2

Consider the following situation for spacelike surfaces in R2,1:

R1,2

D

f

OO

Gf // H2 = Sl(2,R)/SO(2)

where

Gf =
∂xf × ∂yf
||∂xf × ∂yf ||

is the Gauss map of f .

Theorem (T.K.Milnor)

f is spacelike CMC in R1,2 ⇔ Gf is harmonic
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Surface classes and harmonic Gauss maps: 3

Consider the following situation for surfaces in H3:

H3

D

f

OO

Gf // UH3 = Sl(2,C)/U(1)

where

Gf = (f, nf )

is the ”normal Gauss map” of f , where nf is the normal of f in H3.

Theorem (T.Ishihara)
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Surface classes and harmonic Gauss maps: 4

Consider the following situation for Lagrangian surfaces in CP 2 and their
”horizontal lift” f̂ into S5 respectively:

CP 2 S5

projection
oo

D

f

OO
f̂

88

Gf // SU(3)/U(1)

where

Gf ≡ (−ie−u2 f̂z,−ie−
u
2 f̂z̄, f̂) mod U(1)

is a ”horizontal lift” of f .

Theorem (H.Ma-Y.Ma)

f is a minimal Lagrangian surface in CP 2 ⇔ Gf is harmonic
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Surface classes and harmonic Gauss maps: 5

Consider the following situation for surfaces in Nil3:

Nil3

D

f

OO

Gf // H2 = Sl(2,R)/SO(2)

where

Gf = f−1n

is the ”normal Gauss map” of f , where n is the normal to f in Nil3

Note: While in general Gf = f−1n takes values in the sphere S2 in the
Lie algebra of Nil3, for non-singular, i.e. non-vertical, minimal surfaces it
takes values in H2.

Theorem (B.Daniel)

f is nowhere vertical and minimal in Nil3 ⇔ Gf is harmonic
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Surface classes and harmonic Gauss maps: 6

Consider the following situation for surfaces in Sn+2:

Sn+2

D

f

OO

Gf // Gr1,3(R1,n+3) = SO+(1, n+ 3)/SO+(1, 3)× SO(n)

where

Gf = span〈Y, Yz, Yz̄, Yzz̄, 〉

is the ”conformal Gauss map” of f

and where Y denotes a canonical lift of f into the light cone
Sn+2 ⊂ Cn+3 ⊂ R1,n+3.

Theorem (Blaschke, Bryant, Eijiri, Rigoli)

f is a Willmore immersion into Sn+2 ⇔ Gf is harmonic
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Harmonic maps from Riemann surfaces to k-symmetric
spaces: harmonic maps

Let

(M, g) Riemannian manifold w.l.g. orientable

(M̂, ĝ) pseudo-Riemannian manifold

N : M → M̂ differentiable map

Then the map N is called harmonic iff for all domains D ⊂M with
compact closure and all variations Nt of N with compact support in D
we have

d

dt
E(Nt,D)|t=0 = 0,

where

E(h,D) =

∫
D
||dh||2dvolM .

Theorem

If dimM = 2, then w.l.g. D an open subset of C with euclidean metric.
Moreover, N can be assumed to be conformal.
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k−symmetric spaces

1 G real semi-simple Lie group (finite dimensional)

2 τ automorphism of G of finite order k

3 Fixτ (G)
0 ⊂ K ⊂ Fixτ (G) K closed subgroup

G/K is called a k−symmetric space

infinitesimally

1 g = Lie(G)

2 k = Lie(K)

3 gC =
∑k−1
j=0 gCj , gCj an eigenspace of dτ ≡ τ ,

4 gC0 = kC, mC =
∑k−1
j=1 gCj ,

5 g0 = k, m = (
∑k−1
j=1 gCj ) ∩ g , g = k⊕m



k−symmetric spaces

1 G real semi-simple Lie group (finite dimensional)

2 τ automorphism of G of finite order k

3 Fixτ (G)
0 ⊂ K ⊂ Fixτ (G) K closed subgroup

G/K is called a k−symmetric space

infinitesimally

1 g = Lie(G)

2 k = Lie(K)

3 gC =
∑k−1
j=0 gCj , gCj an eigenspace of dτ ≡ τ ,

4 gC0 = kC, mC =
∑k−1
j=1 gCj ,

5 g0 = k, m = (
∑k−1
j=1 gCj ) ∩ g , g = k⊕m



Harmonic N : D→ G/K : general case

Consider the following diagram:

G

��
D

F

==

N // G/K

Put
α = F−1dF = αk + αm

and decompose into (1, 0)-part and (0, 1)-part

αk = α′k + α′′k and αm = α′m + α′′m

Theorem

N is harmonic if and only if

1 dα′m + [αk ∧ α′m] = dα′′m + [αk ∧ α′′m] = − 1
2 [α′m ∧ α′′m]|m

2 dαk + 1
2 [αk ∧ αk] + [α′m ∧ α′′m]|k = 0
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Primitive Harmonic Maps

Theorem

N is harmonic if and only if

1 dα′m + [αk ∧ α′m] = dα′′m + [αk ∧ α′′m] = − 1
2 [α′m ∧ α′′m]|m

2 dαk + 1
2 [αk ∧ αk] + [α′m ∧ α′′m]|k = 0

Theorem

Assume G/K is symmetric or, more generally, we have α′m ∈ g−1.

Then α′′m ∈ g+1 and putting αλ = λ−1α′m + αk + λα′′m we obtain:

N is harmonic if and only if dαλ + 1
2 [αλ ∧ αλ] = 0 for all λ ∈ S1.

Definition

A harmonic map is called primitive harmonic, iff α′m ∈ g−1.



Primitive harmonic maps and extended frames

Assume N : D→ G/K is primitive harmonic.

Recall
G

��
D

F

==

N // G/K

Recall α = F−1dF and αλ = λ−1α′m + αk + λα′′m

Assuming primitive harmonic, i.e. α′m ∈ g−1.

We have (equivalently) the integrability condition

dαλ + 1
2 [αλ ∧ αλ] = 0

Theorem

If N : D→ G/K is primitive harmonic, then there exists an
S1-family of harmonic maps Nλ
with frames Fλ satisfying Fλ

−1dFλ = αλ and Nλ ≡ Fλ mod K.
The ”associated family”
Fλ is called extended frame.



Construction of harmonic maps from extended frames

Theorem

Conversely, consider some family of integrable differential one-forms
αλ = λ−1α′−1 + αk + λα′′1 on D and the corresponding frames Fλ
satisfying αλ = Fλ

−1dFλ.
Then
Nλ ≡ Fλ mod K defines an S1-family of primitive harmonic maps
Nλ : D→ G/K.

UPSHOT:

primitive harmonic maps D→ G/K

⇐⇒
integrable differential one forms αλ = λ−1α′−1 + αk + λα′′1 on D

with values in Λgσ. ”twisted loops in g”
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Extended frames : Integrable Surface Point of View : 1

Let f be an immersion of one of the six integrable surface classes
discussed above.

For each of the surface types under consideration one has a so-called
”Hopf differential”. This is a differential r−form:

1 CMC surface in R3: quadratic holomorphic differential
2 spacelike CMC surface in R1,2: quadratic holomorphic differential
3 CMC surface in H3: quadratic holomorphic differential
4 minimal Lagrangian surface in CP 2: cubic holomorphic differential
5 minimal surfaces in Nil3: quadratic holomorphic differential
6 Willmore surfaces in Sn+2: real analytic quadratic differential

For each of the surface types  S1−family of surfaces of the same type
the associated family. If κ denotes the Hopf differential of f , then the
associated family fλ is essentially determined by the Hopf differential
κλ = λ−2κ

The associated family will be denoted by fλ or f(z, λ) etc. One has,
moreover, f = fλ=1



Extended frames : Integrable Surface Point of View : 2

Consider the following diagram:

Y ΛGσ

��
D

fλ

OO
Fλ

==

Gλf // G/K

where

• Gλf is the ”Gauss type map” of fλ

• ΛGσ is the group of loops in G, i.e. all maps S1 → G with some
topology and some twisting.

• ΛGσ :→ G/K is, for fixed λ, the natural projection g → g(λ)modK

• Fλ is the natural lift of Gλf and is called the extended frame of f .

Recall: the homogeneous spaces G/K are k−symmetric spaces in
general.



Extended Frames: Integrable Surface Point of View: 3 :
Sym formulas

We want to complete the surface diagram

Y ΛGσ

��
D

fλ

OO
Fλ

==

Gλf // G/K

Y ΛGσ

��

S(FG
λ )oo

D

fG

OO
FG
λ

<<

G // G/H

where we look for some Sym formula S(FGλ )

This means:

• start from some (λ-dependent) primitive harmonic
map G = Gλ into G/H

• lift to the extended frame FGλ : D→ ΛGσ

• apply the Sym formula

• obtain a surface of the desired type



Sym formulas: a survey

Sym formulas are known in all the six surface types discussed so far.

1 CMC in R3 Bobenko

fG = S(Fλ) = iλ∂λFλ · F−1
λ + Fλ

i

2

(
1 0
0 −1

)
F−1
λ

2 spacelike CMC in R1,2 Taniguchi

fG = S(Fλ) = iλ∂λFλ · F−1
λ − Fλ

1

2

(
0 −1
1 0

)
F−1
λ

3 CMC in H3 Bobenko

fG = S(FGλ ) = Fλ ·
(
e−

q
2 0

0 e
q
2

)
· F̄ tλ

4 minimal Lagrangian in CP 2 Ma

fG = S(FGλ ) = [Fλe3]

5 **minimal in Nil3 Cartier
6 **Willmore surfaces in Sn+2 Dorfmeister-Peng Wang



Summing up so far

integrable surface classes ⇐⇒ primitive harmonic maps

m

associated families
integrable surface classes ⇐⇒

associated families of primitive
harmonic maps,

↖ ↗
extended frames



How to construct all extended frames:
The loop group method: primitive harmonic  potential

η will be called a ”holomorphic potential”

η = C−1dC = λ−1η−1 + λ0η0 + λ1η1 + .....∈ ΛgCσ ,

⇑
C(z, λ) holomorphic extended frame

⇑
decompose Fλ = CV+, with C holomorphic in z ∈ D and
V+ holomorphic in λ for |λ| < 1

(The matrix V+ is a global solution to some ∂̄-problem on D.)

⇑
Fλ : D→ ΛGσ

Consider the extended frame Fλ of f .

⇑

f : D→ Y Let’s start from some
surface

N : D→ G/K Let’s start from
some primitive harmonic map.



How to construct all extended frames:
The loop group method: potential  primitive harmonic

Let’s start from some ”holomorphic potential” ξ

ξ = λ−1ξ−1 + λ0ξ0 + λ1ξ1 + .....∈ ΛgCσ

⇓
C(z, λ) ” holomorphic extended frame”, solution to the ODE dC = Cξ.

⇓
Decompose C = Fλ · (V+)−1. This is a at least locally an ”Iwasawa
splitting” = infinite dimensional ”Gram-Schmidt” procedure

⇓
Fλ : D? → ΛGσ

Extended frame of the primitive harmonic map
Nλ : D∗ → G/K given by Nλ ≡ Fλ mod K.



Combining both directions

Primitive Harmonic ⇒ Potential

η = C−1dC =
λ−1η−1 + λ0η0 + λ1η1 + .....

”holomorphic potential”

⇑
C(z, λ) hol. extended frame

⇑
Fλ = CV+,
C holomorphic in z
V+ holomorphic for |λ| < 1.

⇑
Fλ : D→ ΛGσ extended frame

⇑
Consider N : D→ G/K primitive
harmonic

Potential ⇒ Primitive Harmonic

ξ = λ−1ξ−1 + λ0ξ0 + λ1ξ1 + .....
”holomorphic potential”

⇓
Solve the ODE dC = Cξ.

⇓
C = Fλ · (V+)−1.

Iwasawa splitting ↔ Gram-Schmidt

⇓

Fλ : D∗ → ΛGσ extended frame

⇓
Nλ ≡ Fλ mod K

primitive harmonic



Remarks about general N : M → G/K

D

π̃

��

Ñ

""
M

N // G/K

Theorem

Let M be a non-compact Riemann surface with universal cover D and
G/K a k-symmetric space.
Let N : M → G/K be a primitive harmonic map and Ñ : D→ G/K its
lift.
Then Ñ can be derived from some invariant holomorphic potential η on D

γ∗η = η for all γ ∈ π1(M)



About the construction of primitive harmonic maps: 1

Step 1: Choose some invariant holomorphic potential η on D,

i.e. we know γ∗η = η for all γ ∈ π1(M).

Step 2: Solve the ODE dC = Cη

Lemma

(1) γ∗C(z, λ) = ρ(γ, λ)C(z, λ) for all γ ∈ π1(M).
(2) ρ(−, λ) : π1(M)→ ΛGC

σ is a homomorphism of groups

Step 3: Decompose C = FV+.

Lemma

For all γ ∈ π1(M)
γ∗F (z, z̄, λ) = ρ(γ, λ)F (z, z̄, λ) ⇐⇒ ρ(γ, λ) ∈ ΛGσ



About the construction of primitive harmonic maps: 2

Theorem

Assume M non-compact and

1 η holomorphic potential defined on D
2 γ∗η = η for all γ ∈ π1(M).

3 γ∗C(z, λ) = ρ(γ, λ)C(z, λ) and ρ(γ, λ) ∈ ΛGσ for all γ ∈ π1(M).

Decomposing C = FV+ and putting Ñ ≡ F mod K we obtain the
primitive harmonic map Ñ : D→ G/K defined by η.
It satisfies

γ∗Ñ(z, z̄, λ) = ρ(γ, λ)Ñ(z, z̄, λ) for all γ ∈ π1(M) .

Moreover,
Ñ descends (say for λ = 1) to a primitive harmonic map N : M → G/K
⇐⇒
ρ(γ, λ = 1) is in the center of G.



Some Applications to minimal Lagrangian surfaces in CP 2

• alternative and simplified proof for a result of Costa and Urbano on
translationally equivariant minimal Lagrangian immersions ,
f(z + t) = gtf(z). (Explicit formulas involving elliptic functions.)

• new examples of generalized equivariant surfaces
(metric is a solution to Painleve PIII(D7) )

• construction of all minimal Lagrangian surfaces possessing finite order
symmetries around a fixed point

• construction of all minimal immersions with translational symmetry:
f(z + 1) = g.f(z) for all z ∈ D

• Any minimal Lagrangian immersion f : C→ CP 2 which is rotationally
equivariant, f(eictz) = gtf(z), z ∈ C, is totally geodesic in CP 2.

• construction of a minimal Lagrangian trinoid with equivariant
cylindrical ends



Some Applications to Willmore surfaces in Sn+2

• singling out those conformally harmonic maps which occur as Gauss
type maps of Willmore immersions

• characterizing those potentials which produce Willmore two-spheres

• constructing explicit, new, Willmore two-spheres

As an example, here is a new, unbranched, non-S-Willmore Willmore
two-sphere in S6.

This is a counterexample to a conjecture of Eijiri, 1988, LMS Proceedings



Explicit example of a Willmore two-sphere in S6

After projectivization, the family xλ, λ ∈ S1,

xλ =
1(

1 + r2 + 5r4

4 + 4r6

9 + r8

36

)



(
1− r2 − 3r4

4 + 4r6

9 −
r8

36

)
−i
(
z − z̄)(1 + r6

9 )
)(

z + z̄)(1 + r6

9 )
)

−i
(

(λ−1z2 − λz̄2)(1− r4

12 )
)(

(λ−1z2 + λz̄2)(1− r4

12 )
)

−i r
2

2 (λ−1z − λz̄)(1 + 4r2

3 )
r2

2 (λ−1z + λz̄)(1 + 4r2

3 )


with r = |z|, x1 = xλ|λ=1, yields an

associated family of Willmore two-spheres in S6 which is

full, non S-Willmore, and totally isotropic.

In particular,

xλ does not have any branch points.


