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INTRODUCTION

Data: Longitudinal studies, e.g. Baltimore Longitudinal on Aging;
e-Bay online auction data

Model: Sample of irregularly measured realizations of an underlying
stochastic process, assumed to be smooth

Goals: Estimating derivatives for irregularly sampled random
trajectories

Learning the underlying dynamics – empirical differential equation

Methods: Functional principal component analysis; Smoothing and
differentiation (local least squares); Representations of stochastic
processes



STOCHASTIC PROCESS PERSPECTIVE

Assume observed data are generated by underlying stochastic
process X ∈ L2(T ) with finite second moments:

µ(t) = E (X (t)) mean function
G (s, t) = cov {X (s),X (t)} covariance function.

Define auto-covariance operator (AG f )(t) =
∫

f (s)G (s, t) ds with
orthonormal eigenfunctions φk and ordered eigenvalues
λ1 ≥ λ2 ≥ . . .,

(AGφk)(t) = λk φk(t)



FUNCTIONAL PRINCIPAL COMPONENTS (FPC)
KARHUNEN-LOÈVE REPRESENTATION USING FPCs

X (t) = µ(t) +
∞∑

k=1

Akφk(t),

where Ak =
∫ T
0 {X (t)− µ(t)}φk(t)dt, are uncorrelated r.v. with

EAk = 0, EA2
k = λk , the functional principal components.

Some key papers:

• Grenander 1950: Basic ideas (following up on Karhunen 1949)
• C.R. Rao 1958: Preliminary version for growth curves
• Castro, Lawton & Sylvestre 1987: Modes of Variation in
industrial applications

• Rice & Silverman 1991, Rice & C. Wu 2001: B-splines and
systematic study



• Book: Ramsay & Silverman 2005: Presmoothing (usually
inefficient)

• Bali, Boente, Tyler & J.L. Wang 2012: Systematic study of
robust FPCA

Why Functional Principal Components?
• Parsimonious description of longitudinal/functional data as it
is the unique linear representation which explains the highest
fraction of variance in the data with a given number of
components.

• Main attraction is equivalence X ≡ {A1,A2, . . .}
so that X can be expressed in terms of mean function µ and
the countable sequence of eigenfunctions and uncorrelated
FPC scores Ak .

• For modeling functional regression: Functions f (X ) have an
equivalent function g(A1,A2, . . .) so that

f (X ) ≡ g(A1,A2, . . .)



FUNCTIONAL DATA DESIGNS

• Fully observed functions without noise at arbitrarily dense grid
Measurements Yit = Xi (t) available for all t ∈ T ,
i = 1, . . . , n :
Often unrealistic but mathematically convenient

• Dense design with noisy measurements
Measurements Yij = Xi (Tij) + εij , where Tij are recorded on a
regular grid, Ti1, . . . ,TiNi , and Ni →∞:
Applies to typical functional data

• Sparse design with noisy measurements = Longitudinal data
Measurements Yij = Xi (Tij) + εij , where Tij are random times
and their number Ni per subject is random and finite.
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Four eBay auctions: willing-to-pay prices (log-transformed)
recorded against time (in hours). Selected from 156 same-item
auctions – data from W. Jank



BALTIMORE LONGITUDINAL STUDY
ON AGING

• Subset of n = 507 males whose Body Mass Index (BMI) and
Systolic Blood Pressure (SBP) were measured at least twice
between ages 45 and 70 and who survived beyond age 70.

• Measurements are both noisy and spaced irregularly, with both
the measurement times and the number of available
measurements varying from subject to subject.
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PACE

Principal Analysis by Conditional Expectation (Yao, M, Wang
2005ab, Liu & M 2009) to obtain components of the functional
principal component representation for all of these designs.

Idea: Borrowing strength from entire sample for estimation of
individual trajectories

Implementation steps:

• Mean function: Smoothing across all pooled observations
• Covariance surface: Pooling products for pairs of observations
from the same subject, then smoothing – denoising is achieved
by separating out the diagonal (Staniswalis & Lee 1998)



G(s,t) 

G(t,t)+σ2 

t 
s t 

Relationship between the covariance surface and variances on the
diagonal: Decomposing diagonal into error and covariance
components.



IMPLEMENTATION ISSUES

• Obtain eigenvalues/eigenfunctions:

For k-th eigenvalue/eigenfunction pair (λk , φk) use discretized
versions of eigenequations,∫ T

0
cov(X (s),X (t))φk(s)ds = λkφk(t),

s.t.
∫ T
0 φk(t)2dt = 1,

∫ T
0 φk(t)φm(t)dt = 0, m 6= k ,

substituting smoothed estimates for the covariance surface.
• Project initial smoothed covariance estimates on space of
non-negative definite covariance matrices: (Hall, M, Yao 2008)

ˆcov(X (s),X (t)) =
K∑

k=1,λ̂k>0

λ̂k φ̂k(s)φ̂k(t).



• Obtain Functional principal components (the random effects):
• Conditioning E (Ak |Ui ), where Ui is the vector of available

data for the i-th subject (random dimension)
• Best linear predictor for conditional expectation (best predictor

under Gaussian assumptions)
• Substitute estimates for eigenvalues, eigenfunctions,

covariances
• Regularization for inverses of cova matrices at random

locations
• Choice of regularization parameters (number of included

components, smoothing parameters: GCV, FVE, BIC,. . .)

• Implementation of FPCA and functional regression models:
PACE 2.16 at:
http://anson.ucdavis.edu/∼mueller/data/programs.html



ESTIMATING DERIVATIVES FROM SPARSE DATA
Differentiating Karhunen-Loève representation:

X (ν)
i (t) = µ(ν)(t) +

∞∑
k=1

Aikφ
(ν)
k (t), ν = 0, 1, . . . .

• Obtain estimated random effects Aik by conditioning as before
• Estimate µ(ν)(t) by known nonparametric 1-d differentiation,
applied to pooled scatterplots.

• How to obtain φ(ν)k ? Observe

dν

dtν

∫
T

G (t, s)φk(s)ds = λk
dν

dtν
φk(t),

implying

φ
(ν)
k (t) =

1
λk

∫
T

∂ν

∂tν
G (t, s)φk(s)ds.



0 12 24 36 48 60 72 84 96 108 120 132 144 156
0

12

24

36

48

60

72

84

96

108

120

132

144

156

�����

����

Locations of all pairs of points where bids are recorded for auction
data.



Estimated covariance surface from all pairs and estimated partial
derivative surface for auction data.
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DERIVATIVES OF TRAJECTORIES

• Obtain

X̂ (ν)
i ,K (t) = µ̂(ν)(t) +

K∑
k=1

Âik φ̂
(ν)
k (t).

for the derivatives of the random trajectories Xi .

• Choosing the number of included components K : e.g. by
Fraction of variance explained

• Asymptotic convergence results and confidence intervals for
the case of a Gaussian process

• In simulations, this differentiation method works much better
than single curve derivative estimation (splines, kernels, . . .)
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DYNAMICS OF GAUSSIAN PROCESSES

From the Karhunen-Loève representation of processes X , obtain for
the covariance function for derivatives

cov{X (ν1)(t),X (ν2)(s)} =
∞∑

k=1

λkφ
(ν1)
k (t)φ(ν2)k (s), ν1, ν2 ∈ {0, 1}, s, t ∈ T .

Assuming Gaussianity of X ,(
X (1)(t)− µ(1)(t)

X (t)− µ(t)

)
=

( ∑∞
k=1 Akφ

(1)
k (t)∑∞

k=1 Akφk(t)

)

∼ N2

((
0
0

)
,

( ∑∞
k=1 λkφ

(1)
k (t)2

∑∞
k=1 λkφ

(1)
k (t)φk(t)∑∞

k=1 λkφ
(1)
k (t)φk(t)

∑∞
k=1 λkφk(t)2

))



EMPIRICAL DIFFERENTIAL EQUATION

Population level: E{X (1)(t)− µ(1)(t) | X (t)} = β(t){X (t)− µ(t)}

Subject level:

X (1)(t)− µ(1)(t) = β(t){X (t)− µ(t)}+ Z (t), t ∈ T ,

with varying coefficient function

β(t) =
cov{X (1)(t),X (t)}

var{X (t)}
=

∑∞
k=1 λkφ

(1)
k (t)φk(t)∑∞

k=1 λkφk(t)2

=
1
2

d
dt

log[var{X (t)}], t ∈ T ,

and Gaussian drift process Z .



DRIFT PROCESS
Gaussian drift process is such that
(i) Z (t), X (t) are independent at each t ∈ T ; (ii) E{Z (t)} = 0;
(iii) Z has the representation

Z (t) =
∞∑

k=1

√
λk

2T 3 (2k − 1)π
∫ T

0
sin{(2k − 1)π

2T
u}

×{φ(1)k (t)− β(t)φ(t)} dW (u)

Integral equation version

X (t) = X (s) + {µ(t)− µ(s)}

+

∫ t

s
β(u){X (u)− µ(u)} du +

∫ t

s
Z (u) du,

for any s, t ∈ T , s < t.



LEARNING GAUSSIAN DYNAMICS

• For varying coefficient function β use plug-in estimates

β̂(t) =
∑K

k=1 λ̂k φ̂
(1)
k (t)φ̂k(t)∑K

k=1 λ̂k φ̂
2
k(t)

.

• dynamic regression to the mean (negative β)

• dynamic exponential growth (positive β)

• Interpretation within population model
E{X (1)(t)− µ(1)(t) | X (t)} = β(t){X (t)− µ(t)}



For drift process Z

var(Z (t)) =(∑
k λk(φ

(1)
k (t))2

∑
k λkφ

2
k(t)− {

∑∞
k=1 λkφ

(1)
k (t)φk(t)}2

)
/
∑

k λkφ
2
k(t),

and
var{X (1)(t)} = β(t)2var{X (t)}+ var{Z (t)}.

Then the fraction of the variance of X (1)(t) explained by the
deterministic part of the differential equation is given by:

R2(t) =
var{β(t)X (t)}
var{X (1)(t)}

=
{
∑∞

k=1 λkφ
(1)
k (t)φk(t)}2∑∞

k=1 λkφk(t)2
∑∞

k=1 λkφ
(1)
k (t)2

.



100 110 120 130 140 150 160

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

Time (hour)

D
e

y
n

a
m

ic
 t

r
a

n
s
fe

r
 f

u
n

c
ti
o

n
 β

(
t)

100 110 120 130 140 150 160

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time (hour)
E

ig
e

n
fu

n
c
ti
o

n
s
 o

f 
Z

(
t)

Left: Smooth estimate of the dynamic varying coefficient function
β for auction data. Right: Smooth estimates of the first (solid),
second (dashed) and third (dash-dotted) eigenfunction of drift
process Z .
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i (t) on Xi (t) (both centered) at t = 125 hours

(left panel) and t = 161 hours (right panel), respectively, with
regression slopes β(125) = −.015 and coefficient of determination
R2(125) = 0.28, respectively, β(161) = −.072 and R2(161) = 0.99.



LEARNING DYNAMICS – NON-GAUSSIAN CASE
• Data Model. For n realizations Xi of an underlying process X ,
have Ni measurements Yij (i = 1, . . . , n, j = 1, . . . ,Ni ),

Yij = Yi (tij) = Xi (tij) + εij ,

with iid zero mean finite variance measurement errors εij .

• Linear Gaussian Dynamics. As before, with varying coefficient
function β,

X ′(t) = µX ′(t) + β(t){X (t)− µX (t)}+ Z2(t),

where Z2 is a zero mean drift process with
cov{Z2(t),X (t)} = 0.

• General Dynamics. There always exists a function f with

E{X ′(t) | X (t)} = f {t,X (t)}, X ′(t) = f {t,X (t)}+ Z (t) ,

with E{Z (t) | X (t)} = 0 almost surely and where f is
unknown. Learning dynamics corresponds to inferring f .



• Special Case: Autonomous Dynamics.

E{X ′(t) | X (t)} = f1(X (t)), f1 unknown

• Parametric Dynamics. Parametric differential equations

X ′
i (t) = g{t,Xi (t), θi}

require extensive knowledge of underlying system – often
incorrect and hard to fit. Not much known for incorporating
random effects θi .



BERKELEY LONGITUDINAL GROWTH STUDY

• Dynamics of Human Growth of Interest

• Nonlinear Parametric Models: Preece-Baines, Triple-Logistic
Subject-by-subject fitting, limited efficiency

• Berkeley Growth Study – 54 girls with 31 height measurements
for ages 1 to 18, recorded at different time intervals, ranging
from three months (from 1 to 2 years old), six months (from 8
to 18 years old), to one year (from 3 to 8 years old).

• Learning dynamics:
– Gain a better understanding of the growth process.
– Distinguish between normal and pathological patterns of
development.
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Left panel: Estimated growth curves for 54 girls. Right panel: Estimated
growth velocity trajectories for 54 girls.



ESTIMATING THE DRIVING FUNCTION f
Adopt a two-step kernel smoothing approach to obtain an estimator for f
in E{X ′(t) | X (t)} = f {t,X (t)}:
• Step 1: Obtaining estimates for X (t) and X ′(t):

X̂i (t) =
1

hX

Ni∑
j=1

∫ sj

sj−1

YijK
(

u − t
hX

)
du,

X̂ ′i (t) =
1

h2
X ′

Ni∑
j=1

∫ sj

sj−1

YijK2

(
u − t
hX ′

)
du,

where sj = (tij + ti,j+1)/2 and hX > 0 and hX ′ > 0 are smoothing
bandwidths.

• Step 2: Trajectory estimates X̂ (t) and X̂ ′(t) from Step 1 are
combined to obtain a Nadaraya–Watson kernel estimator for f ,

f̂ (t, x) =

∑n
i=1 K{ X̂i (t)−x

bX
}X̂ ′i (t)∑n

i=1 K{ X̂i (t)−x
bX
}

.

utilizing bandwidths bX > 0.

• Under regularity conditions, this gives consistent estimators.



Left panel: Estimated surface f̂ (t, x) on a curved domain, characterizing
the deterministic part of the nonlinear dynamic model. Right panel:
Contour plot of the surface f̂ (t, x).



DECOMPOSING VARIANCE

• Since var{X ′(t)} = var[f {t,X (t)}] + var{Z (t)}, on
subdomains where the variance of the drift process var{Z (t)}
is small, the deterministic approximation

X ′(t) = f {t,X (t)} (t ∈ T ),

is reasonable. Then future changes of individual trajectories
are easily predictable.

• Fraction of the variance of X ′(t) that is explained by the
deterministic part

R2(t) =
var[f {t,X (t)}]

var{X ′(t)}
= 1− var{Z (t)}

var{X ′(t)}
.



• Quantify predictability by

S(t, x) =
f 2(t, x)

E{X ′2(t) | X (t) = x}
=

f 2(t, x)
f 2(t, x) + var{Z (t) | X (t) = x}

.

When S(t, x) is close to one, then f 2(t, x) is large compared
to var{Z (t) | X (t) = x} and the process is well predictable
when X (t) = x .

• Diagnostics for linearity. For the coefficient of determination
for the linear dynamic model

R2
L(t) =

var {β(t)X (t)}
var{X ′(t)}

one expects that R2(t) ≥ R2
L(t) On subdomains of T where

R(t) is close to RL(t), one may infer that the data-driven
differential equation is reasonably linear.
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Left panel: Estimated coefficients of determination R̂2(t), corresponding
to the fraction of variance explained by the deterministic part of the
nonlinear dynamic model (solid), in comparison with the corresponding
fractions of variance R̂2

L(t) explained by linear dynamics (dot-dashed).
Right panel: 95% bootstrap confidence interval for R2(t).



• Linear concurrent model. Relating two stochastic processes
X (t) and U(t) at each time t ∈ T , the linear concurrent
model captures a linear relationship between X and U through
a deterministic function β(t),

U(t) = µU(t) + β(t){X (t)− µX (t)}+ Z2(t),

where Z2(t) is a zero mean drift process with
cov{Z2(t),X (t)} = 0.

• Nonlinear concurrent model. Proposed methodology covers
the case where the link between U(t) and X (t) is nonlinear,

U(t) = f {t,X (t)}+ Z (t) ,

with E{Z (t) | X (t)} = 0 almost surely and
f {t,X (t)} = E{U(t) | X (t)}. Can establish consistency and
rates of convergence for two-step estimators.

• Learning Gaussian dynamics works for sparse data, learning
non-Gaussian dynamics is viable only for dense data
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Each of the panels, arranged for ages t = 2, 4, 6, 8, 12, from left to right
and top to bottom, respectively, illustrates estimates f̂ (t, ·) of the
deterministic part of the nonlinear dynamic model (solid), the linear
estimates (dashed) and the scatterplot of observed data pairs
(x(t), x (1)(t)).


