Challenges in Uncertainty Quantification in Computational Models

Habib N. Najm

hnnajm@sandia.gov

Sandia National Laboratories, Livermore, CA

Computational and Theoretical Challenges in Interdisciplinary Predictive Modeling Over Random Fields 12th Annual Red Raider Mini-Symposium Department of Mathematics and Statistics Texas Tech University, Lubbock, TX October 26, 2012

Acknowledgement

B.J. Debusschere, R.D. Berry, K. Sargsyan, C. Safta, K. Chowdhary — Sandia National Laboratories, CA

R.G. Ghanem — U. South. California, Los Angeles, CA O.M. Knio — Duke Univ., Durham, NC O.P. Le Maître — CNRS, Paris, France Y.M. Marzouk — Mass. Inst. of Tech., Cambridge, MA

This work was supported by:

- DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.
- DOE Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- DOE ASCR Applied Mathematics program.
- 2009 American Recovery and Reinvesment Act.
- DOE Office of Biological and Environmental Research

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Outline

Introduction

Uncertainty Quantification Basics

- Forward Uncertainty Propagation
- Statistical Inverse Problems

Uncertainty Quantification Challenges – a Selection

- Characterization of Uncertain Inputs
- High-dimensionality
- Discontinuities
- Oscillatory Dynamics

The Case for Uncertainty Quantification (UQ)

UQ is needed in:

- Assessment of confidence in computational predictions
- Validation and comparison of scientific/engineering models
- Design optimization
- Use of computational predictions for decision-support
- Assimilation of observational data and model construction
- Multiscale and multiphysics model coupling

Overview of UQ Methods

Estimation of model/parametric uncertainty

- Expert opinion, data collection
- Regression analysis, fitting, parameter estimation
- Bayesian inference of uncertain models/parameters

Forward propagation of uncertainty in models

- Local sensitivity analysis (SA) and error propagation
- Fuzzy logic; Evidence theory interval math
- Probabilistic framework Global SA / stochastic UQ
 - Random sampling, statistical methods
 - Galerkin methods
 - Polynomial Chaos (PC) intrusive/non-intrusive
 - Collocation, interpolants, regression, fitting ... PC/other

Probabilistic Forward UQ & Polynomial Chaos Representation of Random Variables

- With y = f(x), x a random variable, estimate the RV y
- Can describe a RV in terms of its density, moments, characteristic function, or most fundamentally as a function on a probability space
- Constraining the analysis to RVs with finite variance, enables the representation of a RV as a spectral expansion in terms of orthogonal functions of standard RVs.
 - Polynomial Chaos
- Enables the use of available functional analysis methods for forward UQ

Forward Invers

Polynomial Chaos Expansion (PCE)

- Model uncertain quantities as random variables (RVs)
- Given a germ ξ(ω) = {ξ₁, · · · , ξ_n} a set of *i.i.d.* RVs
 where p(ξ) is uniquely determined by its moments

Any RV in $L^2(\Omega, \mathfrak{S}(\boldsymbol{\xi}), P)$ can be written as a PCE:

$$u(\mathbf{x},t,\omega) = f(\mathbf{x},t,\boldsymbol{\xi}) \simeq \sum_{k=0}^{P} u_k(\mathbf{x},t) \Psi_k(\boldsymbol{\xi}(\omega))$$

- $u_k(\mathbf{x}, t)$ are mode strengths - $\Psi_k()$ are functions orthogonal w.r.t. $p(\boldsymbol{\xi})$

With dimension n and order p:

$$P+1 = \frac{(n+p)!}{n!p!}$$

Orthogonality

By construction, the functions $\Psi_k()$ are orthogonal with respect to the density of $\boldsymbol{\xi}$

$$u_k(\boldsymbol{x},t) = \frac{\langle u\Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\boldsymbol{x},t;\lambda(\boldsymbol{\xi})) \Psi_k(\boldsymbol{\xi}) p_{\boldsymbol{\xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Examples:

- Hermite polynomials with Gaussian basis
- Legendre polynomials with Uniform basis, ...
- Global versus Local PC methods
 - Adaptive domain decomposition of the support of $\boldsymbol{\xi}$

Forward Inverse

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 1

$$u = \sum_{k=0}^{P} u_k \Psi_k(\xi)$$
$$= u_0 + u_1 \xi$$

Forward Inverse

- Wiener-Hermite
 PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 2

$$u = \sum_{k=0}^{P} u_k \Psi_k(\xi)$$

= $u_0 + u_1 \xi + u_2(\xi^2 - 1)$

Forward Inverse

PC Illustration: WH PCE for a Lognormal RV

1.4 Wiener-Hermite 1.2 PCE constructed for a Lognormal RV 0.8 PCE-sampled PDF superposed on true 0.6 PDF 0.4 Order = 3 0.2 0 2 3 0 4 5 6 $u = \sum u_k \Psi_k(\xi)$ k=0 $= u_0 + u_1\xi + u_2(\xi^2 - 1) + u_3(\xi^3 - 3\xi)$

Forward Inverse

Forward Inverse

Forward Inverse

- Fifth-order Wiener-Hermite PCE represents the given Lognormal well
- Higher order terms are negligible

Random Fields – KLE

- Smooth random fields can be repesented with a small no. of stochastic degrees of freedom
- Karhunen-Loeve Expansion (KLE) for a RF with a continuous covariance function

$$M(x,\omega) = \mu(x) + \sum_{i=1}^{\infty} \sqrt{\lambda_i} \eta_i(\omega) \phi_i(x)$$

- $\mu(x)$ is the mean of $M(x, \omega)$ at x
- λ_i and $\phi_i(x)$ are the eigenvalues and eigenfunctions of the covariance $C(x_1, x_2) = \langle [M(x_1, \omega) \mu(x_1)][M(x_2, \omega) \mu(x_2)] \rangle$
- The η_i are uncorrelated zero-mean unit-variance RVs
- KLE \Rightarrow representation of random fields using PC

Forward Inverse

RF Illustration: KL of 2D Gaussian Process

 $\delta = 0.1$

 $\delta = 0.5$

- 2D Gaussian Process with covariance: $Cov(x_1, x_2) = exp(-||x_1 - x_2||^2/\delta^2)$
- Realizations smoother as covariance length δ increases

RF Illustration: 2D KL - Modes for $\delta = 0.1$

RF Illustration: 2D KL - Modes for $\delta = 0.2$

RF Illustration: 2D KL - Modes for $\delta = 0.5$

Forward Inverse

RF Illustration: 2D KL - eigenvalue spectrum

Forward Inverse

RF Illustration: 2D KL - eigenvalue spectrum

Forward Inverse

RF Illustration: 2D KL - eigenvalue spectrum

Essential Use of PC in UQ

Strategy:

- Represent model parameters/solution as random variables
- Construct PCEs for uncertain parameters
- Evaluate PCEs for model outputs

Advantages:

- Computational efficiency
- Sensitivity information

Requirement:

• Random variables in L^2 , i.e. with finite variance

Forward Inverse

 $\mathcal{M}(u(\boldsymbol{x},t);\lambda) = 0$

Intrusive PC UQ: A direct non-sampling method

- Given model equations:
- Express uncertain parameters/variables using PCEs

$$u = \sum_{k=0}^{P} u_k \Psi_k; \quad \lambda = \sum_{k=0}^{P} \lambda_k \Psi_k$$

Substitute in model equations; apply Galerkin projection

$$\mathcal{G}(U(\boldsymbol{x},t),\Lambda)=0$$

New set of equations: - with $U = [u_0, \ldots, u_P]^T$, $\Lambda = [\lambda_0, \ldots, \lambda_P]^T$

 Solving this system once provides the full specification of uncertain model ouputs

Forward Inverse

Laminar 2D Channel Flow with Uncertain Viscosity

- Incompressible flow
- Viscosity PCE

 $-\nu = \nu_0 + \nu_1 \xi$

Streamwise velocity

$$\begin{array}{l} - \ \mathbf{v} = \sum_{i=0}^{P} \mathbf{v}_{i} \Psi_{i} \\ - \ \mathbf{v}_{0} \text{: mean} \\ - \ \mathbf{v}_{i} \text{: } i\text{-th order mode} \\ - \ \sigma^{2} = \sum_{i=1}^{P} \mathbf{v}_{i}^{2} \left\langle \Psi_{i}^{2} \right\rangle \end{array}$$

Non-intrusive Spectral Projection (NISP) PC UQ

- Sampling-based
- Relies on black-box utilization of the computational model
- Evaluate projection integrals numerically
- For any quantity of interest $\phi(\mathbf{x}, t; \lambda) = \sum_{k=0}^{P} \phi_k(\mathbf{x}, t) \Psi_k(\boldsymbol{\xi})$

$$\phi_k(\boldsymbol{x},t) = \frac{1}{\langle \Psi_k^2 \rangle} \int \phi(\boldsymbol{x},t;\lambda(\boldsymbol{\xi})) \Psi_k(\boldsymbol{\xi}) p_{\boldsymbol{\xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi}, \quad k = 0,\ldots, P$$

Integrals can be evaluated using

- A variety of (Quasi) Monte Carlo methods
 - Slow convergence; \sim indep. of dimensionality
- Quadrature/Sparse-Quadrature methods
 - Fast convergence; depends on dimensionality

1D H₂-O₂ SCWO Flame NISP UQ/Chemkin-Premix

- Fast growth in OH uncertainty in the primary reaction zone
- Constant uncertainty and mean of OH in post-flame region
- Uncertainty in pre-exponential of Rxn.5 (H₂O₂+OH=H₂O+HO₂) has largest contribution to uncertainty in predicted OH

Other non-intrusive methods

- Response surface employing PC or other functional basis
- Collocation: Fit interpolant to samples
 - Oscillation concern
- Regression: Estimate best-fit response surface
 - Least-squares
 - Bayesian inference

• Useful when quadrature methods are infeasible, e.g. when

- Can't choose sample locations; samples given a priori
- Can't take enough samples
- Forward model is noisy

Inverse UQ – Estimation of Uncertain Inputs

- Forward UQ requires specification of uncertain inputs
- Probabilistic setting
 - Require joint PDF on input space
- Bayesian setting
 - PDF on uncertain inputs can be found given data
 - Probabilistic inference an inverse problem
- Uncertainty in computational predictions can depend strongly on detailed structure of the parametric PDF

The strong role of detailed input PDF structure

- Simple nonlinear algebraic model $(u, v) = (x^2 y^2, 2xy)$
- Two input PDFs, p(x, y)
 - same nominals/bounds
 - different correlation structure
- Drastically different output PDFs
 - different nominals and bounds

Forward Inverse

Bayes formula for Parameter Inference

- Data Model (fit model + noise model): $y = f(\lambda) * g(\epsilon)$
- Bayes Formula:

$$p(\lambda, y) = p(\lambda|y)p(y) = p(y|\lambda)p(\lambda)$$

- Prior: knowledge of λ prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

Forward Inverse

Exploring the Posterior

 Given any sample λ, the un-normalized posterior probability can be easily computed

 $p(\lambda|y) \propto p(y|\lambda)p(\lambda)$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm:
 - Random walk with proposal PDF & rejection rules
 - Computationally intensive, $\mathcal{O}(10^5)$ samples
 - Each sample: evaluation of the forward model
 - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

UQ Challenges - Characterization of Uncertain Inputs

- Computational Model $\mathcal{M}(u, \lambda) = 0$
 - Uncertain input parameter λ
 - Experimental Measurement $F(y, \lambda) = 0$
- Uncertain model inputs can be estimated from data on y
 - Regression
 - Bayesian inference
- Quite frequently, we have partial data/information
 - Partial missing data, e.g. failed measurements
 - Full data loss No data, but have summary information, e.g. moments and/or quantiles on
 - data processed data products
 - fitted parameters

Dealing with Partial Data – Imputation

Bayesian Multiple Imputation (Rubin, 1987)

- Use the posterior predictive conditioned on observed data to generate replicates of the missing data z^t_{mis}, t = 1,...,m
- For each full data set, (*z*_{obs}, *z*^{*t*}_{mis}) apply Bayesian inference to get a posterior density on the model parameters
- Marginalize over the missing data to get the observed data posterior $p(\beta|z_{\rm obs})$

$$p(eta|z_{
m obs}) = \int q(eta|z_{
m mis}, z_{
m obs}) f(z_{
m mis}|z_{
m obs}) dz_{
m mis}$$

Parameter Estimation in the Absence of Data

- Frequently:
 - we know summary statistics about data or parameters from previous work
 - the raw data used to arrive at these statistics is not available
- How can we construct a joint PDF on the parameters?
- In the absence of data, the structure of the fit model, combined with the summary statistics, implicitly inform the joint PDF on the parameters
- Goal: Make available information explicit in the joint PDF

Data Free Inference (DFI)

 Discover a consensus joint PDF on the parameters consistent with given information in the absence of data

Characterization hi-D Discont Osc

Generate ignition "data" using a detailed model+noise

- Ignition using a detailed chemical model for methane-air chemistry
- Ignition time versus Initial Temperature
- Multiplicative noise error model
- 11 data points:

$$\begin{array}{rcl} d_i & = & t_{\mathrm{ig},i}^{\mathsf{GRI}}(1+\sigma\epsilon_i) \\ \epsilon & \sim & N(0,1) \end{array}$$

Fitting with a simple chemical model

• Fit a global single-step irreversible chemical model

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

$$\mathfrak{R} = [CH_4][O_2]k_f$$

$$k_f = A \exp(-E/R^o T)$$

- Infer 3-D parameter vector $(\ln A, \ln E, \ln \sigma)$
- Use an adaptive MCMC procedure
- Start at the maximum likelihood estimate

Bayesian Inference Posterior and Nominal Prediction

DFI Challenge — Chemical Model Problem

Discarding initial data, reconstruct marginal $(\ln A, \ln E)$ posterior using the following information

- Form of fit model
- Range of initial temperature
- Nominal fit parameter values of $\ln A$ and $\ln E$
- Marginal 5% and 95% quantiles on $\ln A$ and $\ln E$

Further, for now, presume

- Multiplicative Gaussian errors
- N = 8 data points

DFI Algorithm Structure

Basic idea:

- Explore the space of hypothetical data sets
 - MCMC chain on the data
 - Each state defines a data set
- For each data set:
 - MCMC chain on the parameters
 - Evaluate statistics on resulting posterior
 - Accept data set if posterior is consistent with given information
- Evaluate pooled posterior from all acceptable posteriors Logarithmic pooling:

$$p(\lambda|y) = \left[\prod_{i=1}^{K} p(\lambda|y_i)\right]^{1/K}$$

2D Marginal Pooled Posteriors vs. Reference Posterior

Empirical Convergence of 3D Pooled Posteriors

- Kullback-Leibler divergence between posteriors of successively increased data volumes
- Combinatorial choices of chains pooled at each stage
 - statistical scatter of KLdiv
- Overall convergence evident $\propto 1/N$

Challenges in PC UQ – High-Dimensionality

- Dimensionality *n* of the PC basis: $\boldsymbol{\xi} = \{\xi_1, \dots, \xi_n\}$
 - number of degrees of freedom
 - P + 1 = (n + p)!/n!p! grows fast with n
- Impacts:
 - Size of intrusive system
 - # non-intrusive (sparse) quadrature samples
- Generally $n \approx$ number of uncertain parameters
- Reduction of n:
 - Sensitivity analysis
 - Dependencies/correlations among parameters
 - Dominant eigenmodes of random fields
 - Manifold learning: Isomap, Diffusion maps
 - Sparsification: Compressed Sensing, LASSO

PC Quadrature in hiD

Full quadrature: $N = (N_{1D})^n$

Sparse Quadrature

- Wide range of methods
- Nested & hierarchical
- Clenshaw-Curtis: $N = O(n^p)$
- Adaptive greedy algorithms

Number of points can still be excessive in hi-D

- Large no. of terms
- Reduction/sparsity

PC coefficients via sparse regression

PCE:

$$y = f(x) \simeq \sum_{k=0}^{K-1} c_k \Psi_k(x)$$

with $x \in \mathbb{R}^n$, Ψ_k max order p, and K = (p + n)!/p!/n!

- *N* samples $(x_1, y_1), ..., (x_N, y_N)$
- Estimate *K* terms c_0, \ldots, c_{K-1} , s.t.

$$\min ||\mathbf{y} - \mathbf{A}\mathbf{c}||_2^2$$

where $y \in \mathbb{R}^N$, $\boldsymbol{c} \in \mathbb{R}^K$, $\boldsymbol{A}_{ik} = \Psi_k(x_i)$, $\boldsymbol{A} \in \mathbb{R}^{N imes K}$

With $N \ll K \Rightarrow$ under-determined

Need some form of regularization

Regularization – Compressive Sensing (CS)

• ℓ_2 -norm — Tikhonov regularization; Ridge regression:

$$\min \{ \| \mathbf{y} - \mathbf{A}\mathbf{c} \|_2^2 + \| \mathbf{c} \|_2^2 \}$$

• ℓ_1 -norm — Compressive Sensing; LASSO; basis pursuit

$$\min \{ \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{c} \|_{2}^{2} + \| \boldsymbol{c} \|_{1} \}$$

$$\min \{ \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{c} \|_{2}^{2} \} \quad \text{subject to } \| \boldsymbol{c} \|_{1} \le \epsilon$$

$$\min \{ \| \boldsymbol{c} \|_{1} \} \quad \text{subject to } \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{c} \|_{2}^{2} \le \epsilon$$

 \Rightarrow discovery of sparse signals

Bayesian Regression

Bayes formula

$$p(\boldsymbol{c}|\boldsymbol{D}) \propto p(\boldsymbol{D}|\boldsymbol{c})\pi(\boldsymbol{c})$$

- Bayesian regression: prior as a regularizer, e.g.
 - Log Likelihood $\Leftrightarrow \|y Ac\|_2^2$
 - Log Prior $\Leftrightarrow \|\boldsymbol{c}\|_p^p$
- Laplace sparsity priors $\pi(c_k|\alpha) = \frac{1}{2\alpha}e^{-|c_k|/\alpha}$
- LASSO (Tibshirani 1996) ... formally:

$$\min \left\{ \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{c}\|_2^2 + \lambda \|\boldsymbol{c}\|_1 \right\}$$

Solution \sim the posterior mode of c in the Bayesian model

$$y \sim \mathcal{N}(oldsymbol{Ac}, I_N), \qquad c_k \sim rac{1}{2lpha} e^{-|c_k|/lpha}$$

Bayesian LASSO (Park & Casella 2008)

Bayesian Compressive Sensing (BCS)

- BCS (Ji 2008; Babacan 2010)— hierarchical priors:
 - Gaussian priors $\mathcal{N}(0, \sigma_k^2)$ on the c_k
 - Gamma priors on the σ_k^2
 - \Rightarrow Laplace sparsity priors on the c_k
- Evidence maximization establishes ML estimates of the σ_k
 - many of which are found $\approx 0 \Rightarrow c_k \approx 0$
 - iteratively include terms that lead to the largest increase in the evidence
- iterative BCS (iBCS) (Sargsyan 2012):
 - adaptive iterative order growth
 - BCS on order-p Legendre-Uniform PC
 - repeat with order-*p* + 1 terms added to surviving *p*-th order terms

CS and BCS

Oscillatory Genz function

•
$$f(x) = \cos(2\pi r + \sum_{i=1}^{n} a_i x_i); \quad a_i \propto 1/i^2; \quad r = 0$$

• Legendre-Uniform PC, 10th-order in 5d; (5,6)th-order in 10d

Oscillatory function – BCS number of terms

Challenges in PC UQ – Non-Linearity

- Bifurcative response at critical parameter values
 - Rayleigh-Bénard convection
 - Transition to turbulence
 - Chemical ignition
- Discontinuous $u(\lambda(\boldsymbol{\xi}))$
 - Failure of global PCEs in terms of smooth $\Psi_k()$
 - ⇔ failure of Fourier series in representing a step function
- Local PC methods
 - Subdivide support of $\lambda(\boldsymbol{\xi})$ into regions of smooth $u \circ \lambda(\boldsymbol{\xi})$
 - Employ PC with compact support basis on each region
 - A spectral-element vs. spectral construction
 - Domain mapping

Multi-Block Multiwavelet PC UQ in Ignition

- H₂-O₂ supercritical water oxidation model
- Empirically-based uncertainty in all 7 reactions
- Adaptive refinement of MW block decomposition

(Le Maître, 2004, 2007)

Challenges in hi-dimensional contexts

Uncertainty in Discontinuous Climate Response

- Atlantic meridional ocean circulation (AMOC)
- Predicted response to increasing CO₂ (Webster, 2007)
- Circulation ON/OFF response over parameter space
 - Rate of CO₂ increase
 - Climate sensitivity

Domain Mapping for Discontinuous Response

- Initial set of computational samples
- Discover uncertain discontinuity with Bayesian inference
- Map sub-domains to unit hypercubes; Rosenblatt transform
- PC quadrature in mapped domains; map back
- Marginalize over uncertain curve (Sargsyan, 2012)

Challenges in PC UQ – Time Dynamics

- Systems with limit-cycle or chaotic dynamics
- Large amplification of phase errors over long time horizon
- PC order needs to be increased in time to retain accuracy
- Time shifting/scaling remedies
- Futile to attempt representation of detailed turbulent velocity field ν(x, t; λ(ξ)) as a PCE
 - Fast loss of correlation due to energy cascade
 - Problem studied in 60's and 70's
- Focus on flow statistics, e.g. Mean/RMS quantities
 - Well behaved
 - Argues for non-intrusive methods with DNS/LES of turbulent flow

Closure

- Probabilistic UQ framework
- Forward UQ
 - Polynomial Chaos representation of random variables
 - Intrusive and non-intrusive forward PC UQ methods
- Inverse UQ
 - Bayesian methods
- Highlighted UQ Challenges
 - Missing data Imputation / DFI
 - High dimensionality
 - Non-linearity
 - Long term oscillatory dynamics