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We will discuss the following topics:

o Surfaces, Gauss maps, Associated Families

o the Loop Group Method for Harmonic Maps
o Some Applications to Surface Theory

The 6 types of surfaces mentioned in this talk will be

CMC surfaces in R?

spacelike CMC surfaces in Minkowski space R%!
CMC surfaces in H?, case 0 < H < 1

minimal Lagrangian surfaces in CP?

minimal surfaces in Nilg

Willmore surfaces in S™12

I will talk exclusively about surfaces which can be described best in
conformal coordinates.



Surface classes and harmonic Gauss maps: 1

Consider the following situation for surfaces in R3:

RB
d
D> 52 = SU(2)/U(1)

where

O f X Oy f

9 = 10af % 0,1

is the Gauss map of f.



Surface classes and harmonic Gauss maps: 1

Consider the following situation for surfaces in R3:

RB
1
D 52 — SU2)/U()
where
G — Oz f x Oy f
T 010 % 0, ]l

is the Gauss map of f.

Theorem (Ruh)
fis CMC & Gy is harmonic




Surface classes and harmonic Gauss maps: 2

Consider the following situation for spacelike surfaces in R?!:

RLQ

fT
g

D ——H? = SI(2,R)/SO(2)
where

Oz f x Oy f

9 = 10af % 0,1

is the Gauss map of f.



Surface classes and harmonic Gauss maps: 2

Consider the following situation for spacelike surfaces in R?!:

RLQ
d
D7 H? = SI(2,R)/SO(2)

where

Oz f x Oy f

9 = 10af % 0,1

is the Gauss map of f.

Theorem (T.K.Milnor)

[ is spacelike CMC in R*? & Gy is harmonic




Surface classes and harmonic Gauss maps: 3

Consider the following situation for surfaces in H?:

H3

d

D7 UHS = S1(2,C)/U(1)

where

gy = (finy)

is the "normal Gauss map” of f, where ny is the normal of f in H?.



Surface classes and harmonic Gauss maps: 3

Consider the following situation for surfaces in H?:

H3

fT
Gy

D'~ UH? = 81(2,C)/U(1)

where

gf:(fvnf)

is the "normal Gauss map” of f, where ny is the normal of f in H?.

Theorem (T.Ishihara)
[ is CMC in H? < Gy is harmonic




Surface classes and harmonic Gauss maps: 4

Consider the following situation for Lagrangian surfaces in CP? and their
"horizontal lift” f into S° respectively:

CP?=—— §5

projection
f
g

D7 sU3)/U(1)

where

gr= (*iff*%fz, *ie*gfg,f) mod U (1)

is a "horizontal lift" of f.



Surface classes and harmonic Gauss maps: 4

Consider the following situation for Lagrangian surfaces in CP? and their
"horizontal lift” f into S° respectively:

CP?=—— §5

projection
f
g

D~ 5U(3)/U(1)
where
gf = (72‘67%]23 72‘67%]?5,]3) mod U(l)
is a "horizontal lift" of f.

Theorem (H.Ma-Y.Ma)

[ is a minimal Lagrangian surface in CP? < G is harmonic




Surface classes and harmonic Gauss maps: 5

Consider the following situation for surfaces in Nils:

Nils
/
D7~ H? = SI(2,R)/S0(2)

where

Gr=f""'n
is the "normal Gauss map" of f, where n is the normal to f in Nilg
Note: While in general G; = f~!n takes values in the sphere 52 in the

Lie algebra of Nils, for non-singular, i.e. non-vertical, minimal surfaces it
takes values in H?2.



Surface classes and harmonic Gauss maps: 5

Consider the following situation for surfaces in Nils:

Nils
/
D7~ H? = SI(2,R)/S0(2)

where
Gr=f""'n
is the "normal Gauss map" of f, where n is the normal to f in Nilg

Note: While in general G = f~1n takes values in the sphere S? in the
Lie algebra of Nils, for non-singular, i.e. non-vertical, minimal surfaces it
takes values in H?2.

Theorem (B.Daniel)

f is nowhere vertical and minimal in Nil3 < Gy is harmonic




Surface classes and harmonic Gauss maps: 6

Consider the following situation for surfaces in S"™+2:

Sn+2

d

D

Gri3(RY"3) = SO*(1,n + 3)/SOT(1,3) x SO(n)
where

gf = Span<Y7 YZ) Yvia sz27 >
is the " conformal Gauss map” of f

and where Y denotes a canonical lift of f into the light cone
STL+2 C C7L+3 C Rl,n+3_



Surface classes and harmonic Gauss maps: 6

Consider the following situation for surfaces in S"™+2:

Sn+2

d

D

Gri3(RY"3) = SO*(1,n + 3)/SOT(1,3) x SO(n)
where

gf = Span<Y7 YZ) }/57 sz27 >
is the " conformal Gauss map” of f

and where Y denotes a canonical lift of f into the light cone
STL+2 C Cn+3 C Rl,n+3_

Theorem (Blaschke, Bryant, Eijiri, Rigoli)

[ is a Willmore immersion into S"*2 < Gy is harmonic




Harmonic maps from Riemann surfaces to k-symmetric

spaces: harmonic maps

Let

(M, g) Riemannian manifold w.l.g. orientable
(M,g) pseudo-Riemannian manifold

N : M — M differentiable map

Then the map N is called harmonic iff for all domains D C M with
compact closure and all variations N; of N with compact support in D
we have

d
—E(N¢,D)|t=0 =0
S B(N., D)o = 0,

where
E(h,D) = / ||dh|[2dvol™.
D



Harmonic maps from Riemann surfaces to k-symmetric

spaces: harmonic maps

Let

(M, g) Riemannian manifold w.l.g. orientable
(M,g) pseudo-Riemannian manifold

N : M — M differentiable map

Then the map N is called harmonic iff for all domains D C M with
compact closure and all variations N; of N with compact support in D
we have

d
—E(N¢,D)|t=0 =0
S B(N., D)o = 0,

where
E(h,D) = / ||dh|[2dvol™.
D

If dimM = 2, then w.l.g. D an open subset of C with euclidean metric.




k—symmetric spaces

Q@ G real semi-simple Lie group  (finite dimensional)
@ 7 automorphism of G of finite order k
Q Fiz. (G)’ C K C Fiz.(G) K closed subgroup

G/K is called a k—symmetric space



k—symmetric spaces

Q@ G real semi-simple Lie group  (finite dimensional)
@ 7 automorphism of G of finite order k
Q Fiz. (G)’ C K C Fiz.(G) K closed subgroup

G/K is called a k—symmetric space

infinitesimally

0 g = Lie(G)
Q t= Lie(K)
Q¢ = Z?;& g5, g5 an eigenspace of dr =T,

0 of =t mC=3""qf,

@ g=t m=0" ¢")ng g=t@dm



Harmonic N : D — G/K : general case

Consider the following diagram:

G
/ l
D G/K
Put
a=F"YF = as + any
and decompose into (1,0)-part and (0, 1)-part

ap=0ap+ay and am = al, + o



Harmonic N : D — G/K : general case

Consider the following diagram:

G
/ l
D G/K
Put
a=F"YF = as + any
and decompose into (1,0)-part and (0, 1)-part

ap=0ap+ay and am = al, + o

N is harmonic if and only if

@ doy, + [or A ag] = dafy + [oe A o] = 3l A ag]lm

Q doy + %[(Y& Aag|+ (e, ANadl]le =0



Primitive Harmonic Maps

N is harmonic if and only if

O dof, + o A aly] = dady + [n A oll] = — 3 ey A &l

@ do + 5lae A o] + o Aag]le =0

Assume G /K is symmetric or, more generally, we have o, € g_1.

Then ol € g1 and putting oo, = A\~ 'al, + ap + Ao, we obtain:

N is harmonic if and only if doy + %[(x)\ Aay] =0 forall X € St

Definition

A harmonic map is called primitive harmonic, iff o/, € g_;.




Primitive harmonic maps and extended frames

Assume N : D — G/K is primitive harmonic.

Recall
G

F
e

Recall a = F~'dF and «ay = \"ltal, +ap + Ao

‘m

Assuming primitive harmonic, i.e. o, € g_;.

We have (equivalently) the integrability condition
day + %[QA N (U} =0

If N :D — G/K is primitive harmonic, then there exists an
S-family of harmonic maps N
with frames F\ satisfying F\"1dF), = a) and Ny = F\, mod K.
The "associated family”

F) is called extended frame.




Construction of harmonic maps from extended frames

Theorem

Conversely, consider some family of integrable differential one-forms
ayx=A"1ta' | +ap+ A\ onD and the corresponding frames F)
satisfying oy = Fy " 'dFy.

Then

Ny = F\ mod K defines an S'-family of primitive harmonic maps
N,:D— G/K.




Construction of harmonic maps from extended frames

Theorem

Conversely, consider some family of integrable differential one-forms
ayx=A"1ta' | +ap+ A\ onD and the corresponding frames F)
satisfying oy = Fy " 'dFy.

Then

Ny = F\ mod K defines an S'-family of primitive harmonic maps
N,:D— G/K.

UPSHOT:
primitive harmonic maps D — G/K
<~

integrable differential one forms ay = A7'a’ | + ag + Aaf on D

with values in Ag,. "twisted loops in g"



Extended frames : Integrable Surface Point of View : 1

Let f be an immersion of one of the six integrable surface classes
discussed above.

For each of the surface types under consideration one has a so-called
" Hopf differential”. This is a differential r—form:

CMC surface in R3: quadratic holomorphic differential

spacelike CMC surface in R%?: quadratic holomorphic differential
CMC surface in H3: quadratic holomorphic differential

minimal Lagrangian surface in CP2: cubic holomorphic differential
minimal surfaces in Nil3: quadratic holomorphic differential
Willmore surfaces in S™*2: real analytic quadratic differential

000000

For each of the surface types ~» S'—family of surfaces of the same type
the associated family. If x denotes the Hopf differential of f, then the
associated family f is essentially determined by the Hopf differential

Ex = A%k

The associated family will be denoted by f) or f(z, \) etc. One has,
moreover, f = fr—1



Extended frames : Integrable Surface Point of View : 2
Consider the following diagram:
AG,

— G/K

“hy

where
. g; is the " Gauss type map” of fy

o AG, is the group of loops in G, i.e. all maps S' — G with some
topology and some twisting.

o AG, :— G/K is, for fixed A, the natural projection g — g(A)modK
e [, is the natural lift of Q}\ and is called the extended frame of f.

Recall: the homogeneous spaces G/K are k—symmetric spaces in
general.



Extended Frames: Integrable Surface Point of View: 3 :

Sym formulas

We want to complete the surface diagram

S(FY)

Y AG, Y <——AG,
Jore

W 27 o 27|
) g

D——G/K D —G/H

where we look for some Sym formula S(FY)
This means:

e start from some (A-dependent) primitive harmonic
map G = G, into G/H

o lift to the extended frame F/\g : D — AG,
e apply the Sym formula

e obtain a surface of the desired type



Sym formulas: a survey

Sym formulas are known in all the six surface types discussed so far.

Q@ CMCinR3 Bobenko
. . _ i (1 0 _
fg =S8(Fy) = iXrFy - Fy' + Fag (0 —1> Fyt
@ spacelike CMC in R12 Taniguchi
1 _
fo=stm)=var £ -mg (1 5 E
@ CMC in H? Bobenko

Q@ minimal Lagrangian in CP? Ma
fo = S(FY) = [Fxes]

@ **minimal in Nil; Cartier
Q **Willmore surfaces in S"*2 Dorfmeister-Peng Wang



Summing up so far

integrable surface classes <= primitive harmonic maps

i)

associated families associated families of primitive
integrable surface classes <= harmonic maps,

extended frames



How to construct all extended frames:

The loop group method: primitive harmonic ~~ potential

7 will be called a "holomorphic potential”
n=C0"1dC =X "tn_1 + Ao + Ay +....e AgS,
1)

C(z,A) holomorphic extended frame

)

decompose I\ = C'V,, with C holomorphic in z € D and
V. holomorphic in A for || < 1

(The matrix V. is a global solution to some d-problem on D.)

1)
Fy - D — AGG
Consider the extended frame F)\ of f.

T

f:D =Y Let's start from some N :D — G/K Let's start from
surface some primitive harmonic map.



How to construct all extended frames:

The loop group method: potential ~~ primitive harmonic

Let's start from some "holomorphic potential” &

€= A1 + 20 + Ay + e AgC

I

C(z,A) " holomorphic extended frame”, solution to the ODE dC = C¢.
I

Decompose C' = F) - (V,)~1. This is a at least locally an "lwasawa
splitting” = infinite dimensional " Gram-Schmidt” procedure

I

Fy :D* = AG,

Extended frame of the primitive harmonic map
Ny :D* —» G/K given by Ny = F\ mod K.



Primitive Harmonic = Potential

n=0C"1dC =
)\_17’],1 + )\O’I]o + )\1771 +.....

"holomorphic potential”

i)

C(z,A) hol. extended frame
1)

F/\ == CV+,

C holomorphic in z
V. holomorphic for |A] < 1.

f
I, : D — AG, extended frame

T

Consider N : D — G/K primitive
harmonic

Combining both directions

Potential = Primitive Harmonic

f = )\_1571 =+ )\Ofo + /\151 +.....
"holomorphic potential”

I

Solve the ODE dC = C¢.
I

C = F)\ . (V+)_1.

Iwasawa splitting <> Gram-Schmidt

4

F :D* - AG, extended frame

3
Ny =F\ mod K

primitive harmonic



Remarks about general N : M — G/K

D
AN
M- G/K

Let M be a non-compact Riemann surface with universal cover D and
G/K a k-symmetric space. :

Let N : M — G/K be a primitive harmonic map and N : D — G/K its
lift.

Then N can be derived from some invariant holomorphic potential nonD

y'n=mn forall vem (M)




About the construction of primitive harmonic maps:

Step 1: Choose some invariant holomorphic potential 77 on D,

i.e. we know  ~*n = for all v € m (M).

Step 2: Solve the ODE  dC = Cn

C(z, ,ANC(z, A) for all v € mi(M).
(=) : m (M) R AGS is a homomorphism of groups

Step 3: Decompose C' = FV,.

For all v € w1 (M)
Y F(z,z,A) = p(7,\)F(z,2,\) < p(7,\) € AG,,




About the construction of primitive harmonic maps: 2

Theorem

Assume M non-compact and

@ 17 holomorphic potential defined on D

Q@ y*n=mn forall v € m (M).

Q Y*C(z,\) = p(7,N\)C (2, A) and p(v, ) € AG,, for all v € w1 (M).
Decomposing C' = FV and putting N =F mod K we obtain the
primitive harmonic map N : D — G/K defined by 7).

It satisfies

v*N(z,%,A) = p(7, )N (2,2, \) for all v € w1 (M) .

Moreover,

N descends (say for A\ = 1) to a primitive harmonic map N : M — G/K
<~

p(v,\=1) is in the center of G.




Some Applications to minimal Lagrangian surfaces in CP?

e alternative and simplified proof for a result of Costa and Urbano on
translationally equivariant minimal Lagrangian immersions ,
f(z+1t) = g:f(z). (Explicit formulas involving elliptic functions.)

e new examples of generalized equivariant surfaces
(metric is a solution to Painleve PII1(D7) )

e construction of all minimal Lagrangian surfaces possessing finite order
symmetries around a fixed point

e construction of all minimal immersions with translational symmetry:
fz+1)=g.f(z) forall z € D

e Any minimal Lagrangian immersion f : C — CP? which is rotationally
equivariant, f(e'z) = g,f(z), z € C, is totally geodesic in CP?.

e construction of a minimal Lagrangian trinoid with equivariant
cylindrical ends



Some Applications to Willmore surfaces in 5"

e singling out those conformally harmonic maps which occur as Gauss
type maps of Willmore immersions

e characterizing those potentials which produce Willmore two-spheres

e constructing explicit, new, Willmore two-spheres

As an example, here is a new, unbranched, non-S-Willmore Willmore
two-sphere in S6.

This is a counterexample to a conjecture of Eijiri, 1988, LMS Proceedings



Explicit example of a Willmore two-sphere in S°

After projectivization, the family ), A € ST,

)
i (z — 51+ g))
(z +2)(1+ §)> 4
(rrrmr i | (02 -aa- 1)
(12242221 - qi))

)\ —

with 7 = |z|, &1 = x)|x=1, yields an

associated family of Willmore two-spheres in S which is
full, non S-Willmore, and totally isotropic.

In particular,

x) does not have any branch points.



