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Abstract

We conduct rigorous stability analysis for the well-known cholera model proposed by
Codeço [7]. Using theory of monotone dynamical systems, we prove that the endemic
equilibrium, when it exists, of the model is globally asymptotically stable, implying the
persistence of the disease in the absence of interventions. We then modify Codeço’s
model by incorporating various control strategies, and study the subsequent dynamics.
We find that with strong control measures, the basic reproduction number will be
reduced below 1 so that the disease-free equilibrium is globally asymptotically stable.
With weak controls, instead, a unique and globally stable endemic equilibrium would
still occur, though at a lower infection level. The analytical predictions are confirmed
by numerical simulation results.
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1 Introduction

Cholera is a severe water-borne infectious disease caused by the bacterium Vibrio cholerae.
Recent years have seen a strong trend of cholera outbreaks in developing countries, including,
among others, those in Kenya (2010), Vietnam (2009), Zimbabwe (2008-2009), Iraq (2008),
Congo (2008) and India (2007). According to the World Health Organization (WHO), “there
are an estimated 3 - 5 million cholera cases and 100,000 - 120,000 deaths due to cholera every
year”, among which only a small portion were officially reported because of poor surveillance
and incomplete records [42]. Due to its huge impacts on public health and social and eco-
nomic development, cholera has been a subject of extensive studies in clinical, experimental
and theoretical fields [2, 14,16,29,32,34,39].

Mathematical modeling provides a unique approach to gain basic knowledge in cholera
dynamics, based on which effective prevention and intervention strategies can be possibly
designed. Mathematical cholera studies dated back to Capasso and Paveri-Fontana [5] when
they proposed a simple deterministic model to study a cholera epidemic occurred in the
Mediterranean in 1973. Other representative works include those by Pourabbas et al. [35],
Codeço [7], Ghosh et al. [11], Hartley et al. [12], King et al. [16], and Mukandavire et al. [30].
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A notable example among these is the deterministic model proposed by Codeço [7] in 2001
which, in the first time, explicitly incorporated the environmental component, i.e., the V.
cholerae concentration in the water supply (denoted by B), into a regular SIR system to
form a combined human-environment (SIR-B) epidemiological model. This model enables a
careful study on the complex interaction between human hosts and environmental pathogen
towards better understanding the cholera transmission mechanism, and, as such, it has
motivated the development of several other cholera models (e.g., [12, 30,40]).

Specifically, the model of Codeço consists of the following differential equations:

dS

dt
= nH − nS − aλ(B)S , (1.1)

dI

dt
= aλ(B)S − rI , (1.2)

dB

dt
= eI −mB , (1.3)

where H stands for the total human population, n denotes the natural human birth/death
rate, r = n + γ with γ denoting the recovery rate, and m = mb − nb representing the net
death rate of vibrios (mb : loss rate; nb : growth rate). The incidence, which determines the
rate of new infection, is represented by

aλ(B) = a
B

K +B
(1.4)

with a being the contact rate with contaminated water and K the half saturation rate (i.e.,
ID50 , the infectious dose in water sufficient to produce disease in 50% of those exposed). In
addition, the equation for R , which is not needed in the model analysis (since R = H−S−I),
takes the form

dR

dt
= γI − nR . (1.5)

The local stability of this model was originally analyzed by Codeço, and the following
theorem was implicitly stated in [7]:

Theorem 1.1 The basic reproduction number of the model (1.1)-(1.3) is

R0 =
ae

Kmr
H . (1.6)

When R0 < 1 , there is a unique disease-free equilibrium (DFE) X0 = (H, 0, 0) which is
locally asymptotically stable; when R0 > 1 , the DFE becomes unstable, and there is a unique
positive endemic equilibrium X∗ which is locally asymptotically stable.

The global asymptotic stability of the DFE and endemic equilibrium, however, was not
discussed in [7]. Particularly, the global stability of the endemic equilibrium has long been a
challenging problem in epidemiological models. The difficulty stems from the fact that most
epidemiological models constitute high-dimensional (≥ 3) nonlinear autonomous systems
for which the classical Poincaré-Bendixson theory [13] is no longer valid. On the other
hand, the global dynamics is essential in understanding the basic mechanism in disease
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initiation, spread and persistence, especially for the long term behavior of the disease and its
relationship with the initial infection size. Such information will provide important guidelines
for the public health administrations to design prevention and intervention strategies and to
properly scale their efforts.

The present paper aims to make contribution to this topic by analyzing the global stabil-
ity of the system (1.1)-(1.3) based on the theory of monotone dynamical systems (see [36] for
a complete review). The framework of monotone dynamical systems is one of the most suc-
cessful approaches in extending the Poincaré-Bendixson theory from two dimension to higher
dimensions. For a class of three-dimensional dynamical systems which possess monotonicity
(e.g., competitive systems [22]), the Poincaré-Bendixson property is preserved and the exis-
tence of non-constant periodic solutions can be ruled out by the orbital asymptotic stability,
thus establishing the global stability of the positive endemic equilibria. This method has
been applied to quite a few epidemiological models in the form of regular SEIR, SIRS and
SEIRS formulations (see, e.g., [21–24, 26, 28, 37, 38, 41]). In contrast, the system considered
in this paper, (1.1)-(1.3), is a combined human-environment (SIR-B) epidemiological model,
the dynamics of which is complicated by the incorporation of the environmental component,
B . The incidence function λ(B) which is a rational function instead of a polynomial makes
the analysis more difficult. It is thus a goal of this paper to conduct a thorough and rigorous
study on this model.

Based on the analysis and results of the original model (1.1)-(1.3), we can then add
various control strategies, including vaccination, therapeutic treatment and water sanitation,
into the system and carefully study the resulting dynamics. We find that the incorporation
of the control terms does not change the essential mathematical feature of the system and,
consequently, the method of monotone dynamical systems can be similarly applied to analyze
the control model.

We organize this paper in the following order. In Section 2, we conduct global stabil-
ity analysis for the no-control model (1.1)-(1.3) using the method of monotone dynamical
systems. In Section 3, we add control measures into the original system and analyze the
dynamics of the control model. In Section 4, we present numerical simulation results to
confirm the analytical predictions. Finally, we close the paper by conclusion and discussion.

2 Global stability analysis

We consider the model (1.1)-(1.3). Note that

B′ = eI −mB ≤ eH −mB .

It is easy to verify that the feasible region

∆ =
{

(S, I, B)
∣∣S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ H, 0 ≤ B ≤ eH

m

}
(2.1)

is positively invariant for the system (1.1)-(1.3). We will denote the interior of ∆ by ∆◦ ,
and the boundary of ∆ by ∂∆ .
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The variational matrix (Jacobian) of the system (1.1)-(1.3) is given by

J =

 −n− aλ(B) 0 −aλ′(B)S
aλ(B) −r aλ′(B)S

0 e −m

 . (2.2)

By evaluating J at the DFE and computing the characteristic polynomial of J(X0) , it is
straightforward to obtain that when R0 < 1 , all the three eigenvalues are negative which
establishes the local stability of X0 (as stated in Theorem 1.1). Furthermore, we have the
following result on the global stability of X0 .

Theorem 2.1 When R0 < 1 , the DFE of the system (1.1)-(1.3) is globally asymptotically
stable in ∆ .

Proof We define a Lyapunov function

L = eI + rB .

Clearly L ≥ 0 . Consider its orbital derivative:

L′ = eI ′ + rB′ = ea
B

K +B
S − rmB = B

aeH

K

( K

K +B

S

H
− 1

R0

)
≤ B

aeH

K

( K

K +B
− 1

R0

)
≤ 0 ,

since K
K+B

< 1 and R0 < 1 . We see that L′ = 0 if and only if B = 0 . The largest compact

invariant subset in
{

(S, I, B) ∈ ∆
∣∣L′ = 0

}
is the singleton {X0} . From La Salle’s invariance

principle [10], X0 is a global attractor.
Next we study the global stability of the endemic equilibrium X∗ using a method based

on monotone dynamical systems, as developed in [24]. Below we briefly review this method
and several related concepts.

Given a C1 function x 7→ F (x) ∈ Rn for x in a bounded convex open set D ⊂ Rn. Define
the system of differential equations

dx

dt
= F (x) . (2.3)

Denote by x(t, x0) the solution of (2.3) such that x(0, x0) = x0 .

Definition 2.2 A subset K is said to be absorbing in D if x(t,K1) ⊂ K for any compact
subset K1 ⊂ D and sufficiently large t.

We state the following two conditions which are important in studying the global stability
of an equilibrium solution for the system (2.3).

(H1) There exists a compact absorbing set K ⊂ D.

(H2) The system (2.3) has a unique equilibrium point x in D.
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Definition 2.3 The system (2.3) is said to be uniformly persistent if there exists a con-
stant c > 0 such that each component of any solution x(t) with x(0) = x0 ∈ D satisfies

lim inf
t→∞

x1(t) > c , lim inf
t→∞

x2(t) > c , · · · , lim inf
t→∞

xn(t) > c . (2.4)

Lemma 2.4 [4] If the system (2.3) is uniformly persistent in a bounded convex open
domain D , then condition (H1) holds.

Definition 2.5 The system (2.3) is called competitive if there exists a diagonal matrix H
with entries ±1 such that each off-diagonal entry of H ∂F

∂x
H is nonpositive in D, where ∂F

∂x
is

the Jacobian matrix of (2.3).

An important feature of a three-dimensional competitive system is that it possesses the
Poincaré-Bendixson property:

Theorem 2.6 [36] For a competitive system defined in a three-dimensional convex open
domain, if a nonempty compact ω−limit set contains no equilibria, then it is a closed orbit.

We list below some basic definitions related to orbital stability of a periodic orbit [8].

Definition 2.7 Suppose (2.3) has a periodic solution x = p(t) with the least period ω > 0
and orbit γ = {p(t) |0 ≤ t ≤ ω}. This orbit is orbitally stable if for each ε > 0, there exists
a δ > 0 such that any solution x(t), for which the distance of x(0) from γ is less than δ,
remains at a distance less than ε from γ for all t ≥ 0. It is asymptotically orbitally stable
if the distance of x(t) from γ also tends to zero as t → ∞. The orbit γ is asymptotically
orbitally stable with asymptotic phase if it is asymptotically orbitally stable and there is an
η > 0 such that, any solution x(t), for which the distance of x(0) from γ is less than η,
satisfies |x(t)− p(t− τ)| → 0 as t→∞ for some τ which may depend on x(0).

We now state a criterion given in [31] for the asymptotic orbital stability of a periodic
orbit of (2.3).

Theorem 2.8 A sufficient condition for a periodic orbit γ = {p(t) |0 ≤ t ≤ ω} of (2.3)
to be asymptotically orbitally stable with asymptotic phase is that the linear system

dz

dt
=
(∂F [2]

∂x

(
p(t)

))
z(t) (2.5)

is asymptotically stable, where ∂F [2]

∂x
is the second compound matrix of the Jacobian ∂F

∂x
, as

defined below.

Definition 2.9 Let A = (aij) be a matrix of dimension n × n . the second additive
compound matrix of A, denoted by A[2] , is a

(
n
2

)
×
(
n
2

)
matrix defined by

A[2] = D+(I + hA)(2)|h=0 , (2.6)

where (I + hA)(2) is the second exterior power of (I + hA) , and D+ is the corresponding
right-hand derivative [31]. For example, when n = 2 , A[2] = TrA . When n = 3 ,

A[2] =

 a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
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Next we state a theorem implicitly given in [24].

Theorem 2.10 Assume that

(1) conditions (H1) and (H2) hold;

(2) x is locally asymptotically stable;

(3) the system (2.3) satisfies the Poincaré-Bendixson Property;

(4) each periodic orbit of (2.3) in D is orbitally asymptotically stable.

Then the unique equilibrium x is globally asymptotically stable in D.

We now examine the system (1.1)-(1.3). We have two propositions which imply that the
system is persistent.

Proposition 2.11 The disease-free equilibrium point X0 is the only ω-limit point of the
system (1.1)-(1.3) on the boundary, ∂∆ , of ∆.

Proof It is easy to check that the vector field of the system (1.1)-(1.3) is transversal to
the boundary of ∆ on all its faces except the S−axis. For example, the face corresponding
to S + I = H has direction (1, 1, 0) and the inner product with the vector field is 1

(
n(H −

S)− aλ(B)S
)

+
(
aλ(B)S − rI

)
= n(H − S)− rI = (n− r)I < 0 . Thus, the vector field on

this face points toward the region ∆ . The S−axis, instead, is invariant. On the S−axis, the
system is reduced to S ′ = n(H − S) , so S(t) → H as t → ∞ . Thus X0 is the only ω-limit
point on ∂∆ .

Proposition 2.12 When R0 > 1 , X0 cannot be the ω-limit point of any orbit starting in
the interior, ∆◦ , of ∆.

Proof Consider the function L = eI + rB ≥ 0 . The orbital derivative of L is L′ =
B aeH

K
( K
K+B

S
H
− 1

R0
) . When R0 > 1, for any point (S, I, B) in ∆◦ that is sufficiently close to

X0 = (H, 0, 0) , we have L′ > 0 . So it cannot approach X0. Hence, X0 cannot be the ω-limit
point of any orbit starting in ∆◦ .

Based on Propositions 2.11 and 2.12, we obtain

Theorem 2.13 The system (1.1)-(1.3) is uniformly persistent.

Now consider the Jacobian J given in equation (2.2). If we set H = diag (1, −1, 1) , then
we can easily observe that the off-diagonal entries of HJH are all nonpositive. Hence, it is a
three-dimensional competitive system which possesses the Poincaré-Bendixson property [36].
We have the following theorem.

Theorem 2.14 Any compact ω−limit set of the system (1.1)-(1.3) in the interior of ∆
is either a closed orbit or the endemic equilibrium X∗.
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Proof Suppose γ is an ω−limit set of the system (1.1)-(1.3) in ∆◦ . If γ does not contain
X∗ , then it contains no equilibria since X∗ is the only interior equilibrium point. Theorem
2.6 implies that γ is a closed orbit. If, instead, γ contains X∗ , then any orbit that gets
arbitrarily close to X∗ will converge to X∗ since X∗ is locally asymptotically stable. Thus
γ = X∗ .

For the system (1.1)-(1.3), Theorems 1.1, 2.13 and Lemma 2.4 ensure that conditions (1)
and (2) in Theorem 2.10 hold, whereas Theorem 2.14 guarantees condition (3) in Theorem
2.10. The following theorem states that condition (4) in Theorem 2.10 also holds for this
system.

Theorem 2.15 The trajectory of any nonconstant periodic solution of the system (1.1)-
(1.3), if it exists, is asymptotically orbitally stable with asymptotic phase.

Proof The second compound matrix of the system (1.1)-(1.3) is given by

J [2] =

 −n− r − aλ(B) aλ′(B)S aλ′(B)S
e −n−m− aλ(B) 0
0 aλ(B) −r −m

 . (2.7)

Then the second compound system defined along the periodic solution (S(t), I(t), B(t)) of
the system (1.1)-(1.3) is given by

X ′(t) = −
(
n+ r + aλ(B)

)
X + aλ′(B)SY + aλ′(B)SZ , (2.8)

Y ′(t) = eX −
(
n+m+ aλ(B)

)
Y , (2.9)

Z ′(t) = aλ(B)Y − (r +m)Z . (2.10)

Based on Theorem 2.8, if we can prove the system (2.8)-(2.10) is asymptotically stable, then
the periodic solution is asymptotically orbitally stable with asymptotic phase.

We define a Lyapunov function

V (X, Y, Z, S, I, B) = sup
{
|X|, I

B
(|Y |+ |Z|)

}
.

Since the system (1.1)-(1.3) is persistent, any periodic solution (S(t), I(t), B(t)) is at a
positive distance from the boundary ∂∆. So I

B
is well-defined, and there is a constant c > 0

such that I
B
> c . Hence, for some positive constant c0, we have

V (X, Y, Z, S, I, B) ≥ c0 sup{|X|, |Y |, |Z|},

for any (X, Y, Z) ∈ R3 and any periodic solution (S(t), I(t), B(t)) of the system (1.1)-(1.3).
Let us estimate the right-derivative of V along a solution (X(t), Y (t), Z(t)) of the system

(2.8)-(2.10) and (S(t), I(t), B(t)) of the system (1.1)-(1.3).

D+|X(t)| ≤ −
(
n+ r + aλ(B)

)
|X|+ aλ′(B)SB

I

I

B

(
|Y |+ |Z|

)
,

D+|Y (t)| ≤ e|X| −
(
n+m+ aλ(B)

)
|Y | ,

D+|Z(t)| ≤ aλ(B)|Y | − (r +m)|Z| ,
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and

D+
I

B
(|Y |+ |Z|)

= (
I ′

I
− B′

B
)
I

B
(|Y |+ |Z|) +

I

B
D+(|Y |+ |Z|)

≤ (
I ′

I
− B′

B
)
I

B
(|Y |+ |Z|) +

I

B
(e|X| − (n+m)|Y | − (r +m)|Z|)

≤ (
I ′

I
− B′

B
)
I

B
(|Y |+ |Z|) + e

I

B
|X| − (n+m)

I

B
(|Y |+ |Z|)

= e
I

B
|X|+

(I ′
I
− B′

B
− (n+m)

) I
B

(
|Y |+ |Z|

)
.

Therefore,
D+V (t) ≤ max{g1(t), g2(t)}V (t) ,

where

g1(t) = −n− r − aB

K +B
+

aK

(K +B)2

SB

I
,

g2(t) = e
I

B
+
I ′

I
− B′

B
− (n+m) .

From the system (1.1)-(1.3), we have B′

B
= e I

B
−m . Then

g2(t) =
I ′

I
− n .

Similarly, I′

I
= a

K+B
BS
I
− r . Then

g1(t) = −n− r − aB

K +B
+

K

K +B

(I ′
I

+ r
)

=
K

K +B

I ′

I
− n− (a+ r)B

K +B
.

Hence,

max{g1(t), g2(t)} ≤
I ′

I
− n .

Denote the period of the periodic solution (S(t), I(t), B(t)) by τ . We have∫ τ

0

max{g1(t), g2(t)} dt ≤
∫ τ

0

(I ′
I
− n

)
dt = ln I(t)

∣∣τ
0
− nτ = −nτ < 0 .

Thus, the system (2.8)-(2.10) is asymptotically stable. Then, the periodic solution (S(t), I(t), B(t))
is asymptotically orbitally stable with asymptotic phase.

We are now ready to state the main result in this section:

Theorem 2.16 When R0 > 1 , the endemic equilibrium X∗ of the system (1.1)-(1.3) is
globally asymptotically stable in ∆◦ .

The proof follows Theorem 2.10 by combining Theorems 1.1 and 2.13 - 2.15.
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3 Cholera dynamics with controls

Building on the analysis and results presented in Section 2, we can now study cholera dynam-
ics with control strategies incorporated. We modify the original model (1.1)-(1.3) by adding
three types of controls: vaccination, therapeutic treatment (including hydration therapy,
antibiotics, etc.), and water sanitation. We make the following assumptions.

• Vaccination is introduced to the susceptible population at a rate of v , so that vS
individuals per time are removed from the susceptible class and added to the recovered
class.

• Therapeutic treatment is applied to infected people at a rate of u , so that uI individuals
per time are removed from the infected class and added to the recovered class.

• Water sanitation leads to the death of vibrios at a rate of w .

• Another type of vaccination is applied to (some) newborns so that only a proportion
P (0 < P ≤ 1) of individuals entering the total population are susceptible.

As a result, we obtain the following modified system:

dS

dt
= PnH − (n+ v)S − aBS

K +B
, (3.1)

dI

dt
=

aBS

K +B
− (r + u)I , (3.2)

dB

dt
= eI − (m+ w)B , (3.3)

together with the equation for R :

dR

dt
= (1− P )nH + (r − n+ u)I − nR + vS . (3.4)

It is clear that d
dt

(S + I + R) = 0 so that H = S + I + R remains a constant. The feasible
region is

∆ =
{

(S, I, B)
∣∣S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ H, 0 ≤ B ≤ eH

m+ w

}
, (3.5)

and it can be easily verified that ∆ is positively invariant for the system (3.1)-(3.3).
To proceed, it is convenient to set

r̄ = r + u , and m̄ = m+ w .

It is obvious that the system (3.1)-(3.3) has a unique DFE

X0 =
( nPH
n+ v

, 0, 0
)
. (3.6)
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The Jacobian of the system is given by

J =


− aB
K+B

− n− v 0 − aSK
(K+B)2

aB
K+B

−r̄ aSK
(K+B)2

0 e −m̄

 . (3.7)

Substituting the DFE in equation (3.6) into the Jacobian (3.7) and calculating the charac-
teristic polynomial, we obtain

Det
(
λI − J(X0)

)
= (λ+ n+ v)(λ+ n)

[
(λ+ r̄)(λ+ m̄)− anePH

K(n+ v)

]
.

It is then straightforward to see that X0 is locally asymptotically stable if and only if

r̄m̄− anePH

(n+ v)K
> 0 ,

which yields

H <
(r + u)(m+ w)(n+ v)K

aneP
. (3.8)

The inequality in (3.8) implies that

Rc
0 =

ane

K(r + u)(m+ w)(n+ v)
PH . (3.9)

Equation (3.9) is the expression of the basic reproduction number for the model with controls.
Here we have used the notation Rc

0 to distinguish from R0 defined in equation (1.6) for the
original no-control model. Clearly Rc

0 < R0 = ae
Kmr

H . The result in equation (3.9) shows
that, mathematically, each of the three types of individual controls can reduce the value
of Rc

0 lower than 1 so that the disease will be eradicated. For example, if v = w = 0
and P = 1 , we would just need u > ae

mK
H − r to ensure Rc

0 < 1 . Practically, however,
the strength of each control strategy would be limited by social and economic factors and
available resources, and the combination of different intervention approaches would possibly
achieve the best result.

Indeed, like the original model, the DFE (3.6) is also globally asymptotically stable when
Rc

0 < 1 . This can be established based on the following theorem:

Theorem 3.1 [6] Consider a model system written in the form

dX1

dt
= F (X1, X2) ;

dX2

dt
= G(X1, X2) with G(X1, 0) = 0 ,

where X1 ∈ Rm denotes (its components) the number of uninfected individuals and X2 ∈ Rn

denotes (its components) the number of infectious individuals; X0 = (XE
1 , 0) denotes the

disease-free equilibrium of the system.
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Also assume the conditions (A1) and (A2) below:

(A1) For
dX1

dt
= F (X1, 0) , XE

1 is globally asymptotically stable;

(A2) G(X1, X2) = AX2−Ĝ(X1, X2) , Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where the Jacobian

A =
∂G

∂X2

(XE
1 , 0) is an M-matrix (the off-diagonal elements of A are nonnegative) and Ω

is the region where the model makes biological sense.
Then the DFE X0 = (XE

1 , 0) is globally asymptotically stable provided that R0 < 1 .

Applying Theorem 3.1 to the control model (3.1)-(3.3), with equation (3.1) being the
uninfected subsystem and equations (3.2) and (3.3) being the infectious subsystem, we can
easily verify that conditions (A1) and (A2) hold. Therefore, we obtain

Theorem 3.2 If Rc
0 < 1 , where Rc

0 is defined in equation (3.9), the DFE of the system
(3.1)-(3.3) is globally asymptotically stable.

Suppose, now, that the effects of these controls are not strong enough to reduce Rc
0 below

1 . Then the DFE becomes unstable and the disease will persist. Let us study the endemic
dynamics in details.

At the endemic equilibrium X∗ = (S∗, I∗, B∗) , we have

I∗ =
anePH − r̄m̄(n+ v)K

r̄e(a+ n+ v)
, (3.10)

B∗ =
e

m̄
I∗ , (3.11)

S∗ =
r̄(K +B∗)

aB∗
I∗ . (3.12)

From equation (3.10), it is straightforward to see that a positive endemic equilibrium exists
if and only if

H >
r̄m̄(n+ v)K

aneP
, i.e., Rc

0 > 1 . (3.13)

We have the following result on the local stability of the endemic equilibrium.

Theorem 3.3 When Rc
0 > 1 , the unique positive endemic equilibrium of the system (3.1-

3.3) is locally asymptotically stable.

Proof Evaluating the Jacobian (3.7) at the endemic equilibrium, we obtain

J(X∗) =


−T − n− v 0 −Q

T −r̄ Q

0 e −m̄

 ,

with T = aB∗

K+B∗
> 0 and Q = aS∗K

(K+B∗)2
> 0 . The characteristic polynomial is given by

Det
(
λI − J(X∗)

)
= a0λ

3 + a1λ
2 + a2λ

1 + a3 ,
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where

a0 = 1 ,

a1 = r̄ + m̄+ n+ v + T ,

a2 = nr̄ + nm̄+ vr̄ + vm̄+ T r̄ + Tm̄+ (r̄m̄−Qe) ,
a3 = (n+ v)(r̄m̄−Qe) + T r̄m̄ .

Based on the Routh-Hurwitz criterion [17, 33], the sufficient and necessary conditions for
local stability are:

a1 > 0 , a2 > 0 , a3 > 0 , a1a2 − a0a3 > 0 .

Note that a1 > 0 is obvious. Meanwhile, from equations (3.10)-(3.12), we obtain

r̄m̄−Qe =
ae2m̄S∗I∗

(m̄K + eI∗)2
> 0.

It is then clear to see a2 > 0 and a3 > 0 . In addition, we observe that

a1a2 − a0a3 = r̄2(n+ v + T ) + (n+ v)r̄m̄+ (r̄ + m̄)(n+ v + T )(r̄ + 2m̄+ T )

+(r̄ + m̄+ T )(r̄m̄−Qe) > 0 ,

which completes the proof.
Now we consider the global stability of the endemic equilibrium for the control model.

We note that Propositions 2.11 and 2.12 also apply to the system (3.1)-(3.3). For example,
to show Proposition 2.12, set the function L = eI + r̄B and observe that

L′ = B
aeS0

K

( K

K +B

S

S0

− 1

R0

)
> 0

when R0 > 1 , for any point (S, I, B) sufficiently close to X0 = (S0, 0, 0) where S0 = nPH
n+v

.
Hence, X0 cannot be the ω-limit point of any orbit starting in ∆◦ .

Meanwhile, it can be easily verified that the system (3.1)-(3.3) is competitive; with
H = diag(1, −1, 1) , all the off-diagonal entries of HJH are non-positive, where the Jacobian
J is defined in equation (3.7).

In addition, the second compound matrix of the system (3.1)-(3.3) can be written as

J [2] =

 −n̄− r̄ − aλ(B) aλ′(B)S aλ′(B)S
e −n̄− m̄− aλ(B) 0
0 aλ(B) −r̄ − m̄

 , (3.14)

where n̄ = n+ v . We observe that this matrix takes the same symbolic form as the second
compound matrix of the no-control model given in equation (2.7), if we replace r , m and
n by r̄ , m̄ and n̄ , respectively. Thus, Theorem 2.15 can be similarly established for the
system (3.1)-(3.3).

Based on these observations and Theorem 3.3, we can clearly see the following result
holds:
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Theorem 3.4 When Rc
0 > 1 , the endemic equilibrium X∗ of the system (3.1)-(3.3) is

globally asymptotically stable in ∆◦ .

It is, however, interesting to compare the size of the infection at the endemic equilibria
in these two cases, i.e., with and without controls. Let us denote the infectious endemic
equilibrium of the original model by I∗o , and that of the control model by I∗c . Equation
(3.10) gives the expression for I∗c , whereas

I∗o =
aneH − rmnK
re(a+ n)

, (3.15)

which can be simply obtained from equation (3.10) by setting u = v = w = 0 and P = 1 ,
i.e., removing all controls. After some simple algebra, we can readily see

I∗o − I∗c > 0 . (3.16)

This result can be naturally expected. It shows that, even though the control measures are
not strong enough to eliminate the epidemicity, they have the effects of reducing the size
of the infection, particularly for the long-term disease dynamics. When I∗c is close to 0 ,
an endemic state would be unlikely to occur or persist in reality, since practical endemism
requires a reasonably higher value for I∗ [1, 7].

4 Numerical results

In this section, we present some numerical simulation results to confirm our analytical pre-
dictions on the global dynamics of the cholera models.

We first consider the original no-control model (1.1)-(1.3). We set the total population
as H = 10, 000 , and take the values of the parameters a, e, n, m, r and K from Codeço’s
paper [7]. Using equation (1.6), we find R0 ≈ 1.51 , indicating that there is a unique positive
endemic equilibrium, where I∗ ≈ 16.98 based on equation (3.15). We pick five different
initial conditions with I(0) = 1, 100, 200, 600, 1000 , respectively, and plot these five
solution curves by the phase plane portrait of I vs. S in Figure 1. We clearly see that all
these five orbits converge to the endemic equilibrium, showing the global asymptotic stability
of the endemic equilibrium.

With the same configurations, we now add control measures and simulate the control
model (3.1)-(3.3). Let us consider two hypothetical scenarios here: one with “strong” con-
trols, by setting u = 0.5r , v = 0.5n , and w = 0.5m ; the other with “weak” controls, by
setting u = 0.1r , v = 0.1n , and w = 0.1m . We fix P = 0.9 in both cases, meaning that
90% of newborns are susceptible. Using equation (3.9), we obtain Rc

0 ≈ 0.40 in the first
case, indicating that the DFE is globally asymptotically stable and the disease would die out
over time. The phase plane portrait in Figure 2-(a) confirms this prediction. In contrast,
for the second case we have Rc

0 ≈ 1.03 , indicating the existence of a globally stable endemic
equilibrium, where I∗ ≈ 0.66 based on equation (3.10). This is confirmed by the phase plane
portrait in Figure 2-(b).

The comparison between the control and no-control models can be further demonstrated
by looking at the time evolution of the infection curves. For illustration, we set the initial
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condition with I(0) = 100 , and plot I vs. t for the three cases: no controls, strong controls,
and weak controls, in Figure 3-a. We set a relatively short time interval (50 weeks) to show
the details of epidemic dynamics. The total population H = 10, 000 is unchanged. We
observe that for the model without controls (R0 ≈ 1.51), an epidemic outbreak occurs with
a peak value about 450 , showing a relatively high infection level. For the model with weak
controls (Rc

0 ≈ 1.03), epidemicity also occurs but with a much lower infection level; the
peak value is about 170 . For the model with strong controls (Rc

0 ≈ 0.40), the DFE becomes
globally asymptotically stable and no epidemicity occurs; the infection curve quickly declines
to zero and the disease dies out. In order to examine the long term dynamics of the disease, we
plot the infection curves again for the no-control model and the weak-control model in Figure
3-b, with a much longer period (2, 000 weeks). We clearly see that after the initial epidemic
outbreak, the no-control infection curve exhibits several epidemic oscillations with decaying
magnitudes, which are separated by small time intervals of length 100− 200 weeks (or 2− 4
years), before it finally (t ≥ 1, 500 weeks) rests at the endemic equilibrium I∗ ≈ 16.98 .
In contrast, for the weak-control infection curve, there is almost no oscillation visible after
the initial epidemic outbreak. It quickly converges to its endemic equilibrium at a very low
infection level (I∗ ≈ 0.66), a consequence of the control strategies.

5 Conclusion and Discussion

We have conducted a global stability analysis for the cholera model proposed in [7], using
the theory and method based on monotone dynamical systems. Our results have completely
determined the global dynamics of this model, thus establishing R0 as a sharp threshold
for local and global stability exchange between the DFE and endemic equilibrium. This
study builds the ground for modeling and analyzing prevention and intervention strategies
on cholera. Consequently, we have incorporated three types of controls, including the vac-
cination, therapeutic treatment, and water sanitation, and analyzed the local and global
dynamics of the cholera model with controls. Since the control model also possesses the
nice feature of monotonicity, the analytical techniques developed for the original no-control
model can be similarly applied, thus making the analysis of the control model much easier.

We have found that the dynamical pattern of the control model is similar to that of
the original model in that Rc

0 = 1 is a forward transcritical bifurcation point for stability
exchange. Thus the strength of the controls is crucial in determining the dynamics of the
control model. With strong controls, the value of Rc

0 can be reduced to a level below the
threshold 1 , thus eradicating the disease. With weak controls, the value of Rc

0 could be still
above 1 ; consequently, an endemic state exists, though at a (much) lower infection level
than that without controls. Our analytical predictions have been confirmed by numerical
simulation results. The work in this paper can provide useful guidelines for public health
administrations to effectively design prevention and intervention strategies against cholera
outbreak, and to properly scale their efforts.

The method based on monotone dynamical systems has its limitation. Specifically, it
requires the dynamical systems to possess monotonicity, a condition not satisfied by many
epidemiological models. Alternatively, there are several different approaches for global sta-
bility analysis of high-dimensional dynamical systems. The classical method of Lyapunov
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functions [15, 18] has been known for many decades and widely applied in various scientific
disciplines. The disadvantage, however, is that there is no systematic way to construct Lya-
punov functions so that its success largely depends on the types of problems. As such, trial
and error is the standard process for its implementation. Another method, the geometric
approach, originally proposed by Li and Muldowney [9, 25, 27], has gained some popularity
in recent years (see, e.g., [3, 20]) as it is applicable to more general dynamical systems. The
key part of this approach is to check a high-dimensional Bendixson criterion which is robust
under C1 local perturbations, based on which the local asymptotic stability leads to global
stability. The procedure to check this criterion, however, is highly nontrivial. Hence, like the
method of monotone dynamical systems, all these methods have their strength and weakness,
and the “best” approach for general high-dimensional dynamical systems does not exist yet.

The study presented in this paper can be extended in several ways. First, the theory
and method based on monotone dynamical systems can be applied to the model (1.1)-(1.3)
with more general incidence function λ(B) , as can be verified such types of systems are
competitive. Meanwhile, we may incorporate the control measures into more sophisticated
cholera models, such as those proposed in [12, 30, 40], and conduct similar analysis. In
addition, this work builds the ground for an “optimal study” of the control strategies which
is especially important in practical application. For example, suppose we want to minimize
the number of cholera infections while also minimizing the effort of the controls, then we
may seek to minimize the following functional in a given time interval:

J(u, v) =

∫ T

0

[
I(t) + C1(u) + C2(v) + C3(w)

]
dt ,

where C1 , C2 and C3 are appropriate functions representing the costs related to vaccination,
therapeutic treatment and water sanitation, respectively. Our dynamical analysis and sim-
ulation can be combined with an optimal control technique [19] to seek an answer for this
type of problem. We plan to explore this topic in our future work.
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Figure 1: The phase plane portrait of I vs. S for the the original model (1.1)-(1.3). The five curves
correspond to five initial conditions with I(0) = 1, 100, 200, 600, 1000 , respectively. All these
orbits converge to the endemic equilibrium: I∗ ≈ 16.98 , S∗ ≈ 6603 .
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Figure 2: The phase plane portraits of I vs. S for the control model (3.1)-(3.3). In each case the
five curves correspond to five initial conditions with I(0) = 1, 100, 200, 600, 1000 , respectively.
(a) Strong controls, with Rc

0 ≈ 0.40 . All the orbits converge to the DFE: I0 = 0 , S0 = 6000 . (b)
Weak controls, with Rc

0 ≈ 1.03 . All the orbits converge to the endemic equilibrium: I∗ ≈ 0.66 ,
S∗ ≈ 7986 .
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Figure 3: The infection curves I vs. t , with I(0) = 100 . (a) Infection curves of no controls (dashed
line), strong controls (dotted line) and weak controls (solid line) within a short time interval. (b)
Infection curves of no control (dashed line) and weak controls (solid line) for a long period.
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