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Log-Gaussian Random Fields

The random field {Z(s) : s ∈ D}, with Z(s) > 0 and D ⊂ R
d, is log-Gaussian if

{log(Z(s)) : s ∈ D} is Gaussian

Assume for now the mean and covariance functions of Y (·) = log(Z(·)) are

E{Y (s)} = µY

cov{Y (s), Y (u)} = CY (s,u)

with µY ∈ R unknown and CY (s,u) known covariance function in R
d,

and for all s ∈ D, CY (s, s) = σ2
Y .

The mean and covariance functions of Z(·) are

E{Z(s)} = exp{µY +
σ2

Y

2
} =: µZ

cov{Z(s), Z(u)} = µ2
Z

(

exp{CY (s,u)} − 1
)



Predictive Inference

DATA:

Z = (Z(s1), . . . , Z(sn)) measured at sampling locations s1, . . . , sn ∈ D

Let s0 ∈ D unmeasured location in D, and B ⊂ D a subregion of D

GOALS:

• Obtain predictor of Z(s0) [point prediction]

• Obtain predictor of Z(B) = 1
|B|

∫

B
Z(s)ds [block prediction]

• Obtain prediction interval for Z(s0) [point interval prediction]

• Obtain prediction interval for Z(B) [block interval prediction]



Point Prediction

Let Ẑ0 be predictor for Z0 (within a family) and L(Z0, Ẑ0) a loss function

The optimal predictor of Z0 is the predictor that minimizes the risk function

r(Ẑ0) = E{L(Z0, Ẑ0)}

For squared error loss the risk becomes the mean squared prediction error

MSPE(Ẑ0) = E{(Ẑ0 − Z0)
2}

Similar notation is used for prediction of Z(B)

Notation: Quantities depending on the prediction location s0 would be written

with subscript ‘0’



For µY known the optimal predictor and its MSPE are

Ẑ∗
0 = E{Z0 | Z} = exp{Ŷ ∗

0 +
σ̂∗

0Y

2
}

MSPE(Ẑ∗
0 ) = var(Z0) − var(Ẑ∗

0 )

= µ2
Z

(

exp{σ2
Y } − exp{c′0Y Σ−1

Y c0Y }
)

where

Ŷ ∗
0 = E{Y0 | Y}

= µY + c′0Y Σ−1
Y (Y − µY 1)

σ̂∗
0Y = var(Y0 | Y)

= σ2
Y − c′0Y Σ−1

Y c0Y

ΣY,ij = CY (si, sj); c0Y,i = CY (s0, si)

These are known in the geostatistical literature as simple kriging predictors and

simple kriging variances of Z0 and Y0.



Unbiased Prediction

The most used predictor in practice is the lognormal kriging predictor

ẐLK
0 = exp{Ŷ OK

0 +
1

2
(σ2

Y − λ
′
0Y ΣY λ0Y )}

and

MSPE(ẐLK
0 ) = µ2

Z

“

exp{σ2
Y } + exp{λ′

0Y ΣY λ0Y } − 2 exp{λ′

0Y ΣY λ0Y − m0Y }
”

where

Ŷ OK
0 = λ′

0Y Y (the BLUP of Y0)

λ′
0Y =

(

c0Y +
1 − 1′Σ−1

Y c0Y

1′Σ−1
Y 1

1
)′

Σ−1
Y



By construction ẐLK
0 satisfies the following optimality property:

Proposition 1 (Cressie, 1993). Predictor ẐLK
0 minimizes E{(log(Ẑ0) − log(Z0))

2}

over the class of predictors of the form Ẑ0 = exp{λ′
0 log(Z) + k0}, where λ0 ∈ R

n

and k0 ∈ R are constrained such that E{Ẑ0} = E{Z0} for every µY ∈ R

Recently, Cox (2004) noted a stronger optimality property:

Proposition 2. Predictor ẐLK
0 minimizes E

{

(

Ẑ0−Z0

)2

exp{c′
0Y

Σ−1
Y

log(Z)}

}

over the class of

all unbiased predictors of Z0

Comment. These optimality properties are somewhat unsatisfactory:

◦ The former holds in the transformed log-scale rather than in the original scale of

measurement

◦ The latter, although for the original scale, holds with respect to a weighted

squared error loss function with little intuitive appeal



Optimal Point Prediction

Consider the family of predictors

P0 =



Ẑ0 = exp{a′

0Y + k0} : k0 ∈ R, a0 ∈ R
n, a

′

01 = 1

ff

which includes many special cases ẐLK
0 , ẐN

0 = exp{Ŷ OK
0 } and others

Theorem 1. The predictor in the P0 that minimizes E{(Ẑ0 − Z0)
2} is

ẐME
0 = exp{Ŷ OK

0 +
1

2
(σ2

Y − λ′
0Y ΣY λ0Y − 2m0Y )}

and

MSPE(ẐME
0 ) = µ2

Z

“

exp{σ2
Y } − exp{λ′

0Y ΣY λ0Y − 2m0Y }
”

where m0Y =
1−1

′Σ−1
Y

c0Y

1′Σ−1
Y 1



Block Prediction

A related problem is the prediction, based on (point) data Z, of

Z(B) =
1

|B|

∫

B

Z(s)ds, B ⊂ D

These variables are clalled ‘blocks’ in the geostatistical literature

Examples where this arises:

◦ Environmental Assessment

◦ Precision Farming



Block Prediction (cont.)

Two predictors have been proposed in the geostatistical literature:

• The lognormal kriging block predictor

Ẑ(B)LK =
1

|B|

∫

B

ẐLK(s)ds

• A block predictor motivated by the assumption of “preservation of lognormality”

Ẑ(B)PL = exp



Ŷ (B)OK +
1

2

“

σ2
Y − λ

′

Y (B)ΣY λY (B)
”

ff

where Ŷ (B)OK = λ′
Y (B)Y is the BLUP of Y (B) =

∫

B
Y (s)ds/|B| based on Y

Both predictior are unbiased for Z(B), but no other properties are given



Optimal Block Prediction

Consider the family of block predictors

PB =



Ẑ(B) =
1

|B|

Z

B

exp{Ŷ OK(s) + k(s)}ds : k(s) ∈ C(B)

ff

where C(B) is the space of continuous and bounded functions on B

Theorem 2. The predictor in the family of predictors PB that minimizes

E{(Ẑ(B) − Z(B))2} is

Ẑ(B)ME =
1

|B|

∫

B

ẐME(s)ds

where ẐME(s) is the optimal point predictor given before, and

MSPE(Ẑ(B)
ME

) =
µ2

Z

|B|2

Z

B

Z

B

 

exp{CY (s, u)} − exp{λ
′
Y (s)ΣY λY (u) − mY (s) − mY (u)}

!

dsdu



Considering another family of block predictors

P̃B =



Ẑ(B) = exp{Ŷ (B)OK + kB} : kB ∈ R

ff

Theorem 3. The predictor in the family of predictors P̃B that minimizes

E{(Ẑ(B) − Z(B))2} is given by

Ẑ(B)MP = exp

(

Ŷ (B)OK +
1

2

“

σ
2
Y − 3λ

′
Y (B)ΣY λY (B)

”

+ log

„

1

|B|

Z

B

e
λ′

Y (B)cY (s)
ds

«

)

and

MSPE(Ẑ(B)MP ) =
µ2

Z

|B|2

 

Z

B

Z

B

exp{CY (s, u)}dsdu

− |B|2 exp

(

2 log

 

1

|B|

Z

B

e
λ′

Y (B)
cY (s)ds

!

− λ
′
Y (B)ΣY λY (B)

)!



Comparison of Predictors

Consider random field Z(s) = exp{Y (s)}, defined on region D = [0, 1] × [0, 1],

where {Y (s), s ∈ D} is Gaussian with

E{Y (s)} = µY , CY (s,u) = σ2
Y exp{−

||s− u||

θY

}

µY ∈ R and σ2
Y , θY > 0

Data on Z(·) is observed at n = 50 sampling locations chosen at random



Sampling Design
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Comparison of Point Predictors

We compare the values of ẐME
0 and ẐLK

0 by predicting Z(s0) for locations

s0 = (0.5, 0.5), (0.3, 0.8) and (0.9, 0.9)

For that note
ẐME

0

ẐLK
0

= exp{−m0Y } =
E{ẐME

0 }

E{Z0}

does not depend on the observed data

To compare MSPEs use predictive efficiency of ẐME
0 relative to ẐLK

0

RMSPE(ẐME
0 , ẐLK

0 ) =
MSPE(ẐME

0 )

MSPE(ẐLK
0 )



Comparison of Point MSPEs
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Comparison of Block Predictors

The block predictors are approximated by noting that

Ẑ(B)LK = ES{Ẑ
LK(S)} and Ẑ(B)ME = ES{Ẑ

ME(S)}

where ẐLK(·) and ẐME(·) are the point predictors, and expectation is taken with

respect to S ∼ unif(B)

We compare the block predictors of Z(B) for the following sub-regions B



Block Subregions
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The Non-constant Mean Case

Suppose now that

µY (s) =

p
∑

j=1

βjfj(s)

β = (β1, . . . , βp)
′ ∈ R

p unknown regression parameters

(f1(s), . . . , fp(s))
′ known location-dependent covariates

In this case we have:

• The result on optimal point prediction (Theorem 1) can be easily extended

• The results on optimal block prediction (Theorems 2 and 3) cannot be extended



First Conclusions

• Point and block predictors for log-Gaussian processes exist that improve upon

lognormal kriging, but . . .

• Lognormal kriging point and block predictors have (near) optimality properties

in the original scale

• The lognormal kriging block predictor is substantially better than the block

predictor motivated by “permanence of lognormality”

Also, the best predictor in PB is better than the best predictor in P̃B

• For random fields with non-constant mean the optimality results also hold for

point prediction, but not for block prediction



Interval Prediction

Assume now the mean and covariance functions of Y (·) are

E{Y (s)} =

p
∑

j=1

βjfj(s)

cov{Y (s), Y (u)} = C(s,u)

β = (β1, . . . , βp)
′ ∈ R

p unknown regression parameters

f1(s), . . . , fp(s) known location-dependent covariates

C(s,u) parametric covariance function in R
d, with C(s, s) = σ2 > 0



Observed Data

We have noisy measurements of the random field Z(·) at known sampling locations

s1, . . . , sn ∈ D:

Zi,obs = Z(si)εi, i = 1, . . . , n

with {log(εi)}
iid
∼ N(0, σ2

ε ) measurement errors distributed independently of Z(·),

and σ2
ε ≥ 0

GOAL:

Obtain prediction interval for Z0 = Z(s0), the unobserved value of the process at

s0 ∈ D, based on Z = {Zi,obs}
n
i=1

Model parameters are β ∈ R
p and ϑ ∈ Θ ⊂ R

q, which include σ2
ε , σ2 and any other

parameters in C(s,u)



Standard Approach

Standard approach to find prediction intervals for Z(·) is to transform prediction

intervals for Y (·). Let

Y = log(Z) and Y0 = log(Z0)

The BLUP of Y0 based on Y and its mean squared prediction error are

Ŷ0(ϑ) = λ
′

0(ϑ)Y , σ̂2
0(ϑ) = σ2 − 2λ

′

0(ϑ)c0(ϑ) + λ
′

0(ϑ)Σϑλ0(ϑ)

with

λ
′

0(ϑ) =

„

c0(ϑ) + X(X ′Σ−1

ϑ X)−1(x0 − X ′Σ−1

ϑ c0(ϑ))

«

′

Σ−1

ϑ

X = (fj(si))n×p, x0 = (f1(s0), . . . , fp(s0))
′

(Σϑ,ij)n×n = C(si, sj) + σ2
ε 1{i = j} (positive definite), (c0(ϑ)i)n×1 = C(s0, si)



When ϑ is known, it follows

0

@

Y0

Ŷ0(ϑ)

1

A ∼ N2

0

@

0

@

x
′

0β

x
′

0β

1

A ,

0

@

σ2 λ′

0(ϑ)c0(ϑ)

λ′

0(ϑ)c0(ϑ) λ′

0(ϑ)Σϑλ0(ϑ)

1

A

1

A

so T = Y0 − Ŷ0(ϑ) ∼ N(0, σ̂2
0(ϑ)) is a pivot for the prediction of Y0

Then a 1 − α prediction interval for Y0 is

Ŷ0(ϑ) ± Φ−1(1 − α/2)σ̂0(ϑ)

and a 1 − α prediction interval for Z0 is

exp{Ŷ0(ϑ) ± Φ−1(1 − α/2)σ̂0(ϑ)}

This IN
0 (α, ϑ) is called the standard 1 − α prediction interval for Z0



Shortest Prediction Intervals: Known Covariance

Consider the family of 1 − α prediction intervals for Z0

F0 =

„

exp{Ŷ0(ϑ)−Φ−1(1− γ)σ̂0(ϑ) , exp{Ŷ0(ϑ)−Φ−1(1−α+ γ)σ̂0(ϑ)}

«

: γ ∈ [0, α)

ff

which includes the standard prediction interval (obtained for γ = α/2)

Theorem 4. Let α ∈ (0, 1), ϑ ∈ Θ and s0 ∈ D. The shortest prediction interval in

F0 is the one corresponding to the value γ = γopt
0 = γopt

0 (α, ϑ) ∈ (0, α/2), which is

the (unique) solution to the equation

Φ−1(1 − γ) − Φ−1(1 − α + γ) = 2σ̂0(ϑ)

Hence the shortest 1 − α PI for Z0 in F0 is

IS
0 (α, ϑ =

„

exp{Ŷ0(ϑ) − Φ−1(1 − γopt

0 )σ̂0(ϑ) , exp{Ŷ0(ϑ) − Φ−1(1 − α + γopt

0 )σ̂0(ϑ)}

«



Comparison

Let RL(IN
0 (α, ϑ), IS

0 (α, ϑ)) be defined as

len(IS
0 (α, ϑ))

len(IN
0 (α, ϑ))

=
exp{Φ−1(1 − α + γopt

0 )σ̂0(ϑ)} − exp{−Φ−1(1 − γopt

0 )σ̂0(ϑ)}

exp{Φ−1(1 − α/2)σ̂0(ϑ)} − exp{−Φ−1(1 − α/2)σ̂0(ϑ)}

Consider D = [0, 1] × [0, 1] and random field Z(s) = exp{Y (s)}, where

{Y (s), s ∈ D} is Gaussian with constant mean and Matérn covariance function

C(s,u) =
σ2

2θ2−1Γ(θ2)

( l

θ1

)θ2

Kθ2

( ||s − u||

θ1

)

ϑ = (σ2, θ1, θ2) are covariance parameters

We consider the cases θ2 = 0.5 and θ2 = 1.5, and σ2
ε = 0 (no measurement error)



Sampling Design
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Figure 1: θ2 = 0.5



Findings

• Length reductions in the range 1–35%

• Length reductions decrease when confidence level increases

• Length reductions decrease when smoothness of the process increases

• The largest length reductions are obtained in models with

◦ highly asymmetric marginals (σ2 large)

◦ moderate to weak dependence (θ small)



Shortest Prediction Intervals: Unknown Covariance

The previous prediction intervals depend on ϑ, which is unknown

The most immediate fix to this problem is to use IN
0 (α, ϑ̂) and IS

0 (α, ϑ̂), where

ϑ̂ = ϑ̂(z) is an estimate of ϑ. These are called plug-in prediction intervals

Drawback: Plug-in PIs have coverage properties that differ from the nominal

coverage properties, usually having smaller coverage than the desired coverage

since these PIs intervals do not take into account the sampling variability of the

parameter estimates

A solution: Calibrate these plug-in PIs [Cox (1975) and Beran (1990)]



Calibrated Prediction Intervals

The coverage probability function of IS
0 (α, ϑ̂) is

π0(α, ϑ) = Pϑ{Z0 ∈ IS
0 (α, ϑ̂(Z))}

We start by estimating π0(·, ϑ) with π0(·, ϑ̂)

The basic idea of calibrating plug-in prediction intervals is to find αc ∈ (0, 1) for

which it holds, exactly or approximately, that

π0(αc, ϑ̂) = 1 − α

The calibrated prediction interval is IS
0 (αc, ϑ̂), which by construction has coverage

probability close to 1 − α

π0(·, ϑ̂) is usually not available in closed form so it needs to be approximated



Bootstrap Calibration

Let π∗
0(·, ϑ̂) be a Monte Carlo estimate of π0(·, ϑ̂)

One way is simulate (Z∗
j , Z

∗
0j), say B times, from the lognormal model with

parameters β̂ = β̂(z) and ϑ̂ = ϑ̂(z), and estimate π0(x, ϑ̂) with

1

B

B
X

j=1

1{Ŷ0(ϑ
∗
j ) − Φ

−1
(1 − γ

opt∗
0j

)σ̂0(ϑ
∗
j ) < Y

∗
0j < Ŷ0(ϑ

∗
j ) + Φ

−1
(1 − x + γ

opt∗
0j

)σ̂0(ϑ
∗
j )}

Y ∗
0j = log(Z∗

0j), ϑ∗
j = ϑ̂(Z∗

j ) and γopt∗
0j = γopt

0 (x, ϑ∗
j )

A better way is to use ‘Rao-Backwellization’ based on the identity

π0(α, ϑ) = Eϑ

(

Φ

„

U0(α, ϑ̂,Y) − η0(0, ϑ,Y)

τ0(ϑ)

«

− Φ

„

L0(α, ϑ̂,Y) − η0(0, ϑ,Y)

τ0(ϑ)

«

)

L0(x, ϑ,Y) = Ŷ0(ϑ) − Φ−1(1 − γopt

0 )σ̂0(ϑ)

U0(x, ϑ,Y) = Ŷ0(ϑ) + Φ−1(1 − x + γopt

0 )σ̂0(ϑ)



Algorithm

Step 1. Compute the ML (or REML) estimate ϑ̂ = ϑ̂(z) from the observed data z

Step 2. Simulate B independent and identically distributed bootstrap samples

{Y∗

j : 1 ≤ j ≤ B} from the Gaussian random field with β = 0 and ϑ = ϑ̂

Step 3. For each j = 1, . . . , B, compute the estimate ϑ∗

j = ϑ̂(exp(Y∗

j )) based on the bootstrap

sample Y
∗

j

Step 4. For each s0 ∈ D where a PI is sought, compute L∗

0j = L0(x, ϑ∗

j ,Y∗

j ) and

U∗

0j = U0(x, ϑ∗

j ,Y∗

j ). Then for x ∈ (0, 1) estimate π0(x, ϑ̂) by

π∗

0(x, ϑ̂) =
1

B

B
X

j=1

»

Φ

„

U∗

0j − η̂∗

0j

τ̂0

«

− Φ

„

L∗

0j − η̂∗

0j

τ̂0

«–

where η̂∗

0j = η0(0, ϑ̂,Y∗

j ) and τ̂0 = τ0(ϑ̂)

Finally, αc is found as the solution (in x) of

π∗
0(x, ϑ̂) = (1 − α)



Illustration:
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When the data have no nugget effect of calibration tends to be minor

But when data contain measurement error effect of calibration tends to be substantial





σ2 0.1 1.0

θ 0.1 0.5 0.1 0.5

σ2
ε = 0

plug-in 1.068 0.551 5.620 3.004
standard [.939] [.951] [.940] [.948]

plug-in 1.033 0.545 4.450 2.779
shortest [.939] [.950] [.942] [.948]

calibrated 1.124 0.557 6.111 3.050
standard [.949] [.953] [.951] [.951]

calibrated 1.068 0.548 4.694 2.795
shortest [.946] [.951] [.949] [.949]

σ2
ε = σ2

4
plug-in 1.011 0.522 6.131 2.897

standard [.899] [.895] [.899] [.896]

plug-in 0.981 0.518 4.908 2.686
shortest [.900] [.895] [.909] [.902]

calibrated 1.164 0.544 8.597 3.041
standard [.934] [.908] [.936] [.910]

calibrated 1.098 0.531 6.750 2.775
shortest [.928] [.904] [.937] [.911]

σ2
ε = 0

plug-in 1.225 0.727 6.507 4.025
standard [.933] [.936] [.934] [.933]

plug-in 1.174 0.716 4.945 3.537
shortest [.934] [.937] [.937] [.936]

calibrated 1.313 0.779 7.367 4.422
standard [.948] [.952] [.949] [.949]

calibrated 1.232 0.750 5.400 3.776
shortest [.944] [.948] [.947] [.947]

σ2
ε = σ2

4
plug-in 1.175 0.697 6.960 3.907

standard [.891] [.896] [.890] [.896]

plug-in 1.129 0.686 5.345 3.445
shortest [.894] [.897] [.903] [.901]

calibrated 1.377 0.761 10.168 4.390
standard [.932] [.923] [.933] [.923]

calibrated 1.285 0.731 7.636 3.755
shortest [.927] [.917] [.935] [.921]



Findings

• Length reductions in the range 2–25%

• The largest length reductions are obtained in models with

◦ highly asymmetric marginals (σ2 large)

◦ moderate to weak dependence (θ small)

• The effect of calibration is largest when data contain measurement error

• Calibration improves coverage, but sometimes falls a bit short



Data Example

Data on cadmium (Cd) concentrations (in ppm) measured at 259 locations in a

region of about 15 km2 in the Switzerland, collected in 1992

Measurements at 100 locations are used for validation

Exploratory analysis suggests the “best” model is the log-Gaussian random field

associated with constant mean, nugget and exponential covariance function:

β̂1 = 0.084, σ̂2 = 0.4, θ̂1 = 0.177 and σ̂2
ε = 0.073
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plug-in calibrated

standard shortest RL standard shortest RL

1 1.169 1.053 0.900 1.176 1.053 0.890

2 4.763 4.201 0.882 4.853 4.230 0.871

3 4.527 3.908 0.863 4.663 3.999 0.858

4 3.550 3.094 0.871 3.636 3.130 0.861

5 3.337 2.881 0.863 3.433 2.940 0.856

6 2.999 2.615 0.872 3.100 2.680 0.864

7 3.984 3.494 0.877 4.075 3.568 0.875

8 2.738 2.363 0.863 2.832 2.401 0.847

9 2.813 2.479 0.881 2.873 2.502 0.871

10 3.817 3.326 0.871 3.911 3.393 0.867

..

.
..
.

..

.
..
.

..

.
..
.

..

.

• Relative lengths of shortest prediction intervals w.r.t. standard prediction intervals vary from

0.84 to 0.89 (average of 14% length reduction)

• Proportion of 95% plug-in standard, plug-in shortest, calibrated standard and calibrated

shortest prediction intervals covering the corresponding Cd observed value at 100 validation

locations were, respectively, 0.93, 0.93, 0.93 and 0.95

• Calibrated shortest prediction intervals seem to have coverage close to nominal


