Stochastic Dimension Reduction

Roger Ghanem

UNIVERSITY OF SOUTHERN CALIFORNIA LOS ANGELES, CA, USA

Computational and Theoretical Challenges in Interdisciplinary Predictive Modeling Over Random Fields 12th Annual Red Raider Mini-Symposium October 26, 2012 Department of Mathematics and Statistics Texas Tech University

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 1 / 34

Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)

• Coefficients serve to construct an adapted Hilbert space: $k = \sum_{i} k_i \xi_i$ $\xi_i : (\Omega, \Sigma(\xi_i), P) \mapsto \mathbb{R}$ i.i.d $G = \operatorname{span}\{\xi_1, \cdots, \xi_d\}, \quad L^2(\Omega) \equiv L^2(\Omega, \Sigma(G), P).$

• THEN $u(\boldsymbol{\xi}) = u(\xi_1, \cdots, \xi_d) \in L^2(\Omega)$

and $u(m{\xi}) = \sum_i (u,\psi_i)_{L^2(\Omega)} \psi_i(m{\xi})$ is a unique representation of $u(m{\xi})$

• Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .

• Number of terms in PC Expansion: $M = \frac{(P+d)!}{P!d!}$

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space:
 k = Σ_i k_iξ_i ξ_i : (Ω, Σ(ξ_i), P) → ℝ i.i.d G = span{ξ₁, ..., ξ_d}, L²(Ω) ≡ L²(Ω, Σ(G), P).
 THEN u(ξ) = u(ξ₁,..., ξ_d) ∈ L²(Ω)

and $u(\xi) = \sum_{i=1}^{n} (u_i \psi_i) \psi_i(\psi_i) \psi_i(\xi)$ is a unique representation

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- Number of terms in PC Expansion: $M = \frac{(P+d)!}{P!d!}$

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space: $k = \sum_{i} k_i \xi_i$ $\xi_i : (\Omega, \Sigma(\xi_i), P) \mapsto \mathbb{R}$ i.i.d $G = \operatorname{span}\{\xi_1, \dots, \xi_d\}, \quad L^2(\Omega) \equiv L^2(\Omega, \Sigma(G), P).$
- THEN $u(\boldsymbol{\xi}) = u(\xi_1, \cdots, \xi_d) \in L^2(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_i (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

• Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .

• Number of terms in PC Expansion: $M = \frac{(P+d)!}{P!d!}$

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space: $k = \sum_{i} k_i \xi_i$ $\xi_i : (\Omega, \Sigma(\xi_i), P) \mapsto \mathbb{R}$ i.i.d $G = \operatorname{span}\{\xi_1, \cdots, \xi_d\}, \quad L^2(\Omega) \equiv L^2(\Omega, \Sigma(G), P).$
- THEN $u(\boldsymbol{\xi}) = u(\xi_1, \cdots, \xi_d) \in L^2(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_i (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- Number of terms in PC Expansion: $M = \frac{(P+d)!}{P!d!}$

Pushing Uncertainty Through Model: Intrusive Stochastic Projection:

Consider governing equation of general form:

$$\mathcal{M}_{\boldsymbol{\xi}} u = f$$
 .

$$\sum_{j=0}^{P} \langle \Psi_k \Psi_j \mathcal{M}_{\boldsymbol{\xi}}
angle u_j = \langle \Psi_k f
angle \quad 0 \leq k \leq P \; ,$$

If $\mathcal{M}_{\boldsymbol{\xi}} = \sum_{i}^{L} \Psi_{i}(\boldsymbol{\xi}) \mathcal{M}_{i}$, results in a coupled system of equations:

$$\sum_{j=0}^{P}\sum_{i=0}^{L} \langle \Psi_{i}\Psi_{j}\Psi_{k}\rangle \mathcal{M}_{i}u_{j} = \langle \Psi_{k}f\rangle \qquad 0 \leq k \leq P.$$

Intrusive Stochastic Projection:

Consider governing equation of general form:

$$\mathcal{M}_{\boldsymbol{\xi}} u = f$$
.

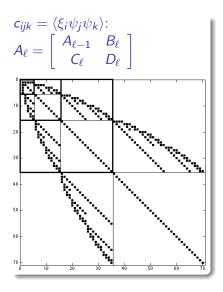
$$\sum_{j=0}^{P} \langle \Psi_k \Psi_j \mathcal{M}_{\boldsymbol{\xi}} \rangle u_j = \langle \Psi_k f \rangle \quad 0 \leq k \leq P ,$$

If $\mathcal{M}_{\boldsymbol{\xi}} = \sum_{i}^{L} \Psi_{i}(\boldsymbol{\xi}) \mathcal{M}_{i}$, results in a coupled system of equations:

$$\sum_{j=0}^{P} \underbrace{\sum_{i=0}^{L} \langle \Psi_{i} \Psi_{j} \Psi_{k} \rangle \mathcal{M}_{i}}_{\left[\sum_{j} M^{jk} u_{j} = f_{k} \quad \forall k\right]} \quad 0 \leq k \leq P.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Intrusive Stochastic Projection: Resulting System of Equations



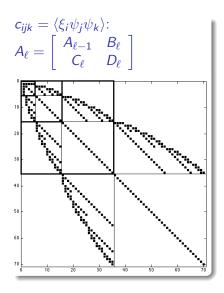
Ghanem (USC)

Stochastic Dimenion Reduction

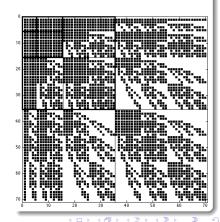
Red Raider 2012 5 / 34

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

Intrusive Stochastic Projection: Resulting System of Equations



$$c_{ijk} = \langle \psi_i \psi_j \psi_k \rangle$$



Ghanem (USC)

Stochastic Dimenion Reduction

Non-Intrusive Characterization

We want:

$$u(\boldsymbol{\xi}) = \sum_{i} (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$$

Orthogonality of $\{\psi_i\}$

$$u_i = (u, \psi_i)_{L^2(\Omega)}$$

= $E\{u(\xi)\psi_i(\xi)\}$
= $\int_{\Gamma_1} \cdots \int_{\Gamma_d} u(\xi)\psi_i(\xi)d\mu(\xi)$

If $\boldsymbol{\xi}$ are independent and have density functions:

$$u_i = \int_{\Gamma_1} \cdots \int_{\Gamma_d} u(\boldsymbol{\xi}) \psi_i(\boldsymbol{\xi}) f_1(\xi_1) \cdots f_d(\xi_d) d\xi_1 \cdots d\xi_d$$

Ghanem (USC)

Stochastic Dimenion Reduction

CHALLENGES:

Intrusive

Very large system of equations; Constructing K_i and K^{jk} .

Non-Intrusive

High-dimensional integration.

OPPORTUNITIES:

Intrusive

Linear Algebra, dimension reduction, adaptive refinement.

Non-Intrusive

Sparsity, anisotropy, dimension reduction.

• replace the "generic" basis ψ_i by a basis that is adapted to $u \in H$

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 9 / 34

Karhunen-Loeve and PC:

Consider the polynomial chaos representation of the solution *u*:

$$u=\sum_{i=0}^{P}u_{i}\psi_{i}, \qquad u,u_{i}\in H$$

Covariance Operator is nuclear, $R_u: H' \mapsto H$

$$(R_uX,Y)_H = \sum_{i=1}^P (u_i,X)_H (u_i,Y)_H \qquad X,Y \in H'$$

Solve eigenproblem:

$$(R_u e, v)_H = \sum_{i=1}^P (u_i, e)_H (u_i, v)_H = \lambda (e, v)_H \quad \forall v \in H$$

Red Raider 2012 10 / 34

▲ 同 ▶ → 三 ▶

Then we can represent PC coefficients on KL directions:

$$u_i = \sum_{j=1}^{KL} (u_i, e_j) e_j$$

1/1

But

$$u = \sum_{i=1}^{P} \sum_{j=1}^{KL} (u_i, e_j) e_j \psi_i = \sum_{j=1}^{KL} \sum_{i=1}^{P} (u_i, e_j) \psi_i e_j = \sum_{j=1}^{KL} \sqrt{\lambda_j} \eta_j e_j$$

Thus:

$$\eta_j = rac{1}{\sqrt{\lambda_j}} \sum_{i=1}^P (u_i, e_j) \psi_i \qquad j = 1, \cdots, KL$$

Ghanem (USC)

Red Raider 2012 11 / 34

3

(N, P)-discretization:

$$\eta_j^{(N,P)} = rac{1}{\sqrt{\lambda_j}} \sum_{i=1}^P (u_i^N, e_j^P) \psi_i$$

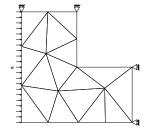
Error:

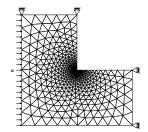
$$\epsilon_j = \left\|\eta_j^{(N,P)} - \eta_j
ight\| \leq C_j \max_i \left| \left(u_i^N, e_j^P\right) - \left(u_i, e_j
ight)
ight|^2$$

- *P* must be large enough to approximate *R*.
- *N* must be large enough to capture projection of u_i on e_j for the *j* that matter.
- Reduce global error no control over local error.

- 4 目 ト - 4 日 ト - 4 日 ト

Coarse and fine meshes used in analysis:

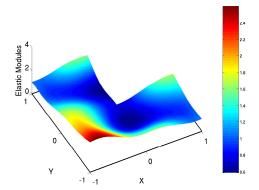




イロト イヨト イヨト イヨト

Red Raider 2012 13 / 34

Realization of elasticity over L-shaped domain:

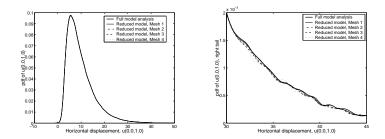


Ghanem (USC)

Stochastic Dimenion Reduction

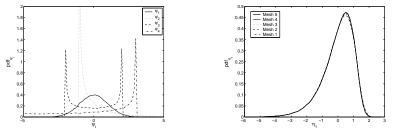
Red Raider 2012 14 / 34

Comparison of pdf for fine model and reduced-model:



Red Raider 2012 15 / 34

Comparison of Stochatsic bases:

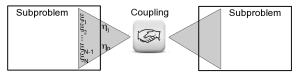


PDF for 4 terms in PC basis PDF for first term in adapted basis.

Muliscale Quadrature

Main Idea

- Develop UQ for coupled models in Nuclear Reactor Technology.
- Adapt measure of approximation at every handshaking.
- Mitigate mixing of uncertainty at handshaking.
- Develop multiscale quadrature rules.

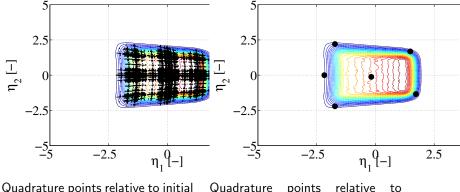


Reduction

The output from Model I is reduced using Karhunen-Loeve expansion. The joint PDF of the dominant KL variables is estimated and a corresponding orthogonal polynomials constructed.

Multiscale Quadrature

Numerical quadrature in Model II can be developed relative to new measure:



Quadrature points relative to initialQuadrature points relativemeasure.adapted measure.

A 🖓

Some analysis

- New basis is adapted to the solution, and not to the parameters.
- Complexity is driven by physics not by parameters.
- Solution is still a random process very high-dimensional.
- In many cases, the QoI is a functional of the solution, that is much less complex than solution.
- We are still spinning our wheels a lot for more than we need.

A (10) A (10)

Some analysis

- New basis is adapted to the solution, and not to the parameters.
- Complexity is driven by physics not by parameters.
- Solution is still a random process very high-dimensional.
- In many cases, the QoI is a functional of the solution, that is much less complex than solution.
- We are still spinning our wheels a lot for more than we need.

A (1) > A (2) > A

Some analysis

- New basis is adapted to the solution, and not to the parameters.
- Complexity is driven by physics not by parameters.
- Solution is still a random process very high-dimensional.
- In many cases, the QoI is a functional of the solution, that is much less complex than solution.
- We are still spinning our wheels a lot for more than we need.

- 4 回 ト - 4 回 ト

- New basis is adapted to the solution, and not to the parameters.
- Complexity is driven by physics not by parameters.
- Solution is still a random process very high-dimensional.
- In many cases, the QoI is a functional of the solution, that is much less complex than solution.
- We are still spinning our wheels a lot for more than we need.

- New basis is adapted to the solution, and not to the parameters.
- Complexity is driven by physics not by parameters.
- Solution is still a random process very high-dimensional.
- In many cases, the QoI is a functional of the solution, that is much less complex than solution.
- We are still spinning our wheels a lot for more than we need.

Second Idea: Probabilistic reduction

- In many instances, the Qol is h(u) where h is some nonlinear functional.
- if the Qol is a single random variable, describing it in terms of more than one random variables seems to be a waste of bandwidth.

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space: $k = \sum_{i} k_i \xi_i$ $\xi_i : (\Omega, \Sigma(\xi_i), P) \mapsto \mathbb{R}$ i.i.d $G = \operatorname{span}\{\xi_1, \cdots, \xi_d\}, \quad L^2(\Omega) \equiv L^2(\Omega, \Sigma(G), \mathbb{R})$
- THEN $u(\boldsymbol{\xi}) = u(\xi_1, \cdots, \xi_d) \in L^2(\Omega)$

and $u(m{\xi}) = \sum_i (u,\psi_i)_{L^2(\Omega)} \psi_i(m{\xi})$ is a unique representation of $u(m{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- BUT $u(\pi \xi) \stackrel{d}{=} u(\xi)$ $\forall \pi \in \mathbb{G}$ (permutation group on \mathbb{R}^d)
- Other representations in \mathbb{R}^d that have the same distribution.
- Perhaps we are working too hard.

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space:

$$\begin{aligned} k &= \sum_{i} k_{i} \xi_{i} \qquad \xi_{i} : (\Omega, \Sigma(\xi_{i}), P) \mapsto \mathbb{R} \quad \text{i.i.d} \\ G &= \text{span}\{\xi_{1}, \cdots, \xi_{d}\}, \quad L^{2}(\Omega) \equiv L^{2}(\Omega, \Sigma(G), P). \end{aligned}$$

• THEN $u(\xi) = u(\xi_{1}, \cdots, \xi_{d}) \in L^{2}(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_{i} (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- BUT $u(\pi \xi) \stackrel{d}{=} u(\xi)$ $\forall \pi \in \mathbb{G}$ (permutation group on \mathbb{R}^d)
- Other representations in \mathbb{R}^d that have the same distribution.
- Perhaps we are working too hard.

۰

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space:

$$k = \sum_{i} k_{i}\xi_{i} \qquad \xi_{i} : (\Omega, \Sigma(\xi_{i}), P) \mapsto \mathbb{R} \quad \text{i.i.d} \\ G = \text{span}\{\xi_{1}, \cdots, \xi_{d}\}, \quad L^{2}(\Omega) \equiv L^{2}(\Omega, \Sigma(G), P).$$

THEN $u(\boldsymbol{\xi}) = u(\xi_{1}, \cdots, \xi_{d}) \in L^{2}(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_{i} (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- BUT $u(\pi \xi) \stackrel{d}{=} u(\xi)$ $\forall \pi \in \mathbb{G}$ (permutation group on \mathbb{R}^d)
- Other representations in \mathbb{R}^d that have the same distribution.
- Perhaps we are working too hard.

٠

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space:

$$\begin{aligned} k &= \sum_{i} k_{i} \xi_{i} \qquad \xi_{i} : (\Omega, \Sigma(\xi_{i}), P) \mapsto \mathbb{R} \quad \text{i.i.d} \\ G &= \text{span}\{\xi_{1}, \cdots, \xi_{d}\}, \quad L^{2}(\Omega) \equiv L^{2}(\Omega, \Sigma(G), P). \end{aligned}$$

THEN $u(\boldsymbol{\xi}) &= u(\xi_{1}, \cdots, \xi_{d}) \in L^{2}(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_{i} (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- BUT $u(\pi \boldsymbol{\xi}) \stackrel{d}{=} u(\boldsymbol{\xi}) \qquad \forall \pi \in \mathbb{G} \text{ (permutation group on } \mathbb{R}^d)$
- Other representations in \mathbb{R}^d that have the same distribution.
- Perhaps we are working too hard.

٠

- Objective is to characterize solution, *u*, of equations with stochastic coefficients on (Ω, Σ, P)
- Coefficients serve to construct an adapted Hilbert space:

$$k = \sum_{i} k_{i}\xi_{i} \qquad \xi_{i} : (\Omega, \Sigma(\xi_{i}), P) \mapsto \mathbb{R} \quad \text{i.i.d} \\ G = \operatorname{span}\{\xi_{1}, \cdots, \xi_{d}\}, \quad L^{2}(\Omega) \equiv L^{2}(\Omega, \Sigma(G), P).$$

THEN $u(\boldsymbol{\xi}) = u(\xi_{1}, \cdots, \xi_{d}) \in L^{2}(\Omega)$

and $u(\boldsymbol{\xi}) = \sum_{i} (u, \psi_i)_{L^2(\Omega)} \psi_i(\boldsymbol{\xi})$ is a unique representation of $u(\boldsymbol{\xi})$

- Sandard PC machinery tries to identify the unique $u(\xi)$ in \mathbb{R}^d .
- BUT $u(\pi \boldsymbol{\xi}) \stackrel{d}{=} u(\boldsymbol{\xi}) \qquad \forall \pi \in \mathbb{G} \text{ (permutation group on } \mathbb{R}^d)$
- Other representations in \mathbb{R}^d that have the same distribution.
- Perhaps we are working too hard.

Focus on Qol

Consider square-integrable nonlinear functionals $h: H \mapsto \mathbb{R}$:

$$h \stackrel{def}{=} h(u(\xi)) = h_0 + \sum_{|\alpha|=1} h_{\alpha} \psi_{\alpha}(\xi) + \sum_{|\alpha|>1} h_{\alpha} \psi_{\alpha}(\xi)$$

Inverse CDF: A mapping from a Gaussian variable $\hat{\xi}$ to h can be constructed as follows:

$$h \stackrel{d}{=} \hat{h}(\hat{\xi}) \stackrel{\text{def}}{=} \mu^{-1} \left[\Phi \left(\hat{\xi} \right) \right]$$

Expand as: $\hat{h}(\hat{\xi}) = \hat{h}_0 + \hat{h}_1\hat{\xi} + \sum_i \hat{h}_i\psi_i(\hat{\xi})$

Thus a one-dimensional expansion in terms of a Gaussian variable exists. It only matches probability measure of h.

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 22 / 34

Focus on Qol

Consider square-integrable nonlinear functionals $h: H \mapsto \mathbb{R}$:

$$h \stackrel{def}{=} h(u(\boldsymbol{\xi})) = h_0 + \sum_{|\boldsymbol{lpha}|=1} h_{\boldsymbol{lpha}} \psi_{\boldsymbol{lpha}}(\boldsymbol{\xi}) + \sum_{|\boldsymbol{lpha}|>1} h_{\boldsymbol{lpha}} \psi_{\boldsymbol{lpha}}(\boldsymbol{\xi})$$

Inverse CDF: A mapping from a Gaussian variable $\hat{\xi}$ to h can be constructed as follows:

$$h \stackrel{d}{=} \hat{h}(\hat{\xi}) \stackrel{def}{=} \mu^{-1} \left[\Phi\left(\hat{\xi}\right) \right]$$

Expand as: $\hat{h}(\hat{\xi}) = \hat{h}_0 + \hat{h}_1\hat{\xi} + \sum_i \hat{h}_i\psi_i(\hat{\xi})$

Thus a one-dimensional expansion in terms of a Gaussian variable exists. It only matches probability measure of *h*.

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 22 / 34

Focus on Qol

Consider square-integrable nonlinear functionals $h: H \mapsto \mathbb{R}$:

$$h \stackrel{def}{=} h(u(\boldsymbol{\xi})) = h_0 + \sum_{|\boldsymbol{lpha}|=1} h_{\boldsymbol{lpha}} \psi_{\boldsymbol{lpha}}(\boldsymbol{\xi}) + \sum_{|\boldsymbol{lpha}|>1} h_{\boldsymbol{lpha}} \psi_{\boldsymbol{lpha}}(\boldsymbol{\xi})$$

Inverse CDF: A mapping from a Gaussian variable $\hat{\xi}$ to h can be constructed as follows:

$$h \stackrel{d}{=} \hat{h}(\hat{\xi}) \stackrel{def}{=} \mu^{-1} \left[\Phi\left(\hat{\xi}\right) \right]$$

Expand as: $\hat{h}(\hat{\xi}) = \hat{h}_0 + \hat{h}_1\hat{\xi} + \sum_i \hat{h}_i\psi_i(\hat{\xi})$

Thus a one-dimensional expansion in terms of a Gaussian variable exists. It only matches probability measure of h.

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 22 / 34

Introduce a new Gaussian rv η_1 :

$$\hat{h}_1\eta_1 = \sum_{|oldsymbollpha|=1} h_{oldsymbol lpha} \psi_{oldsymbol lpha} = \sum_{i=1}^d h_i \xi_i$$

Then:

$$h=h_0+\hat{h}_1\eta_1+\sum_{|mlpha|>1}h_{mlpha}\psi_{mlpha}(m\xi)$$

Ghanem (USC)

- 2

<ロ> (日) (日) (日) (日) (日)

If: ξ is Gaussian, then $\eta = A\xi$ has the same probability measure as ξ . Thus η is a basis for the Gaussian Hilbert space spanned by ξ .

Then: Hermite Polynomials in η span the same space as Hermite polynomials in ξ - namely: $L^2(\Omega, \Sigma(\xi), P) = L^2(\Omega, \Sigma(\eta), P)$.

 $h(\boldsymbol{\xi}) = h_0 + \hat{h}_1 \eta_1 + \sum h_{\alpha} \psi_{\alpha}(\boldsymbol{\eta})$ $\alpha \neq (|\alpha|, 0, \cdots, 0)$

If: ξ is Gaussian, then $\eta = A\xi$ has the same probability measure as ξ . Thus η is a basis for the Gaussian Hilbert space spanned by ξ .

Then: Hermite Polynomials in η span the same space as Hermite polynomials in ξ - namely: $L^2(\Omega, \Sigma(\xi), P) = L^2(\Omega, \Sigma(\eta), P)$.

Choose: A so that $\hat{h}_1\eta_1 = \sum_{|\alpha|=1} h_{\alpha}\psi_{\alpha}$ Then in L^2 : $h(\xi) = h_0 + \hat{h}_1\eta_1 + \sum_{|\alpha|>1} h_{\alpha}\psi_{\alpha}(\eta)$

$$= h_0 + \hat{h}_1 \eta_1 + \sum_{\substack{|\alpha| > 1 \\ \alpha = (|\alpha|, 0, \cdots, 0)}} h_\alpha \psi_\alpha(\eta_1) \\ + \sum_{\substack{|\alpha| > 1 \\ \alpha \neq (|\alpha|, 0, \cdots, 0)}} h_\alpha \psi_\alpha(\eta)$$

If: ξ is Gaussian, then $\eta = A\xi$ has the same probability measure as ξ . Thus η is a basis for the Gaussian Hilbert space spanned by ξ .

Then: Hermite Polynomials in η span the same space as Hermite polynomials in ξ - namely: $L^2(\Omega, \Sigma(\xi), P) = L^2(\Omega, \Sigma(\eta), P)$.

 $h(\boldsymbol{\xi}) = h_0 + \hat{h}_1 \eta_1 + \sum h_{\alpha} \psi_{\alpha}(\boldsymbol{\eta})$ + $\sum h_{\alpha}\psi_{\alpha}(\eta)$ $\alpha \neq (|\alpha|, 0, \dots, 0)$

If: ξ is Gaussian, then $\eta = A\xi$ has the same probability measure as ξ . Thus η is a basis for the Gaussian Hilbert space spanned by ξ .

Then: Hermite Polynomials in η span the same space as Hermite polynomials in ξ - namely: $L^2(\Omega, \Sigma(\xi), P) = L^2(\Omega, \Sigma(\eta), P)$.

Theose:
$$A$$
 so that $\hat{h}_1\eta_1 = \sum_{|\alpha|=1} h_{\alpha}\psi_{\alpha}$
Then in L^2 :
 $h(\boldsymbol{\xi}) = h_0 + \hat{h}_1\eta_1 + \sum_{|\alpha|>1} h_{\alpha}\psi_{\alpha}(\boldsymbol{\eta})$
 $= h_0 + \hat{h}_1\eta_1 + \sum_{\substack{|\alpha|>1\\\alpha=(|\alpha|,0,\cdots,0)}} h_{\alpha}\psi_{\alpha}(\eta_1)$
 $+ \sum_{\substack{|\alpha|>1\\\alpha\neq(|\alpha|,0,\cdots,0)}} h_{\alpha}\psi_{\alpha}(\boldsymbol{\eta})$

Ghanem (USC)

C

Stochastic Dimenion Reduction

Red Raider 2012 24 / 34

Let: A be an isometry. Then $u(A\xi)$ has the same probability measure as $u(\boldsymbol{\xi}).$

If: ξ is Gaussian, then $\eta = A\xi$ has the same probability measure as ξ . Thus η is a basis for the Gaussian Hilbert space spanned by ξ .

Then: Hermite Polynomials in η span the same space as Hermite polynomials in $\boldsymbol{\xi}$ (namely: $L^2(\Omega, \Sigma(\boldsymbol{\xi}), P)$).

Choose: A so that $\hat{h}_1\eta_1 = \sum_{|\alpha|=1} h_{\alpha}\psi_{\alpha}$ Then in L^2 : $h(\boldsymbol{\xi}) = h_0 + \hat{h}_1 \eta_1 + \sum h_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{\eta})$ $|\alpha|>1$ $= h_0 + \hat{h}_1 \eta_1 + \sum h_{\alpha} \psi_{\alpha}(\eta_1)$ $\alpha = (|\alpha| > 1)$ $\alpha = (|\alpha|, 0, \cdots, 0)$ + $\sum h_{oldsymbol{lpha}}\psi_{oldsymbol{lpha}}(\eta)$ $\alpha \neq (|\alpha|, 0, \dots, 0)$

One-Dimensional Approximation of Solution

Projection of the solution on $L^2(\Omega, \Sigma(\eta_1), P)$:

$$h(\boldsymbol{\xi}) = h_0 + \hat{h}_1 \eta_1 + \sum_{|\boldsymbol{lpha}| > 1} h_{\boldsymbol{lpha}} \psi_{\boldsymbol{lpha}}(\eta_1)$$

Ghanem (USC)

Stochastic Dimenion Reduction

Red Raider 2012 26 / 34

A 🖓

Recipe

- Compute linear components in expansion of QoI: $\eta_1 = \sum_i w_i \xi_i$.
- Construct isometry A with η_1 as leading direction.
- Construct projection operators for $\eta = A\xi$: $\langle f(\xi)\psi(\eta)\rangle$.
- Solve for the representation of solution with respect to η_1 .
- If an L^2 characterization is required, then evaluate components with respect to full η basis.

Implementation

Numerical Effort:

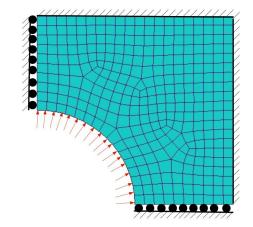
Evaluate:

$$\langle \psi_i(\boldsymbol{\xi})\psi_j(\boldsymbol{\eta})\psi_k(\boldsymbol{\eta})\rangle = \langle \psi_i(\boldsymbol{\xi})\psi_j(\boldsymbol{A}\boldsymbol{\xi})\psi_k(\boldsymbol{A}\boldsymbol{\xi})\rangle$$

- This is the multi-dimensional integral of a scalar polynomial function. Function evaluations are very inexpensive.
- These evaluations are massively parallelizable

② Discover the linear terms of the Qol in a non-intrusive fashion.

Numerical Example



Plane Stress; Random Young's Modulus. Quantity of Interest: X-Displacement at location (0.25,0).

Ghanem (USC)

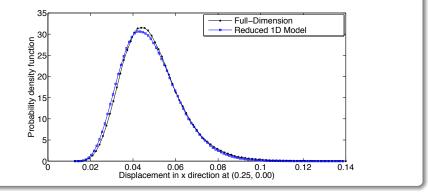
Stochastic Dimenion Reduction

Red Raider 2012 29 / 34

3

イロト イポト イヨト イヨト

Using leading dimension of new basis.



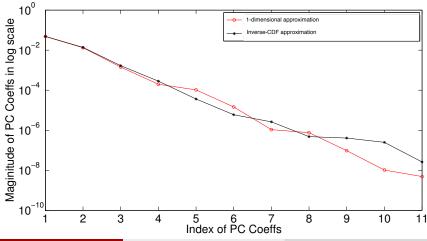
Red Raider 2012 30 / 34

3

< 回 > < 三 > < 三 >

Behavior in L^2

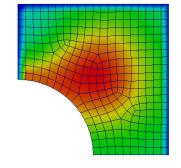
PC Coefficients of the Solution Projected in L^2 on η_1 vs. PC Coefficients of the Inverse CDF Operator.

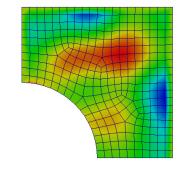


Ghanem (USC)

Stochastic Dimenion Reduction

Optimal Dimension Varies over the Domain





・ロン ・四 ・ ・ ヨン ・ ヨン

ที่ 7 - 4

7 ¥

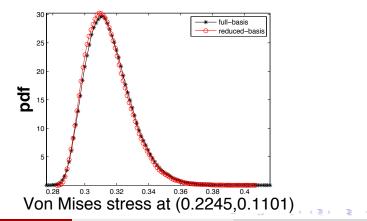
Red Raider 2012 32 / 34

- 2

Nonlinear Qol

Von Mises Stress at a Point:

$$\sigma_{\mathbf{v}} = \sqrt{\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2}$$



Ghanem (USC)

Conclusions

- The geometric structure provides a very rich context to describe complicated objects (stochastic processes and white noise).
- Some quantities of interest are simple, and that simplicity can be discovered within the richer mathematical structure.
- If the Qol are scalars, and if we merely care about an L₁ characterization, then 1-d representations exist and the question can be reformulated as to discover them.
- Additional physical/empirical constraints can be reflected in the construction of A.

イロッ イボッ イヨッ イヨッ 三日