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Abstract

We conduct global stability analysis for the endemic equilibria of several determinis-
tic cholera models. These models, incorporating both human population and pathogen
concentration, constitute four-dimensional nonlinear autonomous systems where the
classical Poincaré-Bendixson theory is not applicable. We employ three different tech-
niques, including the monotone dynamical systems, geometric approach, and Lyapunov
functions, to investigate the endemic global stability for several biologically important
cases. The analysis and results presented in this paper make building blocks towards
a comprehensive study of the general mathematical cholera model.
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1 Introduction

Cholera, characterized by severe diarrhea and rapid dehydration, is a water-borne infectious
disease caused by the bacterium Vibrio cholerae. Despite many clinical and theoretical
studies [1, 14, 18,31,34,35,47] and tremendous administrative efforts [52], cholera remains a
significant threat to public health in the developing countries [50–52].

Understanding of the fundamental mechanism in the disease transmission is crucial for
effective prevention and intervention strategies against cholera outbreak. To achieve this
goal, many mathematical models have been proposed to investigate the complex epidemic
and endemic behavior of cholera. The difficulty in studying cholera dynamics stems from
the coupling between its multiple transmission pathways which involve both direct human-
to-human and indirect environment-to-human modes and which lead to combined human-
environment epidemiological models. Representative works on mathematical cholera mod-
eling include those by Capasso and Paveri-Fontana [4], Pourabbas et al. [36], Codeço [6],
Ghosh et al. [11], Hartley et al. [12], and Mukandavire et al. [32].

Most recently, Wang and Liao [48] proposed a generalized cholera model which unifies
previous mathematical models by introducing a general formulation for the incidence and
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pathogen concentration. The model consists of the following differential equations:

dS

dt
= bN − Sf(I, B)− bS , (1.1)

dI

dt
= Sf(I, B)− ( + b)I , (1.2)

dR

dt
= I − bR , (1.3)

dB

dt
= ℎ(I, B) . (1.4)

Here S , I and R denote the susceptible, the infected, and the recovered populations, respec-
tively, and B denotes the concentration of the vibrios in the contaminated water. The total
population N = S + I + R is assumed to be a constant. The parameter b represents the
natural human birth/death rate, and  represents the rate of recovery from cholera. The
function f(I, B) represents the incidence which determines the rate of new infection, and
the function ℎ(I, B) describes the rate of change for the pathogen in the environment.

Under biologically reasonable conditions for f(I, B) and ℎ(I, B) , it is shown in [48] that
there exists a forward transcritical bifurcation at R0 = 1 for this model. Specifically, the
following theorem summarizes the dynamics known for the system (1.1)-(1.4).

Theorem 1.1 [48] The basic reproduction number of the model (1.1)-(1.4) is

R0 =
N

 + b

[ ∂f
∂I

(0, 0)− ∂f

∂B
(0, 0)

( ∂ℎ
∂B

(0, 0)
)−1∂ℎ

∂I
(0, 0)

]
. (1.5)

When R0 < 1 , there is a unique disease-free equilibrium (DFE) which is both locally and
globally asymptotically stable; when R0 > 1 , the DFE becomes unstable, and there is a unique
positive endemic equilibrium which is locally asymptotically stable.

The global stability of the endemic equilibrium, however, remains unresolved for the
system (1.1)-(1.4). In fact, to our knowledge, none of the previous works on cholera modeling
have addressed the question of this kind. The study of the endemic global stability is
not only mathematically important, but also essential in predicting the long-term behavior
of the disease. The challenge, however, in the global analysis of cholera models is that
due to the incorporation of the environmental component B , the models usually constitute
three-dimensional nonlinear autonomous systems for which the classical Poincaré-Bendixson
theory [13] is no longer valid. Hence, other analytical tools must be employed, and possibly
new methods need to be created, to overcome this challenge.

As a step towards completely answering this difficult question, we apply three established
methods, i.e., those based on the monotone dynamical systems [22,24,44–46], geometric ap-
proach [9, 25, 27], and Lyapunov functions [17, 19], to conduct global stability analysis for
several cholera models in this paper. The theory of monotone dynamical systems and geo-
metric approach is relative new compared to the Poincaré-Bendixson framework. Meanwhile,
although the method of Lyapunov functions has been widely applied to various dynamical
systems, the essential part of our analysis is based on the less well known results of Volterra-
Lyapunov stable matrices [40–42]. The models investigated in this paper represent several
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important, and nontrivial, choices of the incidence f(I, B) in the most general model (1.1)-
(1.4). These include the cases when f is bilinear in I and B due to the standard mass action
law, when f is only depending on B in a nonlinear manner so that human-to-human trans-
mission is not present, and when f has a linear dependence on I and a nonlinear dependence
on B . We have found that it is convenient and illustrative (and, in some case, necessary) to
employ different approaches to deal with these different situations. The analysis and results
presented in this paper can be viewed as building blocks towards a comprehensive study for
the global dynamics of the general model (1.1)-(1.4).

We organize this paper as follows. In Section 2, we apply the theory of monotone dy-
namical systems to analyze models with nonlinear environment-dependent-only incidence,
where the disease transmission is characterized solely by the environment-to-human path-
way. A typical example is given by Codeço’s model [6]. In Section 3, we apply the geometric
approach to investigate models with incidence depending linearly on human and nonlinearly
on environment, which in general do not satisfy the requirement of monotone systems. A
representative example is the model of Mukandavire et al. [32]. In Section 4, we consider
models with bilinear incidence but with a general nonlinear representation of the pathogen
growth rate. Such models are neither monotone nor can be easily analyzed by the geometric
approach. Fortunately, the method of Lyapunov functions combined with the Volterra-
Lyapunov matrix properties lead to the proof of the endemic global stability. Finally, we
close the paper by conclusions and discussion.

2 Incidence with environment-to-human transmission only

We first consider the following model

dS

dt
= bN − Sf(B)− bS , (2.1)

dI

dt
= Sf(B)− ( + b)I , (2.2)

dB

dt
= eI −mB , (2.3)

with the incidence function f(I, B) = f(B) depending only on the environmental factor B ,
and ℎ(I, B) = eI −mB being linear. For convenience of discussion, we have dropped the
equation for R , i.e., (1.3), since S(t) + I(t) + R(t) = N and R is not independent. Here
the parameter e represents the rate of contribution (e.g., shedding) to V. cholerae and m
represents the net death rate of vibrios in the environment. The incidence function satisfies
(see [48])

f(0) = 0 , f ′ ≥ 0 , and f ′′ ≤ 0 . (2.4)

Note that
B′ = eI −mB ≤ eN −mB .

It is easy to obtain that B(t) ≤ eN
m

. Thus we will study system (2.1)-(2.3) in the feasible
region

Δ =
{

(S, I, B)
∣∣S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ N, 0 ≤ B ≤ eN

m

}
. (2.5)
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It can be easily verified that Δ is positively invariant.
The result below directly follows Theorem 1.1.

Theorem 2.1 The basic reproduction number of the model (2.1)-(2.3) is

R0 =
N

 + b
f ′(0)

e

m
. (2.6)

If R0 < 1 , there is only one nonnegative equilibrium point X0 = (N, 0, 0), which is the
disease free equilibrium, and it is globally asymptotically stable. If R0 > 1 , there are two
nonnegative equilibria, X0 and the endemic equilibrium X∗ = (S∗, I∗, B∗), where X0 is
unstable and X∗ is locally asymptotically stable.

In order to show the global stability of the endemic equilibrium X∗, we will use a method
based on monotone dynamical systems, as developed in [24]. Below we briefly review this
method.

Given a C1 function x 7→ F (x) ∈ ℝn for x in a bounded convex open set D ⊂ ℝn. Define
the differential equation

dx

dt
= F (x) . (2.7)

Denote by x(t, x0) the solution of (2.7) such that x(0, x0) = x0 . A subset K is said to be
absorbing in D if x(t,K1) ⊂ K for any compact subset K1 ⊂ D and sufficiently large t. To
study the global stability of an equilibrium solution, x, we assume

(H1) There exists a compact absorbing set K ⊂ D.

(H2) The system (2.7) has a unique equilibrium point x in D.

The system (2.7) is said to be uniformly persistent if there exists a constant c > 0 such
that each component of any solution x(t) with x(0) = x0 ∈ D satisfies

lim inf
t→∞

x1(t) > c , lim inf
t→∞

x2(t) > c , ⋅ ⋅ ⋅ , lim inf
t→∞

xn(t) > c . (2.8)

The boundedness of D and uniform persistence imply that the system has a compact ab-
sorbing subset of D [3].

The system (2.7) is called competitive if there exists a diagonal matrix H with entries ±1
such that each off-diagonal entry of H ∂F

∂x
H is nonpositive in D, where ∂F

∂x
is the variational

matrix of (2.7). It is known that three-dimensional competitive systems have the Poincaré-
Bendixson property:

Theorem 2.2 [44] For a competitive system defined in a three-dimensional convex open
domain, if a nonempty compact !−limit set contains no equilibria, then it is a closed orbit.

We recall here basic definitions related to orbital stability of a periodic orbit [7]. Suppose
(2.7) has a periodic solution x = p(t) with the least period ! > 0 and orbit  = {p(t) ∣0 ≤
t ≤ !}. This orbit is orbitally stable if for each " > 0, there exists a � > 0 such that any
solution x(t), for which the distance of x(0) from  is less than �, remains at a distance less
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than " from  for all t ≥ 0. It is asymptotically orbitally stable if the distance of x(t) from 
also tends to zero as t→∞. The orbit  is asymptotically orbitally stable with asymptotic
phase if it is asymptotically orbitally stable and there is an � > 0 such that, any solution
x(t), for which the distance of x(0) from  is less than �, satisfies ∣x(t) − p(t − �)∣ → 0 as
t→∞ for some � which may depend on x(0). We now state a criterion given in [33] for the
asymptotic orbital stability of a periodic orbit of (2.7).

Theorem 2.3 A sufficient condition for a periodic orbit  = {p(t) ∣0 ≤ t ≤ !} of (2.7)
to be asymptotically orbitally stable with asymptotic phase is that the linear system

dz

dt
=
(∂F [2]

∂x

(
p(t)

))
z(t) (2.9)

is asymptotically stable, where ∂F [2]

∂x
is the second compound matrix of the Jacobian ∂F

∂x
.

Recall for a n× n matrix A and integer 1 ≤ k ≤ n, the kth additive compound matrix of
A, denoted by A[k] , is defined by

A[k] = D+(I + ℎA)(k)∣ℎ=0 , (2.10)

where (I + ℎA)(k) is the kth exterior power of (I + ℎA) , and D+ is the corresponding
right-hand derivative [33].

Then we state a theorem implicitly given in [24].

Theorem 2.4 Assume that

(1) conditions (H1) and (H2) hold;

(2) x is locally asymptotically stable;

(3) the system (2.7) satisfies the Poincaré-Bendixson Property;

(4) each periodic orbit of (2.7) in D is orbitally asymptotically stable.

Then the unique equilibrium x is globally asymptotically stable in D.

We now examine the system (2.1)-(2.3). We have two propositions which imply that the
system is persistent.

Proposition 2.5 The disease-free equilibrium point E0 is the only !-limit point of the
system (2.1)-(2.3) on the boundary, ∂Δ , of Δ.

Proof The boundary of Δ has 5 faces. In each face, the vector field of the system (2.1)-
(2.3) is transversal to it. For example, in the face of {(S, I, B)∣S + I = N, 0 ≤ B ≤ eN

m
},

the vectors point to inside of Δ. Meanwhile, ∂Δ has 9 edges. Except for the edge on the
S-axis, for other edges the vector fields are transversal to them. On the S-axis, the system
reduces to dS

dt
= bN − bS , since f(0) = 0. We have S(t)→ N as t→ +∞. Thus, X0 is the

only !-limit point of the system (2.1)-(2.3) on the boundary ∂Δ.
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Proposition 2.6 When R0 > 1, X0 cannot be the !-limit point of any orbit starting in
the interior, Δ∘ , of Δ.

Proof We define a function

L = eI + ( + b)B ≥ 0 .

We consider a small neighborhood of X0 in Δ∘ such that B > 0 is sufficiently small and
S > 0 is sufficiently close to N . In this neighborhood the orbital derivative of L is

L′ = eI ′ + ( + b)B′ = eSf(B)−m( + b)B

= m( + b)
[ eSf(B)

m( + b)
−B

]
≥ m( + b)

[ e
m

S

 + b
f ′(0)B −B

]
= Bm( + b)

[ e
m
f ′(0)

N

 + b

S

N
− 1
]
> 0 ,

where we have used the facts R0 = e
m

N
+b

f ′(0) and f(B) = f(0) + f ′(0)B + f ′′(0)B2 + ⋅ ⋅ ⋅ ≥
f ′(0)B, and f(0) = 0, f ′ ≥ 0, f ′′ ≤ 0, B is positive but small. Therefore, X0 = (N, 0, 0)
cannot be the !-limit point of any orbit starting in Δ∘ .

The following theorem is immediately obtained based on Propositions 2.5 and 2.6.

Theorem 2.7 The system (2.1)-(2.3) is uniformly persistent.

The variational matrix of the system (2.1)-(2.3) is given by

J =

⎛⎝ −f(B)− b 0 −Sf ′(B)
f(B) −( + b) Sf ′(B)

0 e −m

⎞⎠ .

If we set H = diag{1,−1, 1}, then HJH has nonpositive off-diagonal entries. Hence, it is a
three-dimensional competitive system which possesses the Poincaré-Bendixson property [44].
We have the following theorem.

Theorem 2.8 Any compact !−limit set of the system (2.1)-(2.3) in the interior of Δ is
either a closed orbit or the endemic equilibrium X∗.

Proof Suppose  is an !−limit set of the system (2.1)-(2.3) in the interior of Δ. If  does
not contain X∗ , then it contains no equilibria since X∗ is the only interior equilibrium point.
Theorem 2.2 implies that  is a closed orbit. If, instead,  contains X∗ , then any orbit that
gets arbitrarily close to X∗ will converge to X∗ since X∗ is locally asymptotically stable.
Thus  = X∗ .

A closed orbit corresponds to a periodic solution. If it exists for the system (2.1)-(2.3),
it will be stable. Specifically, we have the following result.

Theorem 2.9 The trajectory of any nonconstant periodic solution of the system (2.1)-
(2.3), if it exists, is asymptotically orbitally stable with asymptotic phase.
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Proof The second compound matrix of the system (2.1)-(2.3) is given by

J [2] =

⎛⎝ −2b−  − f(B) Sf ′(B) Sf ′(B)
e −b−m− f(B) 0
0 f(B) −b−m− 

⎞⎠ .

Then the second compound system defined along the periodic solution (S(t), I(t), B(t)) of
the system (2.1)-(2.3) is given by

X ′(t) = −(2b+  + f(B))X + Sf ′(B)(Y + Z) (2.11)

Y ′(t) = eX − (b+m+ f(B))Y (2.12)

Z ′(t) = f(B)Y − (b+m+ )Z (2.13)

Based on Theorem 2.3, if we can prove the system (2.11)-(2.13) is asymptotically stable,
then the periodic solution is asymptotically orbitally stable with asymptotic phase.

We define a Lyapunov function

V (X, Y, Z, S, I, B) = sup
{
∣X∣, I

B
(∣Y ∣+ ∣Z∣)

}
.

Since the system (2.1)-(2.3) is persistent, any periodic solution (S(t), I(t), B(t)) is at a
positive distance from the boundary ∂Δ. So I

B
is well-defined, and there is a constant c > 0

such that I
B
> c . Hence, for some positive constant c0, we have

V (X, Y, Z, S, I, B) ≥ c0 sup{∣X∣, ∣Y ∣, ∣Z∣},

for any (X, Y, Z) ∈ ℝ3 and any periodic solution (S(t), I(t), B(t)) of the system (2.1)-(2.3).
Let us estimate the right-derivative of V along a solution (X(t), Y (t), Z(t)) of the system

(2.11)-(2.13) and (S(t), I(t), B(t)) of the system (2.1)-(2.3).

D+∣X(t)∣ ≤ −(2b+  + f(B))∣X∣+ Sf ′(B)B

I

I

B
(∣Y ∣+ ∣Z∣) ,

D+∣Y (t)∣ ≤ e∣X∣ − (b+m+ f(B))∣Y ∣ ,
D+∣Z(t)∣ ≤ f(B)∣Y ∣ − (b+m+ )∣Z∣,

and

D+
I

B
(∣Y ∣+ ∣Z∣)

= (
I ′

I
− B′

B
)
I

B
(∣Y ∣+ ∣Z∣) +

I

B
D+(∣Y ∣+ ∣Z∣)

≤ (
I ′

I
− B′

B
)
I

B
(∣Y ∣+ ∣Z∣) +

I

B
(e∣X∣ − (b+m)(∣Y ∣+ ∣Z∣))

= e
I

B
∣X∣+ (

I ′

I
− B′

B
− (b+m))

I

B
(∣Y ∣+ ∣Z∣) .

We then need to estimate the following two functions

g1(t) = −2b−  − f(B) +
Sf ′(B)B

I
,

g2(t) = e
I

B
+
I ′

I
− B′

B
− (b+m) .
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From the system (2.1)-(2.3), we have B′

B
= e I

B
−m . Then

g2(t) =
I ′

I
− b.

Similarly, I′

I
= Sf(B)

I
− ( + b). Then S

I
= ( I

′

I
+ ( + b)) 1

f(B)
. Since f(0) = 0, f ′′ ≤ 0 (which

implies f ′ is decreasing), we obtain f(B)
B

= f(B)−f(0)
B−0 = f ′(�) > f ′(B), where 0 < � < B .

Thus f(B) > f ′(B)B , and

g1(t) = −2b−  − f(B) + f ′(B)B(
I ′

I
+ ( + b))

1

f(B)

= −2b−  − f(B) +
f ′(B)B

f(B)
(
I ′

I
+ ( + b))

≤ −2b−  − f(B) +
I ′

I
+ ( + b)

= −b− f(B) +
I ′

I
≤ I ′

I
− b .

Therefore,
D+V (t) ≤ max{g1(t), g2(t)}V (t), (2.14)

and

max{g1(t), g2(t)} ≤
I ′

I
− b. (2.15)

Denote the period of the periodic solution (S(t), I(t), B(t)) by � . We have∫ �

0

max{g1(t), g2(t)} dt ≤
∫ �

0

(I ′
I
− b
)
dt = ln I(t)

∣∣�
0
− b� = −b� < 0 . (2.16)

Thus, the system (2.11)-(2.13) is asymptotically stable. Then, the periodic solution (S(t), I(t), B(t))
is asymptotically orbitally stable with asymptotic phase.

Summing up these results together, we have

Theorem 2.10 The endemic equilibrium X∗ of the system (2.1)-(2.3) is globally asymp-
totically stable in Δ .

The proof follows Theorem 2.4 by combining Theorems 2.1, 2.7 and 2.9.

A typical example with nonlinear environment-dependent-only incidence is Codeço’s
model [6]:

dS

dt
= n(H − S)− a B

K +B
S , (2.17)

dI

dt
= a

B

K +B
S − rI , (2.18)

dB

dt
= eI − (mb− nb)B , (2.19)
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where, in their original notations [6], H stands for the total human population, n denotes the
natural human birth/death rate, r corresponds to  + b in equation (2.2), and mb− nb > 0
represents the net death rate of vibrios. The nonlinear incidence is f(B) = a B

K+B
with a

being the contact rate with contaminated water and K the half saturation rate (i.e., ID50 ,
the infectious dose in water sufficient to produce disease in 50% of those exposed). The local
stability of the endemic equilibrium for this model was originally analyzed in [6], and can
also be obtained from Theorem 1.1 as a special case, whereas the global endemic stability is
established by Theorem 2.10.

3 Incidence depending linearly on human and nonlinearly on en-
vironment

Next, we consider models with incidence depending linearly on I and nonlinearly on B . A
representative example in this category is the model of Mukandavire et al. [32] which takes
the form

dS

dt
= �N − �1

SB

K +B
− �2SI − �S, (3.1)

dI

dt
= �1

SB

K +B
+ �2SI − ( + �)I, (3.2)

dB

dt
= �I − �B. (3.3)

Here we have kept the original notations in [32], with � denoting the natural human birth/death
rate, � representing the rate of contribution to V. cholerae, and � representing the net death
rate of vibrios. The parameters �1 and �2 are rates of ingesting vibrios from contaminated
water and through human-to-human interaction, respectively. The parameter K is the same
as that defined in Codeço’s model (2.17)-(2.19). Note that, similar to the model (2.1)-(2.3),
the environmental function ℎ(I, B) = �I − �B is linear. We have also dropped the equation
for R from the above system:

dR

dt
= I − �R . (3.4)

Using the same argument as before, it is clear to see the region

Δ =
{

(S, I, B)
∣∣S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ N, 0 ≤ B ≤ �

�
N
}

(3.5)

is a positive invariant domain of the system (3.1)-(3.3).
The result below follows Theorem 1.1 and is similar to Thorem 2.1.

Theorem 3.1 The basic reproduction number of the model (3.1)-(3.3) is

R0 =
N

 + �

(
�1

�

K�
+ �2

)
. (3.6)

If R0 < 1 , there is only one nonnegative equilibrium point X0 = (N, 0, 0), which is the
disease free equilibrium, and it is globally asymptotically stable. If R0 > 1 , there are two
nonnegative equilibria, X0 and the endemic equilibrium X∗ = (S∗, I∗, B∗), where X0 is
unstable and X∗ is locally asymptotically stable.
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Similar to the model (2.1)-(2.3), the system (3.1)-(3.3) is uniformly persistent which can
be derived from the following two propositions.

Proposition 3.2 The disease-free equilibrium point X0 is the only !-limit point of the
system (3.1)-(3.3) on the boundary ∂Δ of Δ .

We skip the proof since it is very similar to that of Proposition 2.5.

Proposition 3.3 When R0 > 1 , X0 cannot be the !-limit point of any orbit starting in
the interior Δ∘ of Δ .

Proof Take the initial value (S0, I0, B0) close to X0 = (N, 0, 0). If B′ > 0 , then B > 0
and is increasing, thus moving away from X0 . If, instead, B′ ≤ 0 , then B ≥ �

�
I . Assuming

B is small, we have

dI

dt
= �1

SB

K

1

1 +B/K
+ �2SI − ( + �)I

.
=

�1
K
SB + �2SI − ( + �)I

≥ �1
K

�

�
SI + �2SI − ( + �)I = ( + �)

[ N

 + �
(
�1�

K�
+ �2)

S

N
− 1
]
I

= ( + �)
[
R0

S

N
− 1
]
I > 0 ,

as long as S is close to N . Therefore, the trajectory always moves away from X0 .
Combining these two propositions and Theorem 3.1, we obtain

Corollary 3.4 The system (3.1)-(3.3) is uniformly persistent, and satisfies the assump-
tions (H1) and (H2).

It can be easily verified, however, that the model (3.1)-(3.3) is not monotone or com-
petitive due to the incidence depending on both B and I . Thus the analysis conducted
in the previous section cannot be extended to this case. Instead, we employ the geometric
approach [9, 25,27] to analyze the global stability of this model.

To that end, we first recall a Bendixson criterion in ℝn developed in [23, 27]. Consider
the system (2.7). A Bendixson criterion is a condition satisfied by F which precludes the
existence of nonconstant periodic solutions. For any solution x(t, x0) in D , define the second
compound equation

dz

dt
=
∂F [2]

∂x

(
x(t, x0)

)
z(t) . (3.7)

If D is simply connected, the uniformly asymptotical stability of solutions of (3.7) and
uniformly exponential decay of solutions with respect to initial values in each compact subset
of D preclude the existence of any invariant simple closed rectifiable curve of the system (2.7)
in D. A very useful criterion is given in [27] to characterize this stability, which is a Bendixson
criterion for high dimensional systems. The detail is provided below.

Let x 7→ P (x) be a
(
n
2

)
×
(
n
2

)
matrix-valued C1 function in D. Assume P−1 exists and is

continuous in a compact subset K of D. Set

Q = PFP
−1 + P

∂F [2]

∂x
P−1 , (3.8)
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where PF is the derivative of P (entry-wise) along the direction of F . Let m(Q) be the
Lozinskǐi measure of Q with respect to a matrix norm [7], i.e.,

m(Q) = lim
ℎ→0+

∣I + ℎQ∣ − 1

ℎ
. (3.9)

Define a quantity q̄2 as

q̄2 = lim sup
t→∞

sup
x0∈K

1

t

∫ t

0

m
(
Q(x(s, x0))

)
ds . (3.10)

Then the Bendixson criterion is given by

q̄2 < 0 . (3.11)

Recall that a local �−perturbation of F in a neighborhood U of x1 ∈ D is a function
g ∈ C1(D → ℝn) such that the support, Supp (F − g) ⊂ U , and ∣F − g∣C1 < � , where

∣F − g∣C1 = sup
{
∣F (x)− g(x)∣+

∣∣∂F
∂x

(x)− ∂g

∂x
(x)
∣∣ : x ∈ D

}
. (3.12)

A Bendixson criterion is said to be robust under C1 local perturbations of F if for each local
�−perturbation g of F at x1 ∈ D, g also satisfies the Bendixson criterion. A point x0 ∈ D is
wandering for (2.7) if there exists a neighborhood U of x0 and T > 0 such that U ∩ x(t, U)
is empty for all t > T . For example, all equilibria and limit points are non-wandering.

Now we state the closing lemma of Pugh [37–39].

Lemma 3.5 Let F ∈ C1(D → ℝn). Suppose that x0 is a non-wandering point of (2.7)
and that F (x0) ∕= 0 . Also assume that the positive semi-orbit of x0 has compact closure.
Then, for each neighborhood U of x0 and � > 0 , there exists a C1 local �−perturbation g of
F at x0 such that

(1) Supp(F − g) ⊂ U ; and

(2) the perturbed system dx
dt

= g(x) has a nonconstant periodic solution whose trajectory
passes through x0.

Using the closing lemma, the following two theorems were established in [25].

Theorem 3.6 Suppose that assumptions (H1) and (H2) hold, and assume that (2.7)
satisfies a Bendixson criterion which is robust under C1 local perturbations of F at all non-
equilibrium non-wandering points for (2.7). Then the unique equilibrium x̄ is globally stable
in D provided it is locally asymptotically stable.

Theorem 3.7 Assume that D is simply connected and the assumptions (H1) and (H2)
hold. Then the unique equilibrium x̄ of (2.7) is globally stable in D if q̄2 < 0 .
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We now apply these theorems to our model (3.1)-(3.3). Based on Corollary 3.4, we only
need to check the Bendixson criterion q̄2 < 0 .

The Jacobian matrix of the system (3.1)-(3.3) is

J =

⎛⎜⎝ −
�1B
K+B

− �2I − � −�2S − �1KS
(K+B)2

�1B
K+B

+ �2I �2S − ( + �) �1KS
(K+B)2

0 � −�

⎞⎟⎠ .

The second compound matrix of the system (3.1)-(3.3) is

J [2] =

⎛⎜⎝ −
�1B
K+B

− �2I + �2S −  − 2� �1KS
(K+B)2

�1KS
(K+B)2

� − �1B
K+B

− �2I − �− � −�2S
0 �1B

K+B
+ �2I �2S −  − �− �

⎞⎟⎠ .

We set the matrix function P by

P (S, I, B) = diag
{

1,
I

B
,
I

B

}
.

Then

PFP
−1 = diag

{
0,
I ′

I
− B′

B
,
I ′

I
− B′

B

}
,

and

PJ [2]P−1 =

⎛⎜⎝ −
�1B
K+B

− �2I + �2S −  − 2� �1KS
(K+B)2

B
I

�1KS
(K+B)2

B
I

� I
B

− �1B
K+B

− �2I − �− � −�2S
0 �1B

K+B
+ �2I �2S −  − �− �

⎞⎟⎠ .

The matrix PFP
−1 + PJ [2]P−1 defined in (3.8) can then be written in a block form:

Q =

[
Q11 Q12

Q21 Q22

]
,

with

Q11 = − �1B

K +B
− �2I + �2S −  − 2� , Q12 =

[
�1KS

(K +B)2
B

I
,

�1KS

(K +B)2
B

I

]
,

Q21 =

[
� I
B

0

]
, Q22 =

[
− �1B
K+B

− �2I − �− � + I′

I
− B′

B
−�2S

�1B
K+B

+ �2I �2S −  − �− � + I′

I
− B′

B

]
.

Now we define a norm in ℝ3 as

∣(u, v, w)∣ = max { ∣u∣, ∣v∣+ ∣w∣ }

for any vector (u, v, w) ∈ ℝ3 . Let m denote the Lozinskǐi measure with respect to this
norm. We can then obtain

m(Q) ≤ sup {g1, g2} , (3.13)
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with

g1 = m1(Q11) + ∣Q12∣ ,
g2 = ∣Q21∣+m1(Q22) ,

where ∣Q12∣ and ∣Q21∣ are matrix norms induced by the L1 vector norm, and m1 denotes the
Lozinskǐi measure with respect to the L1 norm. Specifically,

m1(Q22) =
I ′

I
− B′

B
− �− � + sup{ 2�2S − , 0} ,

and

g2 =
I ′

I
− B′

B
− �− � + sup{2�2S − , 0}+ �

I

B

=
I ′

I
− �+ sup{2�2S − , 0}

≤ I ′

I
− � ,

provided that

N ≤ 

2�2
.

Meanwhile,

g1 = − �1B

K +B
− �2I + �2S −  − 2�+

�1KS

(K +B)2
B

I

= − �1B

K +B
− �2I + �2S −  − 2�+

K

K +B

( I ′
I
− �2S +  + �

)
≤ − �1B

K +B
− �2I + �2S −  − 2�+

I ′

I
− �2S +  + �

=
I ′

I
− �− �1B

K +B
− �2I

≤ I ′

I
− �.

Therefore,

m(Q) ≤ I ′

I
− � . (3.14)

Since 0 ≤ I(t) ≤ N , there exists T > 0 such that when t > T , lnI(t)−lnI(0)
t

< �
2

. As a result,

1

t

∫ t

0

m(Q) dt ≤ 1

t

∫ t

0

(I ′
I
− �

)
dt =

lnI(t)− lnI(0)

t
− � < −�

2
, (3.15)

which imples q̄2 ≤ −�
2
< 0 . Hence, we have established the following theorem:

Theorem 3.8 The endemic equilibrium X∗ of the system (3.1)-(3.3) is globally asymp-
totically stable in Δ .
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4 Bilinear incidence and nonlinear environmental function

Now we consider models of the following type:

dS

dt
= bN − Sf(I, B)− bS , (4.1)

dI

dt
= Sf(I, B)− ( + b)I , (4.2)

dB

dt
= g(I)− � B , (4.3)

where, again, we have dropped the equation for R , i.e., (1.3). Now the function f is bilinear
in I and B ,

f(I, B) = �1B + �2I , (4.4)

with �1 ≥ 0 , �2 ≥ 0 . This represents the classical mass action incidence. The function
g(I) , assumed nonlinear, describes the growth rate of the pathogen in the environment due
to the contribution from the infected people (such as shedding V. cholerae). We further
assume g(I) satisfies the following two conditions for I ≥ 0 :

(A1) g(0) = 0 ; g(I) > 0 if I > 0 .

(A2) g′(I) > 0 ; g′′(I) < 0 .

The assumption (A1) is natural; it also ensures the existence of a unique disease-free
equilibrium X0 = (N, 0, 0) . The assumption (A2) regulates g(I) as biologically realistic
based on a consequence of saturation effects: increased infection leads to higher pathogen
growth; however, when the number of the infective is high, the growth of the pathogen
concentration will respond more slowly than linearly to the increase in I .

Based on the assumption (A2), we can easily obtain the following results:

Lemma 4.1 The function
g(I)

I
is strictly decreasing on (0, ∞).

Proof For any I > 0 , we have

g(I)

I
=
g(I)− g(0)

I − 0
= g′(�)

for some � between 0 and I due to the mean value theorem. Since g′′ < 0 on (0, ∞) , we
obtain g′(I) < g′(�) . Thus g′(I) < g(I)/I , or Ig′(I)− g(I) < 0 . Hence,(g(I)

I

)′
=
Ig′(I)− g(I)

I2
< 0 ,

which establishes this lemma.

Lemma 4.2 Let I∗ be a point in (0, ∞). Then

g(I)− g(I∗)

I − I∗
<
g(I∗)

I∗
(4.5)

for all I > 0 and I ∕= I∗ .
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Proof When I < I∗, we have g(I)
I
> g(I∗)

I∗
due to Lemma 4.1. Thus I∗g(I) > Ig(I∗) , or

I∗g(I)− I∗g(I∗) > Ig(I∗)− I∗g(I∗)

Using the fact I − I∗ < 0 , we obtain (4.5). Similarly, when I > I∗, we obtain

I∗g(I)− I∗g(I∗) < Ig(I∗)− I∗g(I∗)

which yields (4.5) as well.
Below we summarize the dynamics already known for the system (4.1)-(4.3), which follows

Theorem 1.1.

Theorem 4.3 The basic reproduction number of the model (4.1)-(4.3) is

R0 =
N

 + b

[
�2 +

�1
�
g′(0)

]
. (4.6)

When R0 < 1 , there is a unique DFE, X0 = (N, 0, 0) , which is globally asymptotically
stable; when R0 > 1 , the DFE becomes unstable, and there is a unique positive endemic
equilibrium, X∗ =

(
S∗, I∗, B∗

)
, which is locally asymptotically stable.

At the endemic equilibrium, we have

bN − S∗f(I∗, B∗)− bS∗ = 0 , (4.7)

S∗f(I∗, B∗)− ( + b)I∗ = 0 , (4.8)

g(I∗)− �B∗ = 0 . (4.9)

Our goal here is to show that the endemic equilibrium is globally asymptotically stable. With
the incidence f depending on both I and B , such models are not monotone or competitive
dynamical systems. Meanwhile, since the environmental function g(I) can be arbitrary,
the geometric approach may not be easily applied. It is, however, interesting to note that
the classical method of Lyapunov functions combined with the Volterra-Lyapunov matrix
properties [40, 41] can lead to the proof of the endemic global stability. The details are
provided below.

We will study the system (4.1)-(4.3) in the biologically feasible domain

Δ = {(S, I, B)
∣∣S ≥ 0, I ≥ 0, S + I ≤ N, B ≥ 0} (4.10)

which is clearly a positively invariant set in ℝ3 .
We construct a Lyapunov function in the form of

V (S, I, B) = w1(S − S∗)2 + w2(I − I∗)2 + w3(B −B∗)2 , (4.11)

where w1 , w2 and w3 are positive constants, the specific values of which are usually difficult
to determine and are not of our interest here. We have

dV

dt
= ∇V ⋅ dX

dt
= 2w1(S − S∗) [bN − Sf(I, B)− bS]

+ 2w2(I − I∗) [Sf(I, B)− ( + b)I] + 2w3(B −B∗) [g(I)− �B] . (4.12)
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Obviously, when X = X∗ , dV
dt

= 0 ; when X is on the S-axis (i.e., I = B = 0), the sign
of dV

dt
is indefinite. We aim to show that when X ∕= X∗ and (I, B) ∕= (0, 0), dV

dt
< 0 holds

everywhere.
Substituting equations (4.7)-(4.9) into equation (4.12), we obtain

dV

dt
= 2w1(S − S∗)

{
− b(S − S∗)− f(I, B)(S − S∗)− S∗

[
f(I, B)− f(I∗, B∗)

]}
+ 2w2(I − I∗) [Sf(I, B)− S∗f(I∗, B∗)− ( + b)(I − I∗)] + 2w3(B −B∗) [g(I)− �B]

= −2w1

[
b+ f(I, B)

]
(S − S∗)2 − 2w1S

∗(S − S∗)
[
f(I, B)− f(I∗, B∗)

]
− 2w2( + b)(I − I∗)2 + 2w2f(I, B)(I − I∗)(S − S∗)
+ 2w2S

∗(I − I∗)
[
f(I, B)− f(I∗, B∗)

]
+ 2w3(B −B∗)

[
g(I)− �B −

(
g(I∗)− �B∗

)]
. (4.13)

Now expanding f(I, B) and using the bilinear assumption (4.4), we obtain

f(I, B) = f(I∗, B∗) + �2(I − I∗) + �1(B −B∗) . (4.14)

Meanwhile, applying the mean value theorem to g(I) , we obtain

g(I)− g(I∗) = g′(I)(I − I∗) (4.15)

for some I between I and I∗ . Substitution of equations (4.14) and (4.15) into equation
(4.13) yields

dV

dt
= (X −X∗)

(
WA+ ATW T

)
(X −X∗)T , (4.16)

where the matrices W and A are given by

W =

⎡⎣ w1 0 0
0 w2 0
0 0 w3

⎤⎦ , A =

⎡⎢⎢⎢⎣
−
[
b+ f(I,B)

]
−�2S∗ −�1S∗

f(I,B) −
[
 + b− �2S∗

]
�1S

∗

0 g′(I) −�

⎤⎥⎥⎥⎦ .

Assume X ∕= X∗ and X is not on the S axis. Below we show that there exist w1 > 0 ,
w2 > 0 and w3 > 0 such that the matrix WA+ ATW T is negative definite.

Notation 4.4 For convenience, we write a matrix B > 0 (< 0) if B is positive (negative)
definite.

Definition 4.5 We say a nonsingular n×n matrix B is Volterra-Lyapunov stable if there
exists a positive diagonal n× n matrix M such that MB +BTMT < 0 .

Notation 4.6 For any n × n matrix B , we let B̃ denote the (n − 1) × (n − 1) matrix
obtained from B by deleting its last row and last column. This notation will be frequently
used in what follows.
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Lemma 4.7 [8, 42] Let D =

[
d11 d12
d21 d22

]
be a 2 × 2 matrix. Then D is a Volterra-

Lyapunov stable matrix if and only if d11 < 0 , d22 < 0 , and det(D) = d11d22 − d12d21 > 0 .

Lemma 4.8 [40, 41] Let D = [dij] be a nonsingular n × n matrix (n ≥ 2) and M =
diag(m1 , ⋅ ⋅ ⋅ , mn) be a positive diagonal n × n matrix. Let E = D−1 . Then, if dnn > 0 ,

M̃D̃ +
(
M̃D̃

)T
> 0 , and M̃Ẽ +

(
M̃Ẽ

)T
> 0 , it is possible to choose mn > 0 such that

MD +DTMT > 0 .

Lemma 4.9 For the matrix A defined in equation (4.16), Ã is Volterra-Lyapunov stable.

Proof

Ã =

[
a11 a12
a21 a22

]
=

⎡⎣ −[b+ f(I, B)
]

−�2S∗

f(I, B) −
[
 + b− �2S∗

]
⎤⎦ .

Clearly a11 < 0 . Next we show a22 < 0 , i.e.,

 + b− �2S∗ > 0 . (4.17)

Setting I = 0 , B = B∗ in equation (4.14), we obtain

0 < f(0, B∗) = f(I∗, B∗)− �2I∗ .

Thus f(I∗, B∗) > �2I
∗ . Meanwhile, at the endemic equilibrium we have S∗f(I∗, B∗) =

( + b)I∗ . Hence,

 + b =
S∗f(I∗, B∗)

I∗
> �2S

∗ .

Finally, it is clear to see det(Ã) = a11a22 − a12a21 > 0 since a12 < 0 , a21 > 0 . Therefore,

Ã is Volterra-Lyapunov stable based on Lemma 4.7.

Lemma 4.10 When (I, B) ∕= (0, 0), the determinant of −A is positive, where the matrix
A is defined in equation (4.16).

Proof Expanding the matrix −A by the first column, we obtain

det(−A) = [b+ f(I, B)]
[
�(b+ )− ��2S∗ − �1g′(I)S∗

]
+ f(I, B)

[
��2S

∗ + �1g
′(I)S∗

]
.

The second part of det(−A) is clearly positive. Next we show

�(b+ )− ��2S∗ − �1g′(I)S∗ > 0 . (4.18)

Based on Lemma 4.2 and equation (4.15), we have, for all I > 0 and I ∕= I∗,

g′(I) =
g(I)− g(I∗)

I − I∗
<
g(I∗)

I∗
=
�B∗

I∗
. (4.19)
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Thus I∗g′(I)− �B∗ < 0 , which yields

B1 ≜ B∗ − g′(I)

�
I∗ > 0 . (4.20)

Now, substitute the point (I, B) =
(
0, B1

)
into equation (4.14) to obtain

0 < f(0, B1) = f(I∗, B∗)− �2I∗ + �1
g′(I)

�
I∗ . (4.21)

Combining the results in (4.21) and (4.8), we obtain (4.18). Hence, det(−A) > 0 .
Using the transpose of the matrix of cofactors, we write the inverse of −A by

(−A)−1 =
1

det(−A)

⎡⎣ c11 (+) c21 (−) c31 (−)
c12 (+) c22 (+) c32 (+)
c13 (+) c23 (+) c33 (+)

⎤⎦ , (4.22)

where cij denotes the cofactor of the (i, j) entry of the matrix −A , and the + or − in
the parenthesis indicates the sign of cij . Note that det(−A) > 0 based on Lemma 4.10.
Specifically, we have

c11 = �(b+ )− ��2S∗ − �1g′(I)S∗ > 0 ,

c21 = −
(
��2S

∗ + g′(I)�1S
∗
)
< 0 ,

c31 = −�1�2(S∗)2 − �1S∗
[
 + b− �2S∗

]
< 0 ,

c12 = �f(I, B) > 0 ,

c22 = �
(
b+ f(I, B)

)
> 0 ,

c32 = b�1S
∗ > 0 ,

c13 = f(I, B)g′(I) > 0 ,

c23 = g′(I)
(
b+ f(I, B)

)
> 0 ,

c33 =
(
b+ f(I, B)

)[
 + b− �2S∗

]
+ S∗�2f(I, B) > 0 ,

where we have applied (4.18) to obtain c11 > 0 , and (4.17) to show c31 < 0 and c33 > 0 .

Lemma 4.11 Let D = −A and E = (−A)−1 , where A is defined in equation (4.16). Then

there exists a positive 2× 2 diagonal matrix W̃ =

[
w1 0
0 w2

]
such that W̃ D̃+

(
W̃ D̃

)T
> 0

and W̃ Ẽ +
(
W̃ Ẽ

)T
> 0 .

Proof Note that A−1 = −E . Using equation (4.22), we obtain

Ã−1 =
1

det(−A)

[
−c11 −c21
−c12 −c22

]
.

Based on Lemma 4.7, it is straightforward to verify that Ã−1 is Volterra-Lyapunov stable.

Hence, there exists a positive 2× 2 diagonal matrix W̃ such that W̃ Ã−1 +
(
W̃ Ã−1

)T
< 0 .

Since E = (−A)−1 , we obtain W̃ Ẽ +
(
W̃ Ẽ

)T
> 0 , i.e.,

1

det(−A)

[
2w1c11 w1c21 + w2c12

w1c21 + w2c12 2w2c22

]
> 0 .
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Hence, the determinant of the above matrix must be positive, i.e.,

4w1w2c11c22 − (w1c21 + w2c12)
2 > 0 .

Substituting the expressions for cij (i, j = 1, 2) and manipulating the algebra, we obtain

0 < 4w1w2c11c22 − (w1c21 + w2c12)
2 = J − 2w1w2

(
2b+ f(I, B)

)
g′(I)�1S

∗

−(w1S
∗)2�1g

′(I)
[
2�2 + �1g

′(I)
]
,

where
J = 4w1w2

(
b+ f(I, B)

)[
 + b− �2S∗

]
−
[
w2f(I, B)− w1�2S

∗]2 .
Clearly we must have J > 0 . Now,

W̃ D̃ +
(
W̃ D̃

)T
=

[
2w1

[
b+ f(I, B)

]
w1�2S

∗ − w2f(I, B)
w1�2S

∗ − w2f(I, B) 2w2

[
 + b− �2S∗

] ] .
Note that the (1, 1) and (2, 2) entries of this 2×2 matrix are positive, and that its determinant

is exactly J . Hence, it is clear to see W̃ D̃ +
(
W̃ D̃

)T
> 0 . The proof is then complete.

Theorem 4.12 The matrix A defined in equation (4.16) is Volterra-Lyapunov stable.

Proof Based on Lemmas 4.8 and 4.11, there exists a positive 3 × 3 diagonal matrix W
such that W (−A) + (−A)TW T > 0 . Thus WA+ ATW T < 0 .

Therefore, we obtain
dV

dt
< 0 when X ∕= X∗ and X is not on the S-axis (a set of measure

zero). Thus we have established the following theorem:

Theorem 4.13 The endemic equilibrium of the model system (4.1)-(4.3) is globally asymp-
totically stable.

5 Conclusions and Discussion

With the environmental component incorporated and multiple transmission pathways cou-
pled, the cholera models distinguish themselves from regular SIR and SEIR epidemiological
models which have been extensively studied and whose global dynamics has been relatively
well established (see [5,15,16,21,22,24,26,28,30,43,49], among others). Using the methods
of monotone dynamical systems, geometric approach, and Lyapunov functions, we have in-
vestigated in this paper the global asymptotic stability of the endemic equilibria for several
deterministic cholera models and obtained new global stability results. These models rep-
resent biologically important, and mathematically nontrivial, cases in the study of cholera
dynamics. The analysis and results presented in this paper build a solid base for future work
on the global dynamics of the most general cholera model.

The three techniques we employed in this paper all have strength and weakness. The
method of monotone dynamical systems [10,24,44], when applicable, is easier to implement
than the geometric approach, since it essentially treats a three-dimensional autonomous
system as a two-dimensional one. Unfortunately, most high-dimensional infectious disease
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models do not possess the nice properties of monotone systems, which limits the application
of this approach. The geometric approach, originally proposed by Li and Muldowney [9,25,
27], has gained some popularity in recent years (see, e.g., [2,20]) as it has less constraints on
the model systems. Among the three, this method seems to have the best potential to deal
with more general model systems. The disadvantage, however, is that the implementation
of the geometric approach is not straightforward and involves extra nontrivial technical
details, particularly the estimate of the Lozinskǐi measure. In addition, the method of
Lyapunov functions has been known for many decades. The challenge in the application of
this method is that there is no systematic way to construct Lyapunov functions (particularly,
the determination of the appropriate coefficients is often a matter of luck), so that its success
largely depends on trial and error as well as on specific problems. In this paper, by combining
this classical approach with the Volterra-Lyapunov matrix analysis [40–42], we have leveraged
the difficulty of determining specific coefficient values and, as such, wider application of
Lyapunov functions to dynamical systems could be promoted. As can been seen from our
analysis in Section 4, the extension of this approach to four- or higher-dimensional systems
is possible but becomes much harder, since the proof of Volterra-Lyapunov stable matrices
involves considerably more work in higher dimensions.

The work presented in this paper is not limited to cholera models. Indeed, several
known infectious diseases [29], such as typhoid fever, amebiasis, and dracunculiasis, involve
environmental components and can be possibly modeled in a similar manner as those for
cholera. Our analysis and results can thus contribute to a wider range of problems in bio-
math studies.
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