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Jacobian problem:

Given: Ω ⊂
open

Rn, with a fixed coordinate system u = (u1, . . . , un), a point

ū ∈ Ω and vector fields

R = {r1, . . . , rm}, 1 ≤ m ≤ n,

independent at ū.
Find: all maps f = [f1, . . . , fn]T : Ω′ → Rn from some open nbhd. Ω′ of ū,
such that R is a (partial) set of eigenvector-fields of the Jacobian matrix

[Duf ] =

 grad(f1)
...

grad(fn)


I.e. ∃ smooth functions λi : Ω′ → R, s. t. for i = 1, . . . ,m and ∀u ∈ Ω′

[Duf ] ri(u) = λi(u) ri(u). F(R)-system
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F(R)-system: [Duf ] ri(u) = λi(u) ri(u) , i = 1, . . . ,m.

• R = {r1, . . . , rm}, 1 ≤ m ≤ n, is called a partial (local) frame.

• f is called a flux.

– f is called hyperbolic if the Jacobian matrix [Duf ] is diagonalizable
over R at ū, otherwise f is called non-hyperbolic.

– f is called strictly hyperbolic if the eigenvalues λ1(u), . . . , λn(u) of
[Duf ] are real and distinct for at ū.

• F(R) denotes the set of all fluxes corresponding to a partial frame R.
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Motivation for the Jacobian problem

• By solving the Jacobian problem, we can construct and study the set
of systems conservations laws ut + f(u)x = 0 with prescribed
rarefaction curves and analyze how the geometry of these curves
determines behavior of the solutions of conservation laws.

• It is an interesting geometric problem on its own.

• It leads to interesting overdetermined systems of PDE’s.
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What do we mean by “finding all fluxes”?

• Setting up a system of PDE’s for f and then solving it by hand or by
computer software?

• What if this fails? Even when we get some solutions, did we find them all?

• Is there any relation between a geometry the partial frame R and the size
of F(R)?

• What types of fluxes F(R) contains? Hyperbolic? Strictly hyperbolic?
Non-hyperbolic?

Goals:

• to determine how the ”size” of F(R) (in terms of the number of arbitrary
functions and constants) depends on the geometric properties of R.

• to determine whether or not F(R) contains strictly hyperbolic fluxes.
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Observations about F(R)-system: [Duf ] ri = λi ri .

• mn first order PDEs on m+ n unknown functions:
λi, i = 1, . . . ,m and n components of f .

• overdetermined for all n ≥ m, such that n > 2 and m ≥ 2.

• F(R) is (possibly infinite dimensional) vector space over R.

• for all R, the set F(R) contains (n+1)-dimensional subspace Ftriv of
trivial fluxes:

f(u) = λ̄

 u1

...
un

+

 a1...
an

, λ̄, a1, . . . , an ∈ R,

because [Duf ] = λ̄I.

• scaling invariance: F(r1, . . . , rm) = F(α1 r1, . . . , α
mrm)

for any nowhere zero smooth functions αi on Ω.
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Examples of full frames on R3 (m = n = 3, coordinates (u, v, w))

(1) • r1 =

 0
1
u

 , r2 =

 w0
1

 , r3 =

 u
0
−w


(integral curves: lines, parabolas, circles)

f(u) = λ̄

 u
v
w

+

 a1
a2
a3

, λ̄, a1, a2, a3 ∈ R,

• only trivial fluxes: F(R) = F triv.
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(2) • r1 =

 vu
1

 , r2 =

 −vu
0

 , r3 =

 0
0
1

 on Ω, where u v 6= 0.

(”hyperbolic spiral”:

u = ū cosh t+ v̄ sinh t, v = ū sinh t+ v̄ cosh t, w = w̄ + t,

circles, lines)

• F(R)/F triv is a 1-dimensional space

f = c

[
v3, u3,

3

4
(u2 + v2)

]T
+ a trivial flux, c ∈ R

λ1 = 3 c u v + λ̄, λ2 = −3 c u v + λ̄, λ3 = λ̄.

• There are strictly hyperbolic fluxes in a neighborhood of (ū, v̄, w̄) ∈ Ω.
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(3) (the coordinate frame)

•

r1 =

 1
0
0

 , r2 =

 0
1
0

 , r3 =

 0
0
1


•

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

F(R) is a∞-dimensional space

•

λ1 =
(
φ1
)′

(u), λ2 =
(
φ2
)′

(v), λ3 =
(
φ3
)′

(w).

All fluxes are hyperbolic, and almost all are strictly hyperbolic.
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What if we prescribe an incomplete eigenframe?

(1) r1 = [0,1, u]T , r2 = [w,0,1]T , r3 = [u,0,−w]T only trivial fluxes.

(1a) r1 = [0,1, u]T , r2 = [w,0,1]T again only trivial fluxes!

(1b) r1 = [0,1, u]T , r3 = [u,0,−w]T .

F(R)/F triv is 2-dimensional:

f = c1


ln(u)

0
1
2

(
w
u − v

)
+ c2

 −
1
3 u

3

uw

w u2

+ trivial fluxes

λ1 = c2 u
2 + λ̄, λ3 = c1

1

u
− c2 u2 + λ̄

(1c) r2 = [w,0,1]T , r3 = [u,0,−w]T .

F(R) is∞-dimensional !
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What about the coordinate frame example?

(3) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T , r3 = [0, 0, 1]T

f =
[
φ1(u), φ2(v), φ3(w)

]T
, φi : R→ R arbitrary

λ1 = (φ1)′(u), λ2 = (φ2)′(v), λ3 = (φ3)′(w).

(3a) r1 = [1, 0, 0]T , r2 = [0, 1, 0]T .

f =
[
φ1(u,w), φ2(v, w), φ3(w)

]T
, φ1, φ2 : R2 → R; φ3 : R→ R

λ1 =
∂φ1

∂u
, λ2 =

∂φ2

∂v
.

(3b) r1 = [1, 0, 0]T .

f =
[
φ1(u, v, w), φ2(v, w), φ3(v, w)

]T
, φ1 : R3 → R; φ2, φ3 : R2 → R

λ1 =
∂φ1

∂u
.
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Coordinate dependence of the problem formulation.

• Assume f(u) ∈ F(R) for R = {r1, . . . , rm}, i.e: there exist
λ1(u), . . . , λm(u), such that

[Du f ] = λi(u) ri.

• Let a change of variables be described by a local diffeomorphism

u = Φ(w).

• It is not true that f(Φ(w)) belongs to F(Φ∗R), where Φ∗R =

{Φ∗r1, . . . ,Φ
∗rm}, i.e, in general there may not exists functions

κ1(w), . . . , κm(w), such that

[Dw f(Φ(w))] = κi(u) Φ∗ri.
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Coordinate-free formulation of the Jacobian problem

Given: Given a partial frame

R = {r1, . . . , rm}, 1 ≤ m ≤ n

on Ω ⊂
open

Rn, with a fixed flat, symmetric∗ connection ∇, and a point ū ∈ Ω

Find: all local smooth vector fields f (“fluxes”), defined on some nbhd Ω′ of ū ,
for which there exist smooth functions λi : Ω′ → R, such that

∇ri f = λi ri, for i = 1, . . . ,m. ”new” F(R)-system

∗Coordinate-free formulation makes sense for non-flat connections, but is not considered here.
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Observations:

∇ri f = λi ri, for i = 1, . . . ,m . ”new” F(R)-system

• Written out in an affine system of coordinates: (∇ ∂
∂ui

∂
∂uj

= 0, ∀i, j)

the ”new” F(R)-system is the same as the “old” one.

• Integrability conditions for F(R)-system correspond to the flatness
conditions

∇ri∇rj f −∇rj∇rif = ∇[ri,rj]
f
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Goals :

• to determine the ”size” of F(R).

• to determine whether or not F(R) contains strictly hyperbolic fluxes.

Methods :

• for the size: C1 Frobenius and Darboux theorems (and their
generalizations), and as the last resort analytic Cartan-Kähler theorem.

• for strict hyperbolicity: a careful examination of integrability conditions.
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Involutivity and richness

Definitions: A partial frame R = {r1, . . . , rm} is:

• in involution if [ri, rj] ∈ spanC∞(Ω)R for all 1 ≤ i, j ≤ m.

• rich if [ri, rj] ∈ spanC∞(Ω){ri, rj} (pairwise in involution).
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Summary of the results:
• Results for all n and all m ≤ n:

– Necessary conditions for F(R) to contain strict. hyp. fluxes.

∇rirj ∈ spanC∞(Ω′){ri, rj} if and only if[ri, rj] ∈ spanC∞(Ω′){ri, rj}
– For rich partial frames: we have necessary and sufficient conditions for
F(R) to contain strictly hyperbolic fluxes and for those we know the
size of F(R) (∞-dim.)

• Low dimensional results:

– n = 1 or n = 2 or m = 1 fall under rich category.

– non rich, but in involution:
∗ n = 3 non-rich full frame (m = 3) completely analyzed in:

K. Jenssen and I.K. (2010)

1. necessary and sufficient conditions for F(R) to contain strictly
hyperbolic fluxes

2. under these conditions: dimF(R)/F triv = 1 (unique flux up to
scaling)
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∗ for m = 3, n > 3 we have necessary and sufficient conditions for
F(R) to contain strictly hyperbolic fluxes and for those we know the
size of F(R) (∞-dim.)

– not in involution: for m = 2, n = 3 we have:
1. (necessary conditions for strict hyperbolicity)
F(R) contains strictly hyperbolic fluxes only if :

∇r1r2 /∈ spanC∞{r1, r2} and ∇r2r1 /∈ spanC∞{r1, r2} (∗∗∗∗)

2. Under(****), F(R)/F triv contains only strictly hyperbolic and
possibly a 1-dimensional subspace of non-hyperbolic fluxes (but no
hyperbolic fluxes with repeated eigenfunctions).

3. (size) Under (****) and

Γ3
22(ū) Γ3

11(ū)− 9 Γ3
12(ū) Γ3

21(ū) 6= 0,

0 ≤ dimF(R)/F triv ≤ 4

(we have examples in all dimensions 0, . . . ,4).

4. If dimF(R)/F triv > 1, then F(R) must contain strictly hyperbolic
fluxes.
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We don’t have a sufficient condition for F(R) to contain non-trivial fluxes,

unless 1) R is rich or 2) R is in involution with m = 3.

Remark: For all n ≥ m, such that n > 2 and m ≥ 2, almost all frames admit
only trivial fluxes!
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Jacobian problem for rich partial frames R = {r1, . . . , rm}:
Recall:

• rich means that [ri, rj] ∈ spanC∞(Ω){ri, rj} 1 ≤ i, j ≤ m.

• F(R) consists of f ’s, for which ∃λi : Ω→ R such that

∇ri f = λi ri, for i = 1, . . . ,m.

Theorem:

1. (necessary and sufficient conditions for strict hyperbolicity)
If R is rich then F(R) contains strictly hyperbolic fluxes iff

∇rirj ∈ spanC∞(Ω){ri, rj} for all 1 ≤ i, j ≤ m. (∗)

2. (size) Under (*), F(R) depends on:
m arbitrary functions of n−m+ 1

(the degree of freedom of prescribing λ’s)
and
n functions of n−m variables

(the degree of freedom for prescribing f for the chosen λ’s)
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Jacobian problem for involutive partial frames
R = {r1, . . . , rm}:

Recall:

• involutive means that [ri, rj] ∈ spanC∞(Ω)R for 1 ≤ i, j ≤ m.

• F(R) consists of f ’s, for which ∃λi : Ω→ R such that

∇ri f = λi ri, for i = 1, . . . ,m.

Theorem:

1. (necessary conditions for strict hyperbolicity for arbitrary m)
If R is involutive then F(R) contains strictly hyperbolic fluxes only if
for all 1 ≤ i 6= j ≤ m

∇rirj ∈ spanC∞(Ω)R (∗∗)
∇rirj ∈ spanC∞(Ω){ri, rj} ⇐⇒ [ri, rj] ∈ spanC∞(Ω){ri, rj}

2. for m = 3 in non-rich case (**) can be completed to necessary
and sufficient conditions (***). Under (***), F(R) depends on
n+ 2 arbitrary functions of n− 3 variables .
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Jacobian problem for non-involutive partial frames
simplest case: R = {r1, r2} in R3.

Recall:
• non-involutive means that [r1, r2] /∈ spanC∞{r1, r2}.

• F(R) consists of f ’s, for which ∃λ1, λ2 : Ω→ R such that

∇r1 f = λ1 r1 and ∇r2 f = λ2 r2.

Theorem:

1. (necessary conditions for strict hyperbolicity)
F(R) contains strictly hyperbolic fluxes only if :

∇r1r2 /∈ spanC∞{r1, r2} and ∇r2r1 /∈ spanC∞{r1, r2} (∗ ∗ ∗∗)

2. Under(****), F(R)/F triv contains only strictly hyperbolic and possibly a 1-
dimensional subspace of non-hyperbolic fluxes (but no hyperbolic fluxes
with repeated eigenfunctions).
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3. (size) Under (****) and

Γ3
22(ū) Γ3

11(ū)− 9 Γ3
12(ū) Γ3

21(ū) 6= 0,

0 ≤ dimF(R)/F triv ≤ 4

(we have examples in all dimensions 0, . . . ,4).

4. If dimF(R)/F triv > 1, then F(R) must contain strictly hyperbolic fluxes.
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Darboux Integrability Theorem [Leçons sur les systèmes
orthogonaux et les coordonnées curvilignes. (1910)]
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Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

∂φi

∂uj
= hij(u, φ(u)) , i = 1, . . . , p; j ∈ α(i), (1)

where:
1. Ω ⊂

open
Rn (the space of independent variables u’s)

2. Θ ⊂
open

Rp (the space of dependent variables φ’s)

3. α(i) ⊂ {1, . . . , n} for each i = 1, . . . , p .

4. hij(u
1, . . . , un, φ1, . . . , φp), i = 1, . . . , p, j ∈ α(i) are C1 functions on

Ω ×Θ → R, with certain combinatorial restrictions on which φ’s each of
the hij may depend so that (2) become algebraic.

If integrability conditions

∂

∂uk

(
∂

∂uj
(φi)

)
−

∂

∂uj

(
∂

∂uk
(φi)

)
= 0 for all j, k ∈ α(i) (2)

are identically satisfied on Ω ×Θ after substitution of hij(u, φ) for ∂
∂uj

(φi) for
all i = 1, . . . , p, j ∈ α(i) as prescribed by system (1)

Then ∃! smooth local solution of (1) around ū, for any C1 initial data for φi

prescribed along submanifold Ξi = {uj = ūj, j ∈ αi} ⊂ Rn of dimension
n− |αi|.
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Example of a Darboux system:
• three unknown functions (dependent variables) φ, ψ and ξ.

• two independent variables u and v.

• system:
φu = F (u, v, φ, ψ, ξ)

ψv = G(u, v, φ, ψ, ξ)

ξu = f(u, v, ψ, ξ) (f does not depend on φ)
ξv = g(u, v, φ, ξ) (g does not depend on ψ)

• the integrability condition:

fv + fψG+ fξ g = gu + gφ F + gξ f.

• initial data near (ū, v̄):

φ(ū, v) = a(v)

ψ(u, v̄) = b(u)

ξ(ū, v̄) = c a constant.

• here F , G f , g, a and b are given C1 functions of their arguments.
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Frobenius Theorem:

PDE version: Is a special case of Darboux Theorem, when each unknown
function is differentiated with respect to all variables.

Alternatively, given a full frameR = {r1, . . . , rn}, we can prescribe derivatives
with respect to each of the frame directions. The integrability conditions then
become:

rk
(
rj(φ

i)
)
− rj

(
rk(φi)

)
=

n∑
l=1

clkjrl(φ
i). (3)

φi(ū) = ci.

There are equivalent diff. form version and vector field formulation versions
about foliating Rn+p by n-dimensional integrable manifolds.
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Generalized Frobenius, PDE version [M. Benfield (2016)]:
Consider a system of PDE’s on (φ1, . . . φp): Ω→ Θ:

rj(φ
i(u)) = hij(u, φ(u)) , i = 1, . . . , p; j = 1, . . . ,m, (4)

where:

1. R = {r1, . . . , rm} – a partial frame in involution on Ω ⊂
open

Rn.

2. Θ ⊂
open

Rp is the space of dependent variables φ’s.

3. hij(u, φ), i = 1, . . . , p, j = 1, . . . ,m smooth functions on Ω×Θ→ R.

If integrability conditions

rk
(
rj(φ

i)
)
− rj

(
rk(φi)

)
=

m∑
l=1

cljkrl(φ
i) i = 1, . . . , p; j, k = 1, . . . ,m

(5)
are identically satisfied on Ω×Θ after substitution of hij(u, φ) for rj(φi) for all
i = 1, . . . , p, j = 1, . . . ,m as prescribed by system (4).

Then ∃! smooth local solution of (4), for any smooth initial data prescribed
along any embedded submanifold Ξ ⊂ Ω of dimension n −m transversal to
R.
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Generalized Frobenius vector field version (local)
[Benfield, I. K., Jenssen (2016)]:

Given:

1. s1, . . . , sm – a partial frame in involution on an open O ⊂ Rn+p, where
1 ≤ m ≤ n and p ≥ 1.

2. Λ ⊂ O be an (n−m)-dimensional embedded submanifold, such that

spanR{s1|z, . . . , sm|z} ⊕ TzΛ ∼= Rn ∀z ∈ Λ.

Then for ∀z̄ ∈ Λ, there exists a unique local extension of Λ to an n-dimensional
submanifold Γz̄ of Rn+p, tangent to s1, . . . , sm

In the classical local Frobenius theorem, m = n and Λ = {z̄}.
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Motivation: systems of conservation laws

ut + f(u)x = 0 . (1a)

• n equations on n unknown functions u(x, t) ∈ Ω ⊂ Rn.

• one space-variable x ∈ R; one time-variable: t ∈ R.

• f(u): Ω→ Rn smooth flux.

Equivalently:

ut + [Duf ]ux = 0 (1b)
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Example: The Euler system for 1-dim. compressible flow

• Euler system in thermodynamic variables

Vt − Ux = 0

Ut + px = 0

St = 0 .

V = 1
ρ is volume per unit mass, U is velocity, S is entropy per unit mass,

p(V, S) > 0 is pressure as a given function, s.t pV < 0 .

• ut + f(u)x = 0, where u = [V, U, S]T and f(u) = [−U, p(V, S),0]T .

• eigenvectors of [Duf ] are:
r1 = [ 1,

√
−pV , 0 ]T , r2 = [−pS, 0, pV ]T , r3 = [ 1, −

√
−pV , 0 ]T

• eigenvalues of [Duf ] are λ1 = −
√
−pV , λ2 ≡ 0 , λ3 =

√
−pV .
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Wave curves
are used to construct solution of ut + f(u)x = 0. A wave curve consists of
two parts:

• rarefaction curve - the integral curve of an eigenvector field of
[Duf ] - correspond to the smooth part of the self-similar solutions

u(x, t) = ζ
(
x
t

)
.

• shock curve – a solution of Rankine-Hugoniot conditions:

{u ∈ Ω | ∃ s ∈ R : f(u)− f(ū) = s · (u− ū) }.

A shock curve describes the discontinuous part of the solutions.

Through each strictly hyperbolic state ū ∈ Ω, there exists n wave curves.
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Wave curves are building blocks for the solutions of Cauchy
problems:

ut + f(u)x = 0, u(x,0) = u0(x).

Lax (1957) under certain condition on f and when u− and u+ are close, the
solution to the Riemann problem:

u0(x) =

{
u− , x < 0
u+ , x > 0 .

is determined by the wave curves.

Glimm (1965) for u0 with small total variation, the solutions to the Cauchy
problems is determined by solutions of Riemann problems.
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Example: The Jacobian problem for the Euler frame.

Given:
• (V, U, S) are coordinate functions in R3.

• p(V, S) > 0 , s.t -pV < 0

• vector fields r1 =

 1√
−pV
0

 , r2 =

 −pS0
pV

 , r3 =

 1
−
√
−pV
0



Find: the set F(R) of all maps f : R3 → R3, such that R = {r1, r2, r3} is a
set of eigenvector-fields of the Jacobian matrix [Duf ].
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Answer:

• If
(
pS
pV

)
V
6= 0

f = c

 −U
p(v, S)

0

+ λ̄

 VU
S

+

 a1
a2
a3

 = c

 −U
p(v, S)

0

+ trivial flux.

eigenvalues: λ1 = −c
√
−pV + λ̄ , λ2 ≡ λ̄ , λ3 = c

√
−pV + λ̄.

• If
(
pS
pV

)
V
≡ 0, then F(R) depends on 3 arbitrary functions of one variable.
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How geometry of the eigenframe of [Duf ] affects the
properties of hyperbolic conservative systems and their
solutions?

• We analyzed relationship between the geometry of the eigenframe and the
number of companion conservation laws a system possesses.

Jenssen, H. K., Kogan, I. A., Extensions for systems of conservation laws

Communications in PDE’s, No. 37, (2012) , pp. 1096 – 1140.

• We would like to better understand relationship between the geometry of
the eigenframe and wave interaction patterns, as well as blow-up of the
solutions in finite time phenomena.
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