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Q Introduction

e Uncertainty Quantification Basics
@ Forward Uncertainty Propagation
@ Statistical Inverse Problems

e Uncertainty Quantification Challenges — a Selection
@ Characterization of Uncertain Inputs
@ High-dimensionality
@ Discontinuities
@ Oscillatory Dynamics

@ Closure
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Introduction

The Case for Uncertainty Quantification (UQ)

UQ is needed in:

@ Assessment of confidence in computational predictions

@ Validation and comparison of scientific/engineering models
@ Design optimization

@ Use of computational predictions for decision-support

@ Assimilation of observational data and model construction
@ Multiscale and multiphysics model coupling
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Introduction

Overview of UQ Methods

Estimation of model/parametric uncertainty
@ Expert opinion, data collection
@ Regression analysis, fitting, parameter estimation
@ Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models
@ Local sensitivity analysis (SA) and error propagation

@ Fuzzy logic; Evidence theory — interval math
@ Probabilistic framework — Global SA / stochastic UQ

@ Random sampling, statistical methods
@ Galerkin methods

— Polynomial Chaos (PC) — intrusive/non-intrusive
@ Collocation, interpolants, regression, fitting ... PC/other
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UQ Basics Forward Inverse

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

@ With y = f(x), x a random variable, estimate the RV y

@ Can describe a RV in terms of its density, moments,
characteristic function, or most fundamentally as a function
on a probability space

@ Constraining the analysis to RVs with finite variance,
enables the representation of a RV as a spectral expansion
in terms of orthogonal functions of standard RVs.

— Polynomial Chaos

@ Enables the use of available functional analysis methods
for forward UQ
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UQ Basics Forward Inverse

Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVS)
@ Givenagerm &(w) = {&1,--- , &} —asetof ii.d. RVs
— where p(&) is uniquely determined by its moments

Any RV in L%(Q, &(£), P) can be written as a PCE:

ux,t,w) = f(x,t,&) ~ ZUkXt\I/k w))

— Uk(x,t) are mode strengths
— Wy() are functions orthogonal w.r.t. p(§)

With dimension n and order p: P+1=
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UQ Basics Forward Inverse

Orthogonality

By construction, the functions ¥() are orthogonal with respect
to the density of &

bx1) = <<“§Ek>> :<‘I’—1E> [ wttx@) wepel)ce

Examples:
@ Hermite polynomials with Gaussian basis

@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods
@ Adaptive domain decomposition of the support of £

NET Challenges in UQ



UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV
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UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV
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UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV
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UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 4
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UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order =5
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UQ Basics Forward Inverse

PC lllustration: WH PCE for a Lognormal RV
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@ Fifth-order Wiener-Hermite PCE represents the given
Lognormal well

@ Higher order terms are negligible
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UQ Basics Forward Inverse

Random Fields — KLE

@ Smooth random fields can be repesented with a small no.
of stochastic degrees of freedom

@ Karhunen-Loeve Expansion (KLE) for a RF with a
continuous covariance function

M(x,w) = p(X) + > vV Aimi(w)gi(x)
i=1

@ u(x) is the mean of M(x,w) at x

@ )\ and ¢;(x) are the eigenvalues and eigenfunctions of the
covariance C(x3,%2) = ([M(Xg,w) — pu(x1)][M (X2, w) — p(X2)])
@ The 7; are uncorrelated zero-mean unit-variance RVs

@ KLE = representation of random fields using PC
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UQ Basics Forward Inverse

RF lllustration: KL of 2D Gaussian Process

@ 2D Gaussian Process with covariance:
Cov(xg, X2) = exp(—||x1 — X2||2/6?)
@ Realizations smoother as covariance length § increases
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UQ Basics Forward Inverse

RF lllustration: 2D KL - Modes for § = 0.1
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UQ Basics Forward Inverse

RF lllustration: 2D KL - Modes for § = 0.2
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UQ Basics Forward Inverse

RF lllustration: 2D KL - Modes for 9
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UQ Basics

Forward Inverse

RF lllustration: 2D KL - eigenvalue spectrum

Eigenvalue Magnitude
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UQ Basics Forward Inverse

RF lllustration: 2D KL - eigenvalue spectrum
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UQ Basics

Forward Inverse

RF lllustration: 2D KL - eigenvalue spectrum
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UQ Basics Forward Inverse

Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
@ Sensitivity information

Requirement:
@ Random variables in L2, i.e. with finite variance
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UQ Basics Forward Inverse

Intrusive PC UQ: A direct non-sampling method

M(u(x,t); ) =0

Given model equations:
Express uncertain parameters/variables using PCEs

P P
u= Z Wy, A= Z APk
k=0 k=0

Substitute in model equations; apply Galerkin projection

New set of equations: GUX1),A) =0

— withU = [Uo,...,Up]T, A= [Ao,...,AP]T
Solving this system once provides the full specification of
uncertain model ouputs
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UQ Basics Forward Inverse

Laminar 2D Channel Flow with Uncertain Viscosity

| _ |

@ Incompressible flow
@ Viscosity PCE

- v=19+ v
@ Streamwise velocity

P
- V= Zvi\I/i
i=0
Vo: mean
vi: i-th order mode

o? = z_:v,z <\I/,2>

Vo V3 o

NET Challenges in UQ



UQ Basics Forward Inverse

Non-intrusive Spectral Projection (NISP) PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,t; \) = ZE:O k(X 1)Uk (€)

(X, t) = /¢xtA £)) U(€)pe(€)dE, k=0,....P

@ Integrals can be evaluated using
— A variety of (Quasi) Monte Carlo methods
@ Slow convergence; ~ indep. of dimensionality
— Quadrature/Sparse-Quadrature methods
@ Fast convergence; depends on dimensionality
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Forward Inverse

UQ Basics

1D H,-O, SCWO Flame NISP UQ/Chemkin-Premix
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@ Fast growth in OH uncertainty in the primary reaction zone
@ Constant uncertainty and mean of OH in post-flame region

@ Uncertainty in pre-exponential of Rxn.5 (H,0,+0OH=H,0+HO,)
has largest contribution to uncertainty in predicted OH
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UQ Basics Forward Inverse

Other non-intrusive methods

@ Response surface employing PC or other functional basis
@ Collocation: Fit interpolant to samples
@ Oscillation concern
@ Regression: Estimate best-fit response surface
o Least-squares
@ Bayesian inference
@ Useful when quadrature methods are infeasible, e.g. when
@ Can't choose sample locations; samples given a priori
@ Can't take enough samples
@ Forward model is noisy
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UQ Basics Forward Inverse

Inverse UQ — Estimation of Uncertain Inputs

@ Forward UQ requires specification of uncertain inputs
@ Probabilistic setting
@ Require joint PDF on input space
@ Bayesian setting
@ PDF on uncertain inputs can be found given data
@ Probabilistic inference — an inverse problem
@ Uncertainty in computational predictions can depend
strongly on detailed structure of the parametric PDF
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UQ Basics Forward Inverse

The strong role of detailed input PDF structure

@ Simple nonlinear algebraic model (u,v) = (X2 — y?, 2xy)
@ Two input PDFs, p(X,Y)

@ same nominals/bounds
o different correlation structure

@ Drastically different output PDFs
o different nominals and bounds
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UQ Basics Forward Inverse

Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=1(A) *x9g(e)
@ Bayes Formula:
PAY) = P(AlY)P(Y) = P(YIA)P(A)
Likelihood  Prior
A A
pAly) p(Y[A)  P(A)
Posterior
p(Y)
Evidence
@ Prior: knowledge of A prior to data
@ Likelihood: forward model and measurement noise
@ Posterior: combines information from prior and data
@ Evidence: normalizing constant for present context
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UQ Basics Forward Inverse

Exploring the Posterior

@ Given any sample ), the un-normalized posterior
probability can be easily computed

P(AlY) o< p(Y[A)p(A)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©(10°) samples
— Each sample: evaluation of the forward model

@ Surrogate models
@ Evaluate moments/marginals from the MCMC statistics
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Challenges Characterization hi-D Discont Osc

UQ Challenges - Characterization of Uncertain Inputs

@ Computational Model M(u,\) =0

— Uncertain input parameter A
— Experimental Measurement F(y,A\) =0

@ Uncertain model inputs can be estimated from data on y
— Regression
— Bayesian inference

@ Quite frequently, we have partial data/information

— Partial missing data, e.g. failed measurements
— Full data loss — No data, but have summary
information, e.g. moments and/or quantiles on

@ data — processed data products
o fitted parameters
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Challenges Characterization hi-D Discont Osc

Dealing with Partial Data — Imputation

Bayesian Multiple Imputation (Rubin, 1987)

@ Use the posterior predictive conditioned on observed data
to generate replicates of the missing data 2, t=1,...,m

@ For each full data set, (zos, Z,;5) @pply Bayesian inference
to get a posterior density on the model parameters

@ Marginalize over the missing data to get the observed data
posterior p(/3|Zobs)

P(B|Zops) = /q(mzmis; Zobs)T (Zmis|Zobs) AZmis
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Challenges Characterization hi-D Discont Osc

Parameter Estimation in the Absence of Data

@ Frequently:

@ we know summary statistics about data or parameters from
previous work
@ the raw data used to arrive at these statistics is not available

@ How can we construct a joint PDF on the parameters?

@ In the absence of data, the structure of the fit model,
combined with the summary statistics, implicitly inform the
joint PDF on the parameters

@ Goal: Make available information explicit in the joint PDF

Data Free Inference (DFI)

@ Discover a consensus joint PDF on the parameters
consistent with given information in the absence of data
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Challenges Characterization hi-D Discont Osc

Generate ignition "data" using a detailed model+noise

@ Ignition using a detailed
chemical model for

methane-air chemistry a3 E
@ Ignition time versus Initial . [ GRI
Temperature 8 I =
L . . 8 GRI+noise
® Multiplicative noise error = | i
model 2
k)

@ 11 data points:

di - tiva$l(l + O‘6i) 0.01f ! A | s =
1000 1100 1200 1300
e N(O, 1) Initial Temperature (K)
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Challenges Characterization hi-D Discont Osc

Fitting with a simple chemical model

@ Fit a global single-step irreversible chemical model
CHy4 + 20, — CO» + 2H,0

R = [CH4l[Oz)ks
kk = Aexp(—E/R°T)

@ Infer 3-D parameter vector (InA,InE,Ino)
@ Use an adaptive MCMC procedure
@ Start at the maximum likelihood estimate

NET Challenges in UQ



Challenges Characterization hi-D Discont Osc

Bayesian Inference Posterior and Nominal Prediction

‘ ‘
1;\ 4
\ —GRI
r =—= GRI+noise
'g Fit Model
g | GRI+noise
s 01F .
é
0.01f, ‘ ‘ ‘ ‘ ‘ 5
® # % ® 3“ 1000 1100 1200 1300
Initial Temperature (K)
Marginal joint posterior on _ _ _
(lnA’ In E) exhibits Strong N0m|nal f|t mOdeI IS COon-
correlation sistent with the true model
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Challenges Characterization hi-D Discont Osc

DFI Challenge — Chemical Model Problem

Discarding initial data, reconstruct marginal (InA, InE) posterior
using the following information

@ Form of fit model

@ Range of initial temperature

@ Nominal fit parameter values of InA and InE

@ Marginal 5% and 95% quantiles on InA and InE

Further, for now, presume
@ Multiplicative Gaussian errors
@ N = 8 data points
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Challenges Characterization hi-D Discont Osc

DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
— MCMC chain on the data
— Each state defines a data set
@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

p(AlY) = [Hp Alyi) r/K
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Challenges Characterization hi-D Discont Osc

2D Marginal Pooled Posteriors vs. Reference Posterior
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Challenges

Characterization hi-D Discont Osc

Empirical Convergence of 3D Pooled Posteriors

@ Kullback-Leibler
divergence between
posteriors of successively
increased data volumes

@ Combinatorial choices of
chains pooled at each
stage

— statistical scatter
of KLdiv

@ Overall convergence
evident o 1/N

NET

100 F
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Challenges Characterization hi-D Discont Osc

Challenges in PC UQ — High-Dimensionality

@ Dimensionality n of the PC basis: & = {&1,...,&n}

— number of degrees of freedom

- P+ 1= (n+p)!/nlp! grows fast with n
@ Impacts:

— Size of intrusive system

— # non-intrusive (sparse) quadrature samples
@ Generally n = number of uncertain parameters
@ Reduction of n:

— Sensitivity analysis
Dependencies/correlations among parameters
Dominant eigenmodes of random fields
Manifold learning: Isomap, Diffusion maps
Sparsification: Compressed Sensing, LASSO
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Challenges

Characterization hi-D Discont Osc

PC Quadrature in hiD

Full quadrature: N = (Nyp)"
Sparse Quadrature
@ Wide range of methods
@ Nested & hierarchical
@ Clenshaw-Curtis:
N = O(nP)
@ Adaptive — greedy
algorithms
Number of points can still be
excessive in hi-D

— Large no. of terms
— Reduction/sparsity

80-D Surrogate

1le+07 E
1e+06 - No. of Sparse Quadrature Points

1let+05 E

Number

10000F

10001

4
1004

No. of PC Terms

2 3
PC Order

bl il vl

NET
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Challenges Characterization hi-D Discont Osc

PC coefficients via sparse regression

PCE:
K-1

y="f(x) ~ > alx)
k=0

with x € R", ¥, max order p, and K = (p+ n)!/p!/n!

o N Samples (leyl)a ey (XvaN)
@ Estimate K terms cg,...,Ck_1, S.t.

min ||y — Ac|f3
wherey € RN, c € RX, Ay = U (x), A € RN*K

With N << K = under-determined
@ Need some form of regularization
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Challenges Characterization hi-D Discont Osc

Regularization — Compressive Sensing (CS)

@ /»-norm — Tikhonov regularization; Ridge regression:
min {[ly — Ac|3 + ||c[3}
@ /1-norm — Compressive Sensing; LASSO; basis pursuit

min {|ly — Ac|| + [Icl}
min {|ly — Ac||3} subject to||c||ls < e
min {||c[l.} subjectto ||y —Ac|j3 < e

N ~

= discovery of sparse signals / \ \
N
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Challenges Characterization hi-D Discont Osc

Bayesian Regression

@ Bayes formula
p(c|D) o p(D[c)m(c)

@ Bayesian regression: prior as a regularizer, e.g.

@ Log Likelihood < ||y — Ac|j3
@ Log Prior < |[c[[p

@ Laplace sparsity priors m(cy|a) = s-e~ %I/«
@ LASSO (Tibshirani 1996) ... formally:
min {[ly — Acl|3 + Allcl|1}

Solution ~ the posterior mode of ¢ in the Bayesian model

1
~ N(Ac. | ~ —gled/a
y ~ N(Ac, In), Gk~ €

@ Bayesian LASSO (Park & Casella 2008)
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Challenges Characterization hi-D Discont Osc

Bayesian Compressive Sensing (BCS)

@ BCS (i 2008; Babacan 2010)— hierarchical priors:
@ Gaussian priors (0, o2) on the ¢
@ Gamma priors on the of
= Laplace sparsity priors on the cx
@ Evidence maximization establishes ML estimates of the ok

@ many of which are found 0 = c¢=0
@ iteratively include terms that lead to the largest increase in
the evidence

@ iterative BCS (iBCS) (sargsyan 2012):
@ adaptive iterative order growth
@ BCS on order-p Legendre-Uniform PC

@ repeat with order-p + 1 terms added to surviving p-th order
terms
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Challenges Characterization hi-D Discont Osc

CS and BCS

Oscillatory Genz function

@ f(x) =cos(2nr + >, a%); & x1/i>%, r=0
@ Legendre-Uniform PC, 10M-order in 5d; (5, 6)"-order in 10d

1
— IBayjs{an_ C;f —BCS5" order
0.1 o |, minimization —cs 5" order
BCS6" order
5 5 1

T T 01 I
™ o0l i e S S
—_—

0.001]
00 200 300 700 500 00T—755 200 300 700 500
Number of measurements Number of measurements

NET Challenges i



Challenges Characterization hi-D Discont Osc

Oscillatory function — BCS number of terms

10000p _ _ _ _ _ _ ___ __.8o08_____ __ (P06 4
[ pAGI@OS 83 ]
€ 1000t
(0]
= \ I !
(@] M ]
g 100} . ’ : : !
o F . N
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10 100 200 300 400 500 600

Number of measurements
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Challenges Characterization hi-D Discont Osc

Challenges in PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values

@ Rayleigh-Bénard convection

@ Transition to turbulence

@ Chemical ignition
@ Discontinuous u(A())

@ Failure of global PCEs in terms of smooth ¥y ()

@ & failure of Fourier series in representing a step function
@ Local PC methods

@ Subdivide support of A(§) into regions of smooth uo A\(£)
@ Employ PC with compact support basis on each region
@ A spectral-element vs. spectral construction

@ Domain mapping
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Challenges Characterization hi-D Discont Osc

Multi-Block Multiwavelet PC UQ in Ignition

OH, MRA, full F_1-F_7
! !

1 2.0e-12
Mean +/- b envelope _—
o
£ 1se-12}
3
S
E
§ 10e-12f
s
2
3
- 8
S 50e-13F
S > [
I |
s}
0.0e+00 (¢
0
o 1 time (sec)

@ H,-O, supercritical water oxidation model
@ Empirically-based uncertainty in all 7 reactions

@ Adaptive refinement of MW block decomposition
. - . (Le Maitre, 2004, 2007)
@ Challenges in hi-dimensional contexts
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Challenges Characterization hi-D Discont Osc

Uncertainty in Discontinuous Climate Response

Thermohaline Circulation 7
. Recovery
sk + No Recovery
<
2
2
£ 4
c
[
" 3+
&
©
E 2f
o
1k
[ ] Salinity (PSS) % 07 04 05 08 1 12 14 16 18
32 34 36 38 Rate of CO, increase [%]

@ Atlantic meridional ocean circulation (AMOC)
@ Predicted response to increasing COy  (webster, 2007)
@ Circulation ON/OFF response over parameter space

— Rate of COs increase
— Climate sensitivity
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Challenges Characterization hi-D Discont Osc

Domain Mapping for Discontinuous Response

Computational Model
8 PC Expansion

pdf(z)

o o

P o

@ Initial set of computational samples

@ Discover uncertain discontinuity with Bayesian inference

@ Map sub-domains to unit hypercubes; Rosenblatt transform
@ PC quadrature in mapped domains; map back

@ Marginalize over uncertain curve  (sargsyan, 2012)
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Challenges Characterization hi-D Discont Osc

Challenges in PC UQ — Time Dynamics

Systems with limit-cycle or chaotic dynamics

Large amplification of phase errors over long time horizon
PC order needs to be increased in time to retain accuracy
Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent
velocity field v(x,t; A\(§)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

@ Well behaved
@ Argues for non-intrusive methods with DNS/LES of
turbulent flow

NET Challenges in UQ



Closure
Closure

@ Probabilistic UQ framework
@ Forward UQ
@ Polynomial Chaos representation of random variables
@ Intrusive and non-intrusive forward PC UQ methods
@ Inverse UQ
@ Bayesian methods
@ Highlighted UQ Challenges
@ Missing data — Imputation / DFI
@ High dimensionality
@ Non-linearity
@ Long term oscillatory dynamics

NET Challenges in UQ
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