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Dynamic Spatio-Temporal Processes

(Sea Surface Temperature, SST)
NASA AMSR: SST (scientific visualization studio)
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Complexity

e Spatio-Temporal Dynamics - interacting
components of a spatial process (or processes)
evolving through time
— This is how the real world works!

— E.g., diffusion, advection, vorticity, energy
cascades, repulsion, growth, density dependence,
infection, waves, fronts

— Many different scales of interaction, as well as
different process components (variables)



Spatio-Temporal Modeling in Statistics

Purpose: Characterize processes in the presence
of uncertain and (often) incomplete
observations and system knowledge for the
purposes of:

— Prediction in space (interpolation)
— Prediction in time (forecasting)

— Assimilation of observations and deterministic
models

— Inference on controlling process parameters

* Estimation and prediction in the presence of uncertainty
in data, process, and the associated parameters



Spatio-Temporal Statistical Models

Traditionally Two Primary Approaches

— Descriptive (marginal): Characterize the second moment
(covariance) behavior of the process

* Several different physical processes could imply the same
marginal structure; problematic if non-Gaussian/nonlinear

* Most useful when knowledge of process is limited

— Dynamic (conditional): Current values of the process at a
location evolve from past values of the process at various
locations

* Conditional models closer to the etiology of the phenomenon
under study

* Particularly useful if there is some a priori knowledge available
concerning the process behavior

There is a big gap between how dynamics is viewed in statistics
as compared to applied math and geophysics!



This Talk: An Overview

Focus on the conditional/dynamic perspective

Specifically: using process knowledge as
motivation for parameterization and structure
of spatio-temporal statistical models

Focus on statistical models that are discrete in
time and space, but may be motivated by
processes that are continuous in one or both

Introduce a class of physically realistic
parametric nonlinear dynamical spatio-
temporal statistical models

— General quadratic nonlinearity
* Parameterization, implementation




Notation

Let {Y(s;t):s € D, C R%t € D; C R} denote a spatio-temporal
random process, where D is the spatial domain of interest,

D; the temporal domain of interest, s is a spatial location and ¢
a time.

When we refer to discrete time, we will typically write Y;(s)

It has become customary in hierarchical modeling to denote
“distributions” using bracket notation. E.g.,

| Z|Y] - a conditional distribution of Z given Y = y.

We also typically denote vectors and matrices by a bold font:

e.g., Y,0, Y= (Yi(s1),...,Yi(sn))



Marginal/Descriptive Characterization

Heine (1955), Whittle (1986), Jones and Zhang (1997)

Reaction-Diffusion Egn.

Y (s;t) 0%Y (s;t)
o 5 Pz ta¥isit) =d(sit),
Implied spatio-
emporal
Eorrgaﬁon a >0, 8> 0and 0 a random, zero mean error process.
N\
T—temporal lag
C(h;7)/C(0,0) = p(h;7) h — spatial lag
1/2 h
_ _h(a/B)Y/? 27(ae/B) /3
= (1/2){e Erfc( IOk
1/2 h
h(a/B8)Y/? 27(a/B)* = + h/B
+ e Erfc( 20 /)2 },

for he R, 7 € R; Erfcis the “complimentary error function”



Conditional Perspective

* Thus, in some cases general process knowledge
(e.g., reaction-diffusion) can be used to develop
classes of spatio-temporal covariance models

* Typically, analytical derivations in the statistics
literature have only been given for relatively
simple processes

* |In some cases, because conditional models are
closer to the process etiology, it is easier to
incorporate process knowledge in that context
directly (e.g., dynamic models)



Hierarchical Dynamic Spatio-Temporal Model

Observation Model: Zt — H(Yt; Hh; Et)

Errors

Data vector  mapping Parameters

function
Spatio-temporal process
vector of interest (hidden)

Process Model: Yt — M(Yt—l, Yt—27 e 0m§ nt)

Transition function with Markovian dependence structure Noise
(conditional independence)

Typically, fixed and unknown in classical
Parameters: Hh, Hm, 06, 977 statistics ; random and perhaps structure
(dependence) if Bayesian

Y,0|Z] x [Z]Y,0},0.][Y]|0.,, 6,][O]

Inference via
Bayes’ Rule:



Statistical Dynamic Spatio-Temporal Models?

 Dimensionality can prevent the (efficient)
estimation of the full transition operator M(-)

— Requires sensible parameterizations and/or
dimension reduction

— Some types of parameterizations make sense for
some spatio-temporal processes, and some don’t
(e.g., process knowledge should not be ignored if
available)

— Hierarchical representations can help

Consider a simple linear process model.



Statistician’s Conditional Perspective

For a linear process, we might consider a first-order
vector autoregressive process with unknown M:

Markovian Yt — MYt—l + 7,

assumption:

condition on where Noise process with

recent past , some (unknown)
Y, = (Yi(s1), .., Yi(sn)) covariance, Q

* When nis large and t=1,...,T with T relatively small, estimation is a problem!

Traditionally, simple (naive) parameterizations have been used in statistics
(e.g., univariate AR models; random walks, etc.).

It is important to to consider parameterizations that can accommodate the
dynamics of the system under consideration.

(we’ll talk about projections on lower-dimensional manifolds later)



Common Ground Suggests Statistical
Model Parameterizations

Consider the Reaction-Diffusion PDE Example:

 We should be able to use our knowledge of
the PDE to motivate the parameterization of
the VAR model to facilitate its estimation for
more complicated processes.

* As a toy example, consider a simple finite-

difference discretization. [Note: we have also
used more complicated differencing as well as
spectral and Galerkin methods in this context; these
can motivate different ST models.]



PDE-Motivated Parameterization: Ex

Y (s;t)
ot

(8 t)

( The reaction-diffusion PDE
T &Y(S t) 5(35 t)a example from before)

5

Replacing the first-order derivative with a forward difference and the second-
order derivative with a centered difference gives a specific parameterization of a
first-order vector autoregressive process:

Yt _ MYt—l i 5t Plus a boundary

condition term.

where M is highly structured (tri-diagonal) and dependent on the parameters B,
a and discretization constants. Under temporal stationarity, the lag-m (in time)
spatial covariance matrices are

C(m) _ Mmc(o) How does this marginal
Y Y S-T covariance compare
where to the analytical one shown

VGC(C§9)) = {I - M® M}_1V€C<25) earlier for the continuous

stochastic PDE?



PDE Ex: cont.
Comparison of Continuous and Stochastic
Difference Equation Correlation Functions

h=0 h=1

Plots show temporal
correlation functions
for various spatial lags.

(a=1, B=20, A, = 1, A, = 0.01)

1.5 2

I a =

3 Red dots: discretized
correlation values

at intervals of 10A, = 0.1;
Blue lines: continuous
correlation function

0.5 1 1.5 2



What about “real-world” complexity?

What if we don’t know the exact form of the
underlying process, or if the underlying system

is more complicated (e.g., diffusion a spatial
process)?

— Using a simpler discretized model as a template
and allowing the parameters (e.g., 0) to be
random, and (critically) structured in space (e.g.,
random fields) and/or time (e.g., time series) gives
the model more flexibility to adapt to the data

 This flexibility (through conditioning) is a strength
of the hierarchical modeling approach




Basic Linear Gaussian Hierarchical Dynamical
Spatio-Temporal Model

Data: Zt — Hth + €4, €4 ~ N(07 R(BT))

Process: Y, — M(Hm)Yt—l + My, My N(07 Q(BC]))

- Critically, these can be structured according to
arameters: M, R, Q the science-based models, given the

parameters.

These parameters are then given prior
distributions, such as Gaussian random

Hm’ 97’7 Hq pro.cesses (that may depend on other
variables), and can easily be allowed to vary
with time and/or space

These come from our
knowledge of the dynamics.



Linear Dynamic Parameterizations

Integro-
difference

equation Yi(s) =~ /D ks(r; 05)Y:_1(r)dr + ne(s)

(IDE) N | e
transition kernel Simulated advection-diffusion

Linear dynamics can easily '
(and quite efficiently)

accommodate advective 08

and diffusive processes

— “width” of the transition [} N
kernel controls rate of y
diffusion

0.21

— degree of “asymmetry” in
the kernel controls speed
of “object” propagation

0.0071

(advection)
— “long range dependence” These_siggest ways that
can be accommodated by we might parameterize

) the transition matrix!
“multimodal” kernels
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Example: Radar Nowcasting

Post. Real. Std.Dev.

Post. Sample 1 Post. Sample 2 Post. Sud. Dev.

Piost. 5. Dev.

Post. Forecas: S, Dew.

Post. Forecast Mean

Post. Forecast Mean

¢

¢

Post. Forecas! Mean

Statistical model motivated by a
linear advection-diffusion process with

spatially varying parameters.

Implied Propagation by Post. Parms.
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i.e., the
advection
parameters
follow a
latent
spatial
process



Nonlinear Parameterizations

Can the same ideas be used to suggest useful
parametric forms for nonlinear dynamic
spatio-temporal statistical models?

Y = M(Yt—laYt—Qa ey Hm)



Nonlinear” Spatio-Temporal Statistical Models

* Clearly, models of the form: Y, = M(Y,_1,Y; 5,...:60,,)

are too general and we need to think of classes of
parameterizations for this transition function.

 Time varying parameters can accommodate
nonlinearity (e.g., regime changes)

 We consider a flexible class of parametric models
based on polynomial interactions (recall,
“interactions” are the key to spatio-temporal
dynamics!)

* Note: nonlinearity here is with respect to the process or parameters;
not just the parameters as is the traditional statistics definition



General Polynomial Nonlinear
Stochastic IDE Model

Wikle and Holan, 2011

Continuous space and discrete time.

Yi(s)

= /k( )(u1)Yt 1(111 du1+/ / k( ) ul,uz)Yt 1(111)92(3/15 1(u2))du1du2
+ /// (ug,ug,u3)Yi_1(u1)Yi—1(u2)g3(Yi—1(us))duidusdus + ..

; / / / (W1, Uz, . ) Vi1 (W)Y (U2) - gp (Vi1 (up))dundus ... duy

“General” because of g,()... g,( )
for s,u;,...,u, € D,t €7
where {k!(uy,...,w):l=1,...,p} are [-dimensional
kernel functions and ¢;(-):l = 2,...,p are transformation

functions.



Yt(sz)

_|_

_|_

Discretizing and Truncating:

> kDY (s5,) + > k2 Yioi(s5,)92(Yio1(s7,))

j1_1 J2=171=1

Y S‘ Y kzjljgjgn 1 S]3)1/t 1(832)93(}/75 1(831))—'_"’

ja=1 jo= 191 1

Z Z Z kflym JpX/t 1(SJ ) "E—l(sjz)gp(}/t—l(sﬁ))

Jp=1 Jo=171=1
Ut(Si),

Alternatively, we can consider a basis function expansions
of the kernels and process, which leads to a polynomial

interaction model on functional coefficients (e.g., see
Wikle and Holan, 2011).



Polynomial to Quadratic

* This polynomial interaction model is quite
powerful.

* However, there are on the order of nr*l
parameters!

* Fortunately, a general quadratic model can

accommodate a very large class of real-world
phenomena.




General Quadratic Nonlinearity (GQN)

(Wikle and Hooten, 2010)

In scalar form,

n n n

Yi(s;) = Z a;;Yi—1(s5) + Z Z bi k1 Yi—1(5k)g(Ye—1(51); 04) + n:(84),

j=1 k=1 1=1

(linear) (nonlinear)

fori=1,...,n.

 Model includes quadratic (dyadic) interactions in random process Y
 The term “general” refers to the term: Q(Yt—l (Sl)§ 99)

* Thereare (O(n?) parameters in this model!

* This can be recast as a matrix equation: parameters in A, B, Bg

Y = AYt—l - (In & Y;t—l)BYt—l T My
= (A+(I1,®Y;_)B)Y,_1 +n,

e.g.,



Examples of Quadratic Nonlinearity

Reaction-Diffusion Models: (e.g., density dependent growth for invasive species); e.g.,

oY 0 oY 0 oY Y
— ) - — | 0 - Y 1 —
ot  Ox ( (,9) 8x> i oy ( (z,9) 6y> T 70(,y)Y exp ( ’V1($,y>)
Wind-Driven Ocean Circulation: (Quasigeostrophy; W is the streamfunction)

1 oy O 1

2 LhouU 2.y 9% L o2 4

(v 7“2) ot ‘](¢7v ¢) ﬁ@x -+ pH CUI‘lZT 7v ¢ aHv ¢
where J(a,b) = 0a/dx0b/0y — Ob/0xda/dy is the Jacobian
(nonlinear in 1), 7 the wind-stress, and r, 3, p, H, v, ag

are parameters.

Epidemic Dynamics (SIR; Susceptible, Infected, Recovered)

%—f = v — 3SI — uS +wR + DgV?S
5J

— = BSI — pl —~I + D;V?I

OR

E:VI—MR—wR%—DRVzR



GQN Parameterization/Implementation

* Note: the process can consist of multiple
component processes: e.8.,Y; = (Y},, Y,, ét)’

* A substantial problem with these models is
that they have too many parameters to
estimate reliably without extra information; to
help, we can use:

— Mechanistically-motivated parameterizations
— Stochastic search variable selection (SSVS)

|H

— Rank reduced “spectral” models

— Emulator-based priors



Example: Invasive Species Prediction

(e.g., Wikle 2003; Hooten and Wikle, 2007; Hooten et al. 2007)

Reaction-Diffusion Models: (e.g., density dependent growth for invasive species); e.g.,

oY 0 oY 0 oY Y
— i il it ' % 1 -
ot Oz <5($’ 2 (990) i oy (5(aj,y) 8y> T 70(, )Y exp ( Y1 (z, ?J))

Depends on spatially-explicit random diffusion coefficients 6(x,y) and carrying capacity
v1(x,y) and growth y,(x,y) terms specified at a lower level of the model hierarchy.

Eurasian Collared Dove Invasion

1986
a4
Dispersal 6:

- post mean 75
- 56
& Relative — a7

g1 abundance:
95% Pl's for ° | post mean =

S.Fland |

Utah “ 0

0




GQN: Rank Reduction

We can consider the essential dynamics on a manifold of lower
rank. That is, we will consider the dynamical process after
projection into a lower dimensional space.

Consider the spectral representation, Y; ~ ®«a;, where o

is of dimension p X 1 where p << N. We could then

model this reduced-dimensional process in terms of quadratic
interactions:

D k
— Z AijOét_l(j) -+ Z Z bz k1Ot — 1 th_1(l>§ 99) + it
j=1

k=1 1=1

Still we have order p3 parameters here! Unless p is very small, we
may need to make simplifying assumptions, perform stochastic search

model selection, or develop mechanistic-based priors in order to do
estimation.



Naive Statistical Simplification by Scale Analysis

Say we can write Y; = ®Malt + #@a!? + v,, where o

is of dimension p; x 1 and where p; < V.

(7)
t

Now, assume that the dyadic interactions between components of

agl) are explicit, but those among the “small scale” components a,§2>

: : : 1
are “noise” and the interactions between the components of a§ ) and

2) . : . .
ag ) imply random coefficients. (motivated by Reynolds averaging)

Although not necessarily physically realistic, this simple procedure
illustrates some beneficial features of the hierarchical statistical

1 1 1

As a simple example, consider A 1,0 ¢

(2) (2) _(2)

2
0‘1(5 = (al,t7a2,t7a3,t)/



All Dyadic Interactions:

Example: Scale Analysis )

Reduction (al Rl t) Reso!ved
(1) <1) - dyadic
(al 2 t) interactions
1
(1) ( ztaéz)
(8 A= at (ag 10 2) o
— 2
a( ) (agt) 52) Linear in
S o
Large Scale Modes: (Cl{g 2a§ 2) candom
1) (2 -
(1) (1) (1) (ag,zaéjg) coefficients
a;’ = (a1, 05;) (@flal) —
(gon) =)
Small Scale Modes: (a§?2&§22) :
(2) (2) rocess
(2) - (2) (2) (2) / (a3 O3 t) noise
84 — (Oé @4 @84 ) (2) (2) —
t T 1 T 2 T 3 N (0427t042 /) terms
(@g gaé 2) (dependence)
Assume g( ) is the identity function here. (ozé?aé?) o




Hierarchical Model

The following hierarchical model is suggested:

Y =P +&, & ~ Gau(0,R)
o = Aoy + (Ip X a;_l)Bat—l TNy My Gau(O, Q)

ptnp
—1
R = kI + Z )‘I€¢kz¢;€ where K ~ Gamma(q,i,m)
k=p+1
Q_l ~ WiShCL’I“t((VS)_l, V) Interaction of small-
scale modes
parameterizes cov
U@C(A) ~ N(IJ’A7 EA) matrix

[B] (see below; hierarchical stochastic search variable selection)



Hierarchical Stochastic Search
Variable Selection

(George and McCulloch, 1993; 1997; Wikle and Holan 2011)

There are still likely to be too many parameters in B to get
reliable statistical estimates. Again, we can utilize the
hierarchical framework to help. Let,

b= (bi,...,b,,) = vec(B)
bilvi ~ 7 N(0,c377) + (1 —v;)N(0,73),

Vi~ Be’r‘noulli(ﬂj ), (note, prior knowledge can
also be placed on )

where v, = 1 means that the j-th variable is in the model.

We specity m;, c;, 7; such that c; is “large” and 7; is “small” to favor Bj having
a small value if it is not “selected” in the model.

Note: we can do the same thing for the linear transition matrix, A.



Example: Long-Lead Prediction of Tropical Pacific SST

)

A

A ' | (Note: each image contains
| e, e Xt R about 2500 pixels. There are
R 1 a about 300 times (months).)
Given SST up ' 23t -
to March 1997 & 1 - a ﬂ
T R Forecast SST
| ez ﬂ"‘-" 7 months
A - 1 ﬂ S later in Oct
T — E : . 1997

Let
$® — EOFSs

"‘1 p =10, n, = 10

Standard MCMC implementation;
vague priors on all parameters
except data model variance.

|
|

b’ |
g %



SST: Quadratic Nonlinear Hierarchical Model Implementation

&) _eors

p1 = 10 T

Data: Monthly Pacific SST
anomalies from January 1970 -
March 1997 to forecast
October 1997

Standard MCMC implementation;
vague priors on all parameters
except data model variance.

Latitude

Latitude

Latitude

Latitude

Latitude

First 10 EOF Patterns

EOF 1: %var: 47.4

140E 160E 180 160W 140W 120W 100W 80W
Longitude

EOF 2: %var: 13.1

140E 160E 180 160W 140W 120W 100W 80W
Longitude

EOF 3: %var: 5.9

30N
20N "
1N -
0
10S .
20S
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140E 160E 180 160W 140W 120W 100W 80W
Longitude

EOF 4: %var: 4.44
30N
20N
10N

108
208

308
140E 160E 180 160W 140W 120W 100W 80W

Longitude

EOF 5: %var: 4.06

140E 160E 180 160W 140W 120W 100W 80W
Longitude

Latitude

Latitude

Latitude

Latitude

Latitude

EOF 6: %var: 3.56

30N
20N
10N "
0 L |
108 .
208
308
140E 160E 180 160W 140W 120W 100W 80W
Longitude
EOF 7: %var: 2.82
30N
20N
10N
0
108
208
308 il
140E 160E 180 160W 140W 120W 100W 80W
Longitude

EOF 8: %var: 2.63

140E 160E 180 160W 140W 120W 100W 80W
Longitude

EOF 9: %var: 2.14

30N

20N

10N

0

10S

208
308 ——

140E 160E 180 160W 140W 120W 100W 80W

Longitude

EOF 10: %var: 2.1

140E 160E 180 160W 140W 120W 100W 80W
Longitude



Obs

Post.
Mean

Post. Pixel
97.5%-tile

Post. Pixel
2.5%-tile

Forecast: October 1997 from March 1997

Lafitude

Latitude

Lafitude

Latitide

20
10
0
-10
-20
30 L

Nonlinear Model

Observed SST Anomalies: October 1997

I 1
140 160 180 200 220 240 260 280
Longitude

Postenor Mean October 1997 from March 1997

L L L L L L L
160 180 200 220 240 260 280

Longitude

F’lxel W|se 97 5 percermle

I I 1 I 1
160 1EEI 200 220 240 260 280
Longitude

P|xe| Wlse 25 percent|le

T

1 L L L L
160 180 200 220 240 260 280
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Lattice

Lattude

Lattude

Lattude

Linear (VAR) Model

Observed SST Anomalies: October 1997

i L . L L . L
140 160 180 200 220 240 260 280
Longitude

Posterlor l\/Iean October 1997 from March 1997

30
20 4
10
’

0
-10 .
-20
30 L L L L L

zeu ZBU

140 160 180 200 220 240
Longitude

Pixel-wise 97.5 percentile

L I L 1 L L
140 o0 180 200 220 240 260 260
Longitude

Pixel-wise 2.5 percentile

140 160 180 200 220 240 260 280
Longitude




Posterior Means: Parameters

Posterior Probabilities of Inclusion

(1) _ (1) (1)7 (1) 1
o, = Ao, + (I @ ) Bay ) + 1, .
X .
¢ r 406
B matrix Z
_ o inclusion ; P o4
Posterior Mean: A matrix (linear term) orobabilities .
. .
’ III III 0.8 0
2+ J 0.6
3l 0.4 Interpretation?
41 1 t 102 , ‘
5| | Posterlf)r Mean, B Mlatrlx ois
ol | 1 ! I M T
7t .- 1 B0 B matrix 2 . 01
8t 1 -0.4 4 I L 40.05
o .. -0.6 5 ]
10} I
2 4 6 8 10 08 i : |
7 I 7 1-0.05
8 | ]
ol 11 0.1
10} 1

10 20 30 40 50



Informative Priors

If information is available from other sources,
we may be able to combine information to
Improve estimation.

One approach for data assimilation
applications is to develop a surrogate
parametric model (or emulator) for a
mechanistic simulator and use that to develop
informative prior distributions.



Statistical Emulators (Surrogates)

* With very complex nonlinear multivariate S-T processes for
which there exists large (typically, mechanistic) simulators

(“computer models”), one can use statistical models to
“emulate” the simulator. [e.g., Sacks et al., 1989; Kennedy and O’Hagan,

2001; Higdon et al. 2004,2008; and MANY more!!]

* |n statistics, the tradition has been to use “second-order

emulators”, based on Gaussian processes with the emphasis on
covariance to model a response surface (e.g., Kennedy and O’Hagan,
2001).

e As an alternative, one can consider modeling the dependence

through a first-order linear or nonlinear model (e.g., van der Merwe
et al. 2007; Hooten et al. 2011; Margvelashvili and Campbell, 2012), which
is more suited to dynamic processes.



Construction of a Reduced-Rank
First-Order Emulator

Generate inputs: W, x = (W1,...,Wg)

Generate vector realizations from computer model
output given the inputs, y.=f(w,): Y, xx = (y1,..-,¥YK)
Consider the SVD of the computer model output:

Y = UDV’
Approximate the SVD by keeping only the first p left
and right singular vectors: Y =~ ﬁnyxpf)pxp y DX K

Model the right singular vectors as a nonlinear
function of inputs: V ~ g(W, 9) (select favorite nonlinear model)

Thus, for an ny-dim response, y, and input, w :

y = UDv(w,0) +n=Fv(w,0) +1n=m(w,0) + 7



First-Order Emulator (process)

Typically w corresponds to parameters in the
mechanistic model.

It is also the case that w may correspond to forcings
(e.g., climate drivers), initial conditions, or the
previous values of the state process (1-step ahead
emulator): e.g.,

Yt = m(Wta 9) T 1) = m(yt—la 9) T My

When “trained” on the mechanistic model outputy,

we get: ’ Thus, parameters of
Yt — m(Yt—h 9) + ur m( ) are found “off-

line”.
This can be the basis for a prior model on the
dynamics within a hierarchical nonlinear DSTM.



Hierarchical Reduced-Rank Emulator-Assisted DSTM

(Leeds, Wikle, Fiechter, 2012)

Zt = Ht<I>at + Ht\IlBt + €4, €4~ GCLU(O, Rt)
ar =m(ar—1;0) +n,, n, ~ Gau(0,Q)

wodate B, ~ Gau(0, diag(7)
model [Rt, Q, ’T] Note: Y; = Po; + ¥,
0 ~ (é, 29) KEY POINT: The mean is from a

parametric statistical emulator;

: : : estimated “off-line”
e H, is an m; X n mapping matrix.

e ® is an n X p matrix of basis functions obtained from the first p left-
singular vectors from the SVD of the mechanistic model output

e W is an n X ¢ matrix of basis functions obtained from the remaining q
left-singular vectors from the SVD of the mechanistic model output

o m(-) is the multivariate DSTM propagator, depending on parameters 6

e oy, 3, are analogous to the first p and remaining q right singular vectors
of the mechanistic model output

e Choices made for (8, 39), [R¢, Q, 7] depend on application



EXAMPLE: Spatio-temporal prediction of primary production
(chlorophyll) in the Coastal Gulf of Alaska (GOGA)

Data Assimilation: Combine S

primary production data and

mechanistic computer model for a
coupled ocean and ecosystem

model (ROMS-NPZDFe; Fiechter et al. 2009)

Emulator: quadratic nonlinear

= w D
=8N o= oo 3 B B 5 8 % 2 & 5 2
= 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8

Alaska

emulator for coupled model:
Phytoplankton, SSH (sea surface
height), and SST (sea surface
temperature) model output

16490

Predict/Assimilate: Primary
Production given high-dimensional
ocean color (SeaWiFS) satellite data
and ocean model physical output

I I I I I I I I I
180°W 156" 1527 14874 T44°W 140°W

*Train based on 4 years
(1998-2001), 8 day
averages

*Predict/Assimilate for
2002



Proof of Concept Experiment

: Z
* |n this case: 7, — Z2,Z m; (1 =1,2,3) - dimensional data vectors
’ for Chlorophyll, SSH, SST

Y,
Y, — Y & p;i(i = 1,2,3) - dimensional reduced rank
‘ 2t process vectors for Chlorophyll, SSH, SST

(Work in log space for Chlorophyll)

* State Rank Reduction: O(10°) to O(10)

* Nonlinear emulator: a quadratic nonlinear model
based on the first 7 singular vectors (97.5% of the

variation) of the ROMS-NPZDFe output SVD for
1998-2001

— the non-dynamic small-scale components were based

on the next 10 singular vectors (over 99% of variation in
model output total)



Coupled Dynamics: Example from Coupled Ocean Model

Phytoplankton SSH SST
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Results: log(CHL)

5/19/02 - 5/26/02 5/27/02 - 6/03/02 6/04/02 - 6/11/02

- X -y -

Data

Posterior
Mean

Posterior
STD




Results (cont.)

More prominent chlorophyll eddie in posterior mean (middle) than

ROMS-NPZDFe output (right):
| 1 'S | 1
N 3 iii-i '.: | | |

Figure: 8 day composite of SeaWiFS observations (left), ROMS-NPZDFe P
output (right) and the posterior mean for phytoplankton (center) from May 27,

2002 to June 3, 2002.

-------------

& # -
.




Conclusion

Environmental processes involve interactions across
space and time and multiple variables

These interactions are governed by nonlinear processes

Statistical models for nonlinear dynamic spatio-temporal
processes typically can benefit from incorporation of
scientific information, while considering the
dimensionality of the state variables and parameters

Helpful approaches:

— Generalized quadratic nonlinearity

* Mechanistic motivation; rank reduction; stochastic search variable
selection; emulator-assisted models

Much work to be done in nonlinear S-T model
development, computation and theory!
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