DESINGULARIZING COMPACT LIE GROUP ACTIONS

KEN RICHARDSON

This talk surveys the well-known structure of G-manifolds and summarizes parts of two papers: [4], joint with J. Brüning and F. W. Kamber, and [5], joint with I. Prokhorenkov.

Suppose that a compact Lie group G acts effectively and isometrically on a connected, closed, Riemannian manifold M. For $x \in M$, the isotropy subgroup $G_x < G$ is defined to be $\{g \in G : gx = x\}$. The orbit \mathcal{O}_x of a point x is defined to be $\{gx : g \in G\}$. We will exhibit simple examples in the lecture.

On any such G-manifold, the conjugacy class of the isotropy subgroups along an orbit is called the orbit type. Given subgroups H and K of G, we say that $[H] \leq [K]$ if H is conjugate to a subgroup of K. It is well-known that the union of the principal orbits (those with type $[G_0]$) form an open dense subset M_0 of the manifold M, and the other orbits are called singular. Let M_j denote the set of points of M of orbit type $[G_j]$ for each j; the set M_j is called the stratum corresponding to $[G_j]$. A stratum M_j is called a most singular stratum if there does not exist a stratum M_k such that $[G_j] < [G_k]$. Each stratum is a G-invariant submanifold of M. For each j, the submanifold $M_{\geq j} := \bigcup_{[G_k] \geq [G_j]} M_k$ is a closed, G-invariant submanifold.

1. Desingularization construction and equivariant index

In the lecture, we will describe a new G-manifold N that has a single stratum (of type $[G_0]$) and that is a branched cover of M, branched over the singular strata. A distinguished fundamental domain of M_0 in N is called the desingularization of M and is denoted \widetilde{M} . The significance of this construction is that it appears in the equivariant index theorem in [4], and the analysis of transversally elliptic operators on M may be replaced by analysis on \widetilde{M} , which is much easier to understand. Further, one may independently desingularize each $M_{\geq j}$, since this submanifold is itself a closed G-manifold.

The desingularizations \widetilde{M} and $\widetilde{M}_{\geq j}$ are the regions of integration present in the following equivariant index formula in [4].

Theorem 1.1. (Equivariant Index Theorem, in [4])

$$\operatorname{ind}^{\rho}(D) = \int_{\widetilde{M} \neq G} A_{0}^{\rho}(x) \ \widetilde{|dx|} + \sum_{j,a,b} C_{jab} \left(-\eta \left(D_{j}^{S+,\sigma_{a}} \right) + h \left(D_{j}^{S+,\sigma_{a}} \right) \right) \int_{\widetilde{M} \geq j \neq G} A_{j,\sigma_{b}^{*}}^{\rho_{0}}(x) \ \widetilde{|dx|}$$

2. NATURAL EQUIVARIANT DIRAC OPERATORS

In this part of the talk, another approach is used to treat difficult transverse analytic problems in a less singular setting. Given a connected, complete *G*-manifold, the action of $g \in G$ on *M* induces an action of dg on *TM*, which in turn induces an action of *G* on the principal O(n)bundle $F_O \xrightarrow{p} M$ of orthonormal frames over *M*. The *G* orbits on F_O are diffeomorphic and form a Riemannian fiber bundle, in a natural metric on F_O . The quotient $F_O \xrightarrow{\pi} F_O / G = F_O / \mathcal{F}$ is a Riemannian submersion of compact O(n)-manifolds.

KEN RICHARDSON

Let $E \to F_O$ be a Hermitian vector bundle that is $G \times O(n)$ -equivariant. Let $\rho : G \to U(V_\rho)$ and $\sigma : O(n) \to U(W_\sigma)$ be irreducible unitary representations. We define the bundle $\mathcal{E}^{\sigma} \to M$ by $\mathcal{E}_x^{\sigma} = \Gamma(p^{-1}(x), E)^{\sigma}$, where the superscript σ refers to the type σ part of the O(n)-representation space $\Gamma(p^{-1}(x), E)$. Similarly, we define the bundle $\mathcal{T}^{\rho} \to F_O \nearrow G$ by $\mathcal{T}_y^{\rho} = \Gamma(\pi^{-1}(y), E)^{\rho}$.

In the lecture, we will show how to construct equivariant differential operators on M and $F_O \neq G$, denoted

$$D_M^{\sigma}: \Gamma(M, \mathcal{E}^{\sigma}) \to \Gamma(M, \mathcal{E}^{\sigma}) \text{ and } D_{F_O \swarrow G}^{\rho}: \Gamma(F_O \land G, \mathcal{T}^{\rho}) \to \Gamma(F_O \land G, \mathcal{T}^{\rho}).$$

For an irreducible representation $\alpha : G \to U(V_{\alpha})$, let $(D_M^{\sigma})^{\alpha} : \Gamma(M, \mathcal{E}^{\sigma})^{\alpha} \to \Gamma(M, \mathcal{E}^{\sigma})^{\alpha}$ be the restriction of D_M^{σ} to sections of *G*-representation type α . The operator $\left(D_{F_O \swarrow G}^{\rho}\right)^{\beta}$ is defined similarly.

Theorem 2.1. The operator D_M^{σ} is transversally elliptic and *G*-equivariant, and $D_{F_O \nearrow G}^{\rho}$ is elliptic and O(n)-equivariant, and the closures of these operators are self-adjoint. The operators $(D_M^{\sigma})^{\rho}$ and $(D_{F_O \nearrow G}^{\rho})^{\sigma}$ have identical discrete spectrum, and the corresponding eigenspaces are conjugate via Hilbert space isomorphisms.

Thus, questions about the transversally elliptic operator D_M^{σ} are reduced to questions about the elliptic operators $D_{F_O \neq G}^{\rho}$ for each irreducible $\rho : G \to U(V_{\rho})$. Further, it turns out that the operators D_M^{σ} play the same role for equivariant analysis as the standard Dirac operators do in the analysis of elliptic operators on closed manifolds.

3. Further Comments

In both results, a problem of analyzing a transversally elliptic operator (with potentially infinite dimensional eigenspaces) is reduced to an elliptic problem or set of elliptic problems, which are more tractable. For example, the Atiyah-Segal Theorem ([1], 1968) was the first version of an equivariant index theorem. However, the appropriate generalization to transversally elliptic operators appeared only in 1996 (Berline-Vergne, [2],[3]). In a sense, Theorem 1.1 is a Fourier transform version of the Atiyah-Segal and Berline-Vergne results, giving a formula for the Fourier coefficients of the character instead of a function value of the character. Further, Theorem 1.1 gives a method of computing eta invariants of Dirac-type operators on quotients of spheres by compact group actions; this was known previously for finite group actions only.

The new "transversal Dirac operators" on G-manifolds constructed in Section 2 and in [5] should be explored further, and in particular future investigations should lead to generalizations of Dirac operator results to the transversally elliptic setting.

References

- [1] M. F. Atiyah and G. B. Segal, The index of elliptic operators: II, Ann. of Math. (2) 87(1968), 531-545.
- [2] N. Berline and M. Vergne, The Chern character of a transversally elliptic symbol and the equivariant index, Invent. Math. 124(1996), no. 1-3, 11-49.
- [3] N. Berline and M. Vergne, L'indice équivariant des opérateurs transversalement elliptiques, Invent. Math. 124(1996), no. 1-3, 51-101.
- [4] J. Brüning, F. W. Kamber, and K. Richardson, *The eta invariant and equivariant index of transversally elliptic operators*, preprint in preparation.
- [5] I. Prokhorenkov and K. Richardson, Natural equivariant Dirac operators, preprint in preparation.

DEPARTMENT OF MATHEMATICS, TEXAS CHRISTIAN UNIVERSITY, FORT WORTH, TEXAS 76129, USA *E-mail address*: k.richardson@tcu.edu