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Motivation

Objective is to characterize solution, u, of equations with stochastic
coefficients on (Ω,Σ,P)

Coefficients serve to construct an adapted Hilbert space:
k =

∑
i kiξi ξi : (Ω,Σ(ξi ),P) 7→ R i.i.d

G = span{ξ1, · · · , ξd}, L2(Ω) ≡ L2(Ω,Σ(G ),P).

THEN u(ξ) = u(ξ1, · · · , ξd) ∈ L2(Ω)

and u(ξ) =
∑

i (u, ψi )L2(Ω)ψi (ξ) is a unique representation of u(ξ)

Sandard PC machinery tries to identify the unique u(ξ) in Rd .

Number of terms in PC Expansion: M = (P+d)!
P!d!
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Pushing Uncertainty Through Model: Intrusive Stochastic
Projection:

Consider governing equation of general form:

Mξu = f .

P∑
j=0

〈ΨkΨjMξ〉uj = 〈Ψk f 〉 0 ≤ k ≤ P ,

If Mξ =
∑L

i Ψi (ξ)Mi , results in a coupled system of equations:

P∑
j=0

L∑
i=0

〈ΨiΨjΨk〉Miuj = 〈Ψk f 〉 0 ≤ k ≤ P.
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Intrusive Stochastic Projection: Resulting System of Equations

cijk = 〈ξiψjψk〉:

A` =

[
A`−1 B`

C` D`

]
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Non-Intrusive Characterization

We want:

u(ξ) =
∑
i

(u, ψi )L2(Ω)ψi (ξ)

Orthogonality of {ψi}

ui = (u, ψi )L2(Ω)

= E{u(ξ)ψi (ξ)}

=

∫
Γ1

· · ·
∫

Γd

u(ξ)ψi (ξ)dµ(ξ)

If ξ are independent and have density functions:

ui =

∫
Γ1

· · ·
∫

Γd

u(ξ)ψi (ξ)f1(ξ1) · · · fd(ξd)dξ1 · · · dξd
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Challenges:

Intrusive

Very large system of equations;
Constructing K i and K jk .

Non-Intrusive

High-dimensional integration.

Opportunities:

Intrusive

Linear Algebra, dimension
reduction, adaptive refinement.

Non-Intrusive

Sparsity, anisotropy, dimension
reduction.
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First Idea: L2 reduction

replace the “generic” basis ψi by a basis that is adapted to u ∈ H
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Karhunen-Loeve and PC:

Consider the polynomial chaos representation of the solution u:

u =
P∑
i=0

uiψi , u, ui ∈ H

Covariance Operator is nuclear, Ru : H ′ 7→ H

(RuX ,Y )H =
P∑
i=1

(ui ,X )H (ui ,Y )H X ,Y ∈ H ′

Solve eigenproblem:

(Rue, v)H =
P∑
i=1

(ui , e)H (ui , v)H = λ (e, v)H ∀v ∈ H
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Then we can represent PC coefficients on KL directions:

ui =
KL∑
j=1

(ui , ej) ej

But

u =
P∑
i=1

KL∑
j=1

(ui , ej)ejψi =
KL∑
j=1

P∑
i=1

(ui , ej)ψiej =
KL∑
j=1

√
λjηjej

Thus: ηj =
1√
λj

P∑
i=1

(ui , ej)ψi j = 1, · · · ,KL
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(N,P)-discretization:

η
(N,P)
j =

1√
λj

P∑
i=1

(uNi , e
P
j )ψi

Error:

εj = ‖η(N,P)
j − ηj‖ ≤ Cj max

i

∣∣∣(uNi , ePj )− (ui , ej)
∣∣∣2

P must be large enough to approximate R.

N must be large enough to capture projection of ui on ej for the j
that matter.

Reduce global error - no control over local error.
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Coarse and fine meshes used in analysis:

w w
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Realization of elasticity over L-shaped domain:
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Comparison of pdf for fine model and reduced-model:
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Comparison of Stochatsic bases:
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Muliscale Quadrature

Main Idea

Develop UQ for coupled models in Nuclear Reactor Technology.

Adapt measure of approximation at every handshaking.

Mitigate mixing of uncertainty at handshaking.

Develop multiscale quadrature rules.

Reduction

The output from Model I is reduced using Karhunen-Loeve expansion. The
joint PDF of the dominant KL variables is estimated and a corresponding
orthogonal polynomials constructed.
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Multiscale Quadrature

Numerical quadrature in Model II can be developed relative to new
measure:
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Some analysis

New basis is adapted to the solution, and not to the parameters.

Complexity is driven by physics - not by parameters.

Solution is still a random process - very high-dimensional.

In many cases, the QoI is a functional of the solution, that is much
less complex than solution.

We are still spinning our wheels a lot for more than we need.
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Second Idea: Probabilistic reduction

In many instances, the QoI is h(u) where h is some nonlinear
functional.

if the QoI is a single random variable, describing it in terms of more
than one random variables seems to be a waste of bandwidth.
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Motivation

Objective is to characterize solution, u, of equations with stochastic
coefficients on (Ω,Σ,P)

Coefficients serve to construct an adapted Hilbert space:
k =

∑
i kiξi ξi : (Ω,Σ(ξi ),P) 7→ R i.i.d
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i (u, ψi )L2(Ω)ψi (ξ) is a unique representation of u(ξ)

Sandard PC machinery tries to identify the unique u(ξ) in Rd .

BUT u(πξ)
d
= u(ξ) ∀π ∈ G (permutation group on Rd)

Other representations in Rd that have the same distribution.

Perhaps we are working too hard.
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Focus on QoI

Consider square-integrable nonlinear functionals h : H 7→ R:

h
def
= h(u(ξ)) = h0 +

∑
|α|=1

hαψα(ξ) +
∑
|α|>1

hαψα(ξ)

Inverse CDF: A mapping from a Gaussian variable ξ̂ to h can be
constructed as follows:

h
d
= ĥ(ξ̂)

def
= µ−1

[
Φ
(
ξ̂
)]

Expand as: ĥ(ξ̂) = ĥ0 + ĥ1ξ̂ +
∑

i ĥiψi (ξ̂)

Thus a one-dimensional expansion in terms of a Gaussian variable exists.
It only matches probability measure of h.
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∑
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Focus on QoI

Introduce a new Gaussian rv η1:

ĥ1η1 =
∑
|α|=1

hαψα =
d∑

i=1

hiξi

Then:
h = h0 + ĥ1η1 +

∑
|α|>1

hαψα(ξ)
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Let: A be an isometry and ξ be Gaussian. Then u(Aξ) has the same
probability measure as u(ξ).

If: ξ is Gaussian, then η = Aξ has the same probability measure as ξ.
Thus η is a basis for the Gaussian Hilbert space spanned by ξ.

Then: Hermite Polynomials in η span the same space as Hermite
polynomials in ξ - namely: L2(Ω,Σ(ξ),P) = L2(Ω,Σ(η),P) .

Choose: A so that ĥ1η1 =
∑
|α|=1 hαψα

Then in L2:

h(ξ) = h0 + ĥ1η1 +
∑
|α|>1

hαψα(η)

= h0 + ĥ1η1 +
∑
|α|>1

α=(|α|,0,··· ,0)

hαψα(η1)

+
∑
|α|>1

α 6=(|α|,0,··· ,0)

hαψα(η)
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One-Dimensional Approximation of Solution

Projection of the solution on L2(Ω,Σ(η1),P):

h(ξ) = h0 + ĥ1η1 +
∑
|α|>1

hαψα(η1)
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Implementation

Recipe

Compute linear components in expansion of QoI: η1 =
∑

i wiξi .

Construct isometry A with η1 as leading direction.

Construct projection operators for η = Aξ: 〈f (ξ)ψ(η)〉.
Solve for the representation of solution with respect to η1.

If an L2 characterization is required, then evaluate components with
respect to full η basis.
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Implementation

Numerical Effort:

1 Evaluate:

〈ψi (ξ)ψj(η)ψk(η)〉 = 〈ψi (ξ)ψj(Aξ)ψk(Aξ)〉

This is the multi-dimensional integral of a scalar polynomial function.
Function evaluations are very inexpensive.
These evaluations are massively parallelizable

2 Discover the linear terms of the QoI in a non-intrusive fashion.
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Numerical Example

Plane Stress; Random Young’s Modulus.
Quantity of Interest: X-Displacement at location (0.25,0).
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Using leading dimension of new basis.
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Behavior in L2

PC Coefficients of the Solution Projected in L2 on η1 vs.
PC Coefficients of the Inverse CDF Operator.
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Optimal Dimension Varies over the Domain
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Nonlinear QoI

Von Mises Stress at a Point:

σv =
√
σ2

1 − σ1σ2 + σ2
2
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Conclusions

The geometric structure provides a very rich context to describe
complicated objects (stochastic processes and white noise).

Some quantities of interest are simple, and that simplicity can be
discovered within the richer mathematical structure.

If the QoI are scalars, and if we merely care about an L1

characterization, then 1-d representations exist and the question can
be reformulated as to discover them.

Additional physical/empirical constraints can be reflected in the
construction of A.

Ghanem (USC) Stochastic Dimenion Reduction Red Raider 2012 34 / 34


