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Abstract. We investigate a nonlocal reaction-diffusion-advection equation which models
the growth of a single phytoplankton species in a water column where the species depends
solely on light for its metabolism. We study the combined effect of death rate, sinking
or buoyant coefficient, water column depth and vertical turbulent diffusion rate on the
persistence of a single phytoplankton species. Under a general reproductive rate which is
an increasing function of light intensity, we establish the existence of a critical death rate;
i.e., the phytoplankton survives if and only if its death rate is less than the critical death
rate. The critical death rate is a strictly monotone decreasing function of sinking or buoyant
coefficient and water column depth, and it is also a strictly monotone decreasing function
of turbulent diffusion rate for buoyant species. In contrast to critical death rate, critical
sinking or buoyant velocity, critical water column depth and critical turbulent diffusion rate
may or may not exist. For instance, it is shown that if the death rate is suitably small
with respect to the water column depth, the phytoplankton can persist for any sinking or
buoyant velocity; i.e., there is no critical sinking or buoyant velocity under such situation.
We further show that critical water column depth, critical sinking or buoyant velocity and
critical turbulent diffusion rate for buoyant species can exist for some intermediate range of
phytoplankton death rates and, whenever they exist, are always unique. In strong contrast,
we show that there may exist two critical turbulent diffusion rates for sinking species. The
phytoplankton forms a thin layer at the surface of the water column for sufficiently large
buoyant rate, and it forms a thin layer at the bottom of the water column for sufficiently
large sinking rate. Precise characterizations of these thin layers are also given.

1. Introduction

Phytoplankton are microscopic plant-like organisms that drift in the water column of lakes
and oceans. They grow abundantly in oceans and lakes around the world, and they are the
foundation of the marine food chain. Nutrient and light are the essential resources for the
growth of phytoplankton. In phytoplankton communities species compete for nutrient and
light in three possible ways. At one extreme, in oligotrophic ecosystems with an ample sup-
ply of light, species compete for limiting nutrients [15, 17]. At other extreme, in eutrophic
ecosystem with ample nutrient supply, species compete for light [8, 10]. In some aquatic
ecosystems the species compete for both nutrients and light which are complementary re-
sources for their growth [5, 6, 12, 14, 20]. In the water column the phytoplankton are not
only diffusing by the water turbulence but also sinking or buoyant. Most of phytoplankton
are heavier than water, they have tendency to sink. On the other hand, some species like
some cyanobacteria, green algae, have a lower density than water and they will float and will
be called buoyant [8]. In this article we shall restrict our attentions to study the growth of
a single species in a water column in eutrophic ecosystem where the species depends solely
on light for its metabolism. The model equation is a nonlocal reaction-diffusion-advection
equation proposed by Huisman et al. in [8, 9]. We study the combined effect of death rate,
vertical turbulent diffusion coefficient, advection (sinking or buoyant) coefficient and water
column depth on the survival of the single species (bloom development). Our approach is
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different from that in [8]. Under a general reproductive rate which is an increasing function
of light intensity, we completely determine the necessary and sufficient conditions for the
survival of the phytoplankton species in terms of turbulent diffusion coefficient, advection
coefficient, water column depth and death rate of the phytoplankton species.

The rest of the paper is organized as follows: In Section 2, we present the mathematical
model proposed in [8, 9] and discuss some previous related works. In Section 3, we state
our main results which exclusively focus on the steady states of the model. In Section 4
we establish the existence and uniqueness of positive steady states in terms of the death
rate of the phytoplankton species. Sections 5, 6, and 7 are devoted to studying qualitative
properties of critical death rate and to determining critical water column depth, critical
sinking or buoyant coefficient and critical turbulent diffusion rate, respectively. In Section 8,
for large advection coefficients we show that the limiting profile of the steady state solution
is a δ-function. Section 9 is the discussion section, where we focus on qualitative properties
of critical water column depth, critical advection coefficient and critical turbulent diffusion
rate.

2. The mathematical model and previous works

In [8, 9], Huisman et al. proposed and analyzed the following reaction-diffusion-advection
equation which describes the population dynamics of a single phytoplankton species in a
water column:

(2.1) Pt = DPxx − vPx + P [g(I(x, t))− d] , 0 < x < L, t > 0,

with zero flux boundary conditions at x = 0 and x = L

(2.2)
DPx(0, t)− vP (0, t) = 0,

DPx(L, t)− vP (L, t) = 0,

and with the initial condition

(2.3) P (x, 0) = P0(x), 0 ≤ x ≤ L,

where P = P (x, t) is the population density of the phytoplankton species; D > 0 is the
vertical turbulent diffusion coefficient; v is the sinking velocity (v > 0) or the buoyant
velocity (v < 0); L > 0 is the depth of the water column; d > 0 is the death rate; by
Lambert-Beer law the light intensity I is given by

(2.4) I = I(x, t) = I0 exp(−k0x− k1

∫ x

0

P (s, t)ds),

where I0 is the incident light intensity; k0 is the background turbidity, k1 is the absorption
coefficient of phytoplankton. g(I) is the specific growth rate of phytoplankton as a function
of light intensity I(x, t). Here we assume all nutrients are in amply supply so that only the
light intensity limits the growth rate. We assume that g(I) satisfies

(2.5) g(0) = 0, g′(I) > 0 for I > 0, g(I) ≥ aIγ for I ∈ [0, I0],

where a > 0 and γ > 0. The simplest example is

(2.6) g(I) = aIγ, 0 < γ ≤ 1.

The typical examples for the reproduction rate saturating for high light intensities are func-
tion of Monod type

(2.7) g(I) =
mI

h + I
.
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Or alternatively by

(2.8) g(I) = m
1− e−cI

c
.

The self-shading model (i.e., k0 = 0) was studied by Shigesada and Okubo in [19]. The
existence, uniqueness and the global stability of the steady state for the infinite long water
column (L = ∞) have been established in [13, 19]. More recently, among other things it is
shown in [16] that the self-shading model has a unique positive steady state, which is also
stable, for any finite water column depth. In particular, this means that the self-shading
model has no critical water column depth beyond which the phytoplankton can not persist.
This is very different from the case of k0 > 0, where the critical depth exists for some
intermediate range of phytoplankton death rate. See the next and last sections for more
detailed discussions on the critical depth.

For the case k0 > 0, it is shown in [8] that the conditions for phytoplankton bloom
development can be characterized by critical water column depth and some critical values
of the vertical turbulent diffusion coefficient. In [8] the authors also investigated the phase
transition from bloom to no bloom extensively by numerical simulations. They also analyzed
in depth the phase transition curve for the case g(I) = aIγ, 0 < γ ≤ 1, by means of reducing
the equation to a Bessel equation. In [7] the authors study both single species and two
species competing for light in eutrophic ecosystem with no advections, and the dynamics of
single species growth is also completely analyzed in [7]. In this paper, we will use several
critical rates to give a complete classification of the phase transition from bloom to no bloom
for the general single phytoplankton species model (2.1)-(2.5).

3. Main results

Consider the equation

(3.1)

{
Pt = DPxx − vPx + P [g(I(x, t))− d] , 0 < x < L, t > 0,

DPx(0, t)− vP (0, t) = DPx(L, t)− vP (L, t) = 0,

where D > 0, v ∈ (−∞,∞), g(I) satisfies (2.5), with typical examples (2.6)-(2.8) and I(x, t)
takes the form (2.4).

Our first main result concerns the existence and uniqueness of positive steady states of
(3.1) in terms of the death rate d. Let λ1(a) denote the principal eigenvalue of

(3.2)

{ −Dϕxx + vϕx + a(x)ϕ = λϕ, 0 < x < L,

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L).

It is well known that λ1(a) is real and can be characterized as

(3.3) λ1(a) = inf
ψ∈H1(0,L)

∫ L

0
e(v/D)x(Dψ2

x + aψ2)dx∫ L

0
e(v/D)xψ2dx

,

where H1(0, L) is the closure of C1[0, L] under the norm

‖u‖ =

(∫ L

0

u2 dx

)1/2

+

(∫ L

0

u2
x dx

)1/2

.

For every v ∈ (−∞, +∞), L > 0 and D > 0, set

d∗(v, L, D) := −λ1(−g(I0e
−k0x)).

It is easy to show that d∗(v, L, D) is positive. Our following result shows that d∗ is the
critical death rate; i.e., the phytoplankton survives if and only if its death rate is less than
d∗.
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Theorem 1. If 0 < d < d∗(v, L,D), then (3.1) has a unique positive steady state; If d ≥
d∗(v, L, D), then zero is the only non-negative steady state of (3.1).

A natural question is whether there also exist critical water column depth, critical sink-
ing/buoyant velocity and critical turbulent diffusion rate. To address these issues, we need
to understand the dependence of d∗ on the parameters D, v, L. The following result shows
that d∗ is monotone deceasing in v.

Theorem 2. For any D > 0 and L > 0, d∗(v, L, D) is strictly monotone decreasing for
v ∈ (−∞,∞). Moreover,

lim
v→−∞

d∗(v, L, D) = g(I0), lim
v→∞

d∗(v, L,D) = g(I0e
−k0L).

We apply Theorem 2 to study the existence of critical sinking/buoyant velocity. By The-
orem 2, for every d ∈ (g(I0e

−k0L), g(I0)), there exists a unique v∗ := v∗(d, L, D) such that
d = d∗(v∗, L, D). Moreover,

v∗ =





> 0, if g(I0e
−k0L) < d < d∗(0, L,D),

= 0, if d = d∗(0, L,D),

< 0, if d∗(0, L, D) < d < g(I0).

As a consequence of Theorems 1 and 2 and the definition of v∗, we have

Theorem 3. Given any D > 0 and L > 0.

(a) If 0 < d < g(I0e
−k0L), (3.1) has a unique positive steady state, denoted as P (x), for any

v ∈ (−∞,∞). Moreover,

(3.4)

∫ L

0

P (x) dx >
1

k1

ln
I0e

−k0L

g−1(d)
> 0.

(b) If d ∈ (g(I0e
−k0L), g(I0)), (3.1) has a unique positive steady state for every v ∈ (−∞, v∗);

if v > v∗, zero is the only non-negative steady state of (3.1).

(c) If d > g(I0), zero is the only non-negative steady state of (3.1) for v ∈ (−∞,∞).

Theorem 3 implies that critical sinking/buoyant velocity may or may not exist, and is
unique whenever it exists. If d is suitably small, the phytoplankton can always bloom for any
sinking/buoyant velocity; i.e., there is no critical sinking/buoyant velocity for this case. Only
when the death rate falls into some intermediate range, there exists a critical sinking/buoyant
velocity v∗ such that the phytoplankton can bloom if and only if the sinking/buoyant velocity
is smaller than v∗. For large death rates, the phytoplankton simply can not bloom.

We now turn to the existence of critical water column depth. First, we study how d∗
qualitatively depend on L.

Theorem 4. For any D > 0 and v ∈ (−∞,∞), d∗(v, L, D) is strictly monotone decreasing
for L ∈ (0,∞). Moreover,

lim
L→0+

d∗(v, L, D) = g(I0), lim
L→∞

d∗(v, L, D) = d∞(v, D),

where d∞(v, D) is a non-negative monotone decreasing function of v ∈ (−∞,∞), and there
exists some v0 > 0 such that d∞(v, D) > 0 for v < v0.

We now apply Theorem 4 to study the existence of critical water column depth. By
Theorem 4, given any v ∈ R1 and D > 0, for every d ∈ (d∞(v, D), g(I0)), there exists a
unique L∗ := L∗(d, v, D) > 0 such that d = d∗(v, L∗, D). As a consequence of Theorems 1
and 4 and the definition of L∗, we have
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Theorem 5. Given any v ∈ (−∞,∞) and D > 0.

(a) If 0 < d < d∞(v,D), (3.1) has a unique positive steady state for any L > 0.

(b) If d ∈ (d∞(v,D), g(I0)), (3.1) has a unique positive steady state for every L ∈ (0, L∗); if
L > L∗, zero is the only non-negative steady state.

(c) If d > g(I0), zero is the only non-negative steady state of (3.1) for any L > 0.

Theorem 5 also implies that critical water column depth may or may not exist, and is
unique whenever it exists. If d is suitably small, there may be no critical water column depth
as the phytoplankton can bloom for any water column depth. For some intermediate range
of death rates, there exists a critical water column depth L∗ such that the phytoplankton
can persist if and only if the water column depth is less than L∗. We do not know whether
d∞(v, D) is positive for every v ∈ (−∞,∞) and D > 0 and it will be of interest to further
understand d∞(v, D).

Finally, we address the existence of critical turbulent diffusion coefficient. This case is
much more subtle as the numerical simulations in [8] suggest that there may exist two
critical turbulent diffusion coefficients for sinking species. Similar as before, we first study
how the critical death rate d∗ depends on turbulent diffusion coefficient D. It turns out that
the sinking case (v > 0) is indeed more subtle than the buoyant case (v < 0):

Theorem 6. For any v ∈ (−∞,∞) and L > 0,

lim
D→∞

d∗(v, L, D) =
1

L

∫ L

0

g(I0e
−k0x) dx;

(a) For any v ≤ 0 and L > 0, d∗(v, L,D) is strictly monotone decreasing for D > 0, and
limD→0+ d∗(v, L, D) = g(I0).

(b) For any v > 0 and L > 0, limD→0+ d∗(v, L, D) = g(I0e
−k0L); Moreover, given any L > 0,

there exists some v1 > 0 such that for every 0 < v < v1,

(3.5) sup
0<D<∞

d∗(v, L,D) > lim
D→∞

d∗(v, L, D) > lim
D→0+

d∗(v, L, D);

In particular, for L > 0 and 0 < v < v1, d∗(v, L, D) is not monotone in D.

We do not know whether (3.5) holds for general v > 0 and L > 0. By Theorem 6,

given any v ≤ 0 and L > 0, for every d ∈ ( 1
L

∫ L

0
g(I0e

−k0x), g(I0)), there exists a unique
D∗ := D∗(d, v, L) > 0 such that d = d∗(v, L,D∗). By Theorems 1 and 6 and the definition of
D∗, we have

Theorem 7. Given any v ≤ 0 and L > 0.

(a) If 0 < d < 1
L

∫ L

0
g(I0e

−k0x), (3.1) has a unique positive steady state for any D > 0.

(b) If d ∈ ( 1
L

∫ L

0
g(I0e

−k0x), g(I0)), (3.1) has a unique positive steady state for every D ∈
(0, D∗); if D > D∗, zero is the only non-negative steady state.

(c) If d > g(I0), zero is the only non-negative steady state of (3.1).

Similar to other critical rates, critical turbulent diffusion rate depth may or may not exist
for buoyant species and whenever it exists, it is unique. However, the story is quite different
for sinking species. Let v1 be as given in Theorem 6 such that (3.5) holds for 0 < v < v1.
Set

d = sup
0<D<∞

d∗(v,D, L), d = inf
0<D<∞

d∗(v, D, L).

By Theorem 6, we see that d ∈ (0, g(I0e
−k0L)] and d > 1

L

∫ L

0
g(I0e

−k0x). The following
result shows that, in strong contrast to buoyant species, there may exist two or more critical
turbulent diffusion rate for sinking species:
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Theorem 8. Given L > 0 and 0 < v < v1.

(a) If 0 < d < d, (3.1) has a unique positive steady state for any D > 0.

(b) If d ∈ ( 1
L

∫ L

0
g(I0e

−k0x), d), there exist 0 < Dmin < D ≤ D < Dmax such that (3.1) has
no positive steady state for any D ∈ (0, Dmin) ∪ (Dmax,∞), and (3.1) has a unique positive
steady state for any D ∈ (Dmin, D) ∪ (D,Dmax).

(c) If d > d, zero is the only non-negative steady state of (3.1).

From these results we can conclude that critical death rate always exists and is unique.
In contrast, there are either zero or one critical water column depth, zero or one critical
sinking/buoyant velocity, and zero or one critical turbulent diffusion rate for buoyant species.
Interestingly, there may exist two critical turbulent diffusion rates for sinking species which
was first shown numerically in [8]. These theoretical findings may shed some new insight
into the combined effects of death rate, water column depth, sinking/buoyant velocity and
turbulent diffusion rate in the persistence of single phytoplankton species.

The rest of this section concerns qualitative properties of the unique positive steady state
P (x; v) of (2.1)-(2.2) when the advection coefficient v varies, assuming that other parameters
D, d, L, k0, k1 are all fixed. For the simplicity of notation and the clarity of the presentation,
we perform the following scaling for the equation (2.1)-(2.2). Let

(3.6)

x̃ =
x

L
, t̃ =

D

L2
t, k̃0 = k0L, k̃1 = k1L, d̃ =

L2

D
d, ṽ =

v

D
L,

P̃ (x̃, t̃) = P (x, t), Ĩ(x̃, t̃) = I(x, t) = I0e
−k̃0x̃ exp(−k̃1

∫ x̃

0

P̃ (s, t̃)ds),

g̃(Ĩ)(x̃, t̃) =
L2

D
g(I(x, t)).

Then equation (2.1)-(2.2) becomes

(3.7)





P̃t̃ = P̃x̃x̃ − ṽP̃x̃ +
(
g̃(Ĩ)− d̃

)
P̃ , 0 < x̃ < 1,

P̃x̃(0, t̃)− ṽP̃ (0, t̃) = 0, P̃x̃(1, t̃)− ṽP̃ (1, t̃) = 0.

If we drop the ∼ sign, equation (3.7) becomes

(3.8)

{
Pt = Pxx − vPx + (g(I)− d) P, 0 < x < 1, t > 0,

Px(0, t)− vP (0, t) = 0, Px(1, t)− vP (1, t) = 0,

where I is still given by (2.4).
Let P (x; v) denote the unique positive steady state of (3.8). By Theorem 3, if 0 < d <

g(I0e
−k0), P (x; v) exists for any v ∈ (−∞,∞). The following result describes the asymptotic

profiles of P (x; v) for large positive v.

Theorem 9. Suppose that 0 < d < g(I0e
−k0).

(a) If v ≥ 2
√

g(I0)− d, then P (x; v) is strictly increasing in [0, 1];

(b) As v → ∞, P (x; v) → 0 uniformly in any compact subset of [0, 1), P (1; v)/v → κ∗,
P (·; v) → κ∗δ(1), where κ∗ > 0 is uniquely determined by

(3.9)

∫ 1

0

g(I0e
−k0−k1κ∗z) dz = d.

Moreover,

(3.10) lim
v→∞

∥∥P (x; v)− P (1; v)e−v(1−x)
∥∥

L∞(0,1)
= 0
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and

(3.11) lim
v→∞

∥∥∥∥
P (x; v)

ve−v(1−x)
− κ∗

∥∥∥∥
L∞(0,1)

= 0.

Remark 3.1. δ(1) denotes the Dirac measure at x = 1, and P (·; v) → κ∗δ(1) as v → ∞
means that for any continuous function f in [0, 1],

lim
v→∞

∫ 1

0

f(x)P (x; v) dx = κ∗f(1).

Similarly, the asymptotic profiles of P (x; v) for large negative v can be characterized as
follows:

Theorem 10. Suppose that 0 < d < g(I0).

(a) If v ≤ 0, then P (x; v) is strictly decreasing in [0, 1];

(b) As v → −∞, P (x; v) → 0 uniformly in any compact subset of (0, 1], P (0; v)/v → κ∗,
P (·; v) → −κ∗δ(0), where κ∗ < 0 is uniquely determined by

(3.12)

∫ 1

0

g(I0e
k1κ∗(1−z)) dz = d.

Moreover,

(3.13) lim
v→−∞

‖P (x; v)− P (0; v)evx‖L∞(0,1) = 0

and

(3.14) lim
v→−∞

∥∥∥∥
P (x; v)

vevx
− κ∗

∥∥∥∥
L∞(0,1)

= 0.

By Theorem 10, the buoyant species is always monotone decreasingly distributed in the
water column, and the phytoplankton forms a thin layer at the surface of the water column
when the buoyant coefficient is sufficiently large. On the other end, by Theorem 9, P (x; v)
is monotone increasing in the water column when the sinking velocity is suitably large, and
the phytoplankton forms a thin layer at the bottom of the water column.

4. Proof of Theorem 1

Consider the steady state equation

(4.1)

{
DPxx − vPx + P [g(I)− d] = 0, 0 < x < L,

DPx(0)− vP (0) = 0, DPx(L)− vP (L) = 0,

where

(4.2) I = I(x) = I0e
−k0x exp(−k1

∫ x

0

P (s)ds).

The proof of Theorem 1 is similar to that of case v = 0, which was studied in [7], with
some modifications. For the sake of completeness we give the proof here in details.

Lemma 4.1. (4.1) has no positive solution when d 6∈ (0, d∗).

Proof. We note that the first equation in (4.1) can be rewritten as

(4.3) −DPxx + vPx + (−g(I))P = −dP.

If (d, P ) is a positive solution of (4.1), from (4.2), (4.3) and the comparison principle of the
principal eigenvalue,

−d = λ1(−g(I(x))) > λ1(−g(I0e
−k0x)) = −d∗(v, L,D).
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That is, d < d∗. Multiplying the first equation of (4.1) by e−(v/D)x, integrating the result in
(0, L), and applying the boundary condition in (4.1), we obtain

∫ L

0

e−(v/D)xP [g(I)− d] dx = 0,

which implies that d > 0. Therefore, (4.1) has no positive solution when d 6∈ (0, d∗). ¤
Lemma 4.2. Given any η > 0, there exists some positive constant C(η) such that every
positive solution P of (4.1) with η < d < d∗ satisfies ‖P‖L∞(0,L) ≤ C(η).

Proof. We argue by contradiction. If not, suppose that there exists a sequence dn ∈ (η, d∗),
n = 1, 2, ..., and positive solution Pn of (4.1) with d = dn such that ‖Pn‖L∞(0,L) → ∞ as
n → ∞. Passing to a subsequence if necessary we may assume that dn → d ∈ [η, d∗]. Set
P̃n = Pn/‖Pn‖L∞(0,L). Then P̃n satisfies ‖P̃n‖L∞ = 1 and

(4.4)

{
DP̃n,xx − vP̃n,x + P̃n [g(In)− dn] = 0, 0 < x < L,

DP̃n,x(0)− vP̃n(0) = 0, DP̃n,x(L)− vP̃n(L) = 0,

where

(4.5) In(x) = I0e
−k0x exp(−k1

∫ x

0

Pn(s)ds).

Integrating the first equation of (4.4) from 0 to x we have

DP̃n,x(x)− vP̃ (x) +

∫ x

0

P̃n [g(In)− dn] = 0.

As g(In) and P̃n are uniformly bounded, P̃n,x is uniformly bounded. By (4.4), P̃n,xx is

uniformly bounded. Passing to a sequence if necessary we may assume that P̃n → P̃ in
C1[0, L], P̃ ≥ 0, ‖P̃‖L∞ = 1. As 0 ≤ g(In) ≤ g(I0) in [0, L], we may assume that g(In) → q(x)
weakly in L2(0, L) for some function q satisfying 0 ≤ q ≤ g(I0). Hence, P̃ is a weak solution
of

(4.6)

{
DP̃xx − vP̃x + P̃ [q(x)− d] = 0, 0 < x < L,

DP̃x(0)− vP̃ (0) = 0, DP̃x(L)− vP̃ (L) = 0.

As P̃ ≥ 0, P̃ 6≡ 0 and q ∈ L∞(0, L), by the strong maximum principle we have P̃ > 0 in
(0, L). As P̃n → P̃ > 0 in (0, L) and ‖Pn‖L∞(0,L) →∞,

(4.7) In(x) = I0e
−k0x exp(−k1‖Pn‖L∞([0,L])

∫ x

0

P̃n(s)ds) → 0

for every x ∈ (0, L) as n → ∞. This implies that q ≡ 0. Integrating (4.6) in (0, L), we
obtain d = 0, which is a contradiction. ¤
Proof of Theorem 1. By a standard bifurcation argument of Crandall and Rabinowitz [3]
and Rabinowitz [18], (4.1) has an unbounded connected branch of positive solutions, denote
by Γ = {(d, P ) ⊂ R1 × C1([0, 1])}, which bifurcations from the trivial branch {(d, 0)} at
(d∗(v, L,D), 0). Since (4.1) has no positive solution when d 6∈ (0, d∗) (Lemma 4.1) and all
positive solutions of (4.1) are uniformly bounded when d is positive and bounded away from
zero (Lemma 4.2), we see that Γ can only become unbounded as d → 0+. As Γ is connected,
(4.1) has at least one positive solution for every d ∈ (0, d∗).

It remains to show the uniqueness. Let U(x) = e−(v/D)xP (x). Then (4.1) becomes

(4.8)

{
DUxx + vUx + [g(I)− d] U = 0, 0 < x < L,

Ux(0) = 0, Ux(L) = 0,
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where

(4.9) I = I(x) = I0e
−k0x exp(−k1

∫ x

0

e(v/D)sU(s)ds).

(4.8) can be rewritten as

(4.10)

{
D(e(v/D)xUx)x + [g(I)− d] Ue(v/D)x = 0, 0 < x < L,

Ux(0) = 0, Ux(L) = 0.

The proof of the uniqueness of positive solution of (4.1) basically follows from the argument
in [7] applying to (4.10). Suppose that (4.8) has two positive solutions U1 6≡ U2. If U1 ≤ U2

then we deduce

−d = λ1[−g(I0e
−k0x exp(−k1

∫ x

0

e(v/D)sU1(s)ds))]

< λ1[−g(I0e
−k0x exp(−k1

∫ x

0

e(v/D)sU2(s)ds))] = −d,

a contradiction. Therefore U1 − U2 changes sign in (0, L). We claim that U1(0) 6= U2(0).
Otherwise, for i = 1, 2, we denote Vi(x) =

∫ x

0
Ui(s)e

(v/D)sds, Wi(x) = U ′
i(x)e(v/D)x, and find

that (Ui, Vi,Wi) are solution of the initial value problem




U ′ = We−(v/D)x,

V ′ = e(v/D)xU,

DW ′ = −[g(I0e
−k0x exp(−k1V ))− d]e(v/D)xU,

(U(0), V (0), W (0)) = (U(0), 0, 0).

By the uniqueness of ODE, we conclude that (U1, V1,W1) = (U2, V2,W2), a contradiction.
Therefore U1(0) 6= U2(0).

For definiteness we assume U1(0) < U2(0). Since U1 − U2 changes sign in (0, L), there
exists x0 > 0 such that U2(x) > U1(x) in [0, x0), U1(x0) = U2(x0), and U ′

1(x0) ≥ U ′
2(x0).

From (4.10) we have

−D

∫ x0

0

(
U ′

1e
(v/D)x

)
x
U2 =

∫ x0

0

[
g

(
I0e

−k0x exp(−k1

∫ x

0

e(v/D)sU1(s)ds)

)
− d

]
U1U2e

(v/D)x.

Using integration by parts, we deduce

−DU ′
1(x0)e

(v/D)x0U2(x0) + D

∫ x0

0

e(v/D)xU ′
1U

′
2dx

=

∫ x0

0

[
g

(
I0e

−k0x exp(−k1

∫ x

0

e(v/D)sU1(s)ds)

)
− d

]
U1U2e

(v/D)xdx.

Similarly,

−DU ′
2(x0)e

(v/D)x0U1(x0) + D

∫ x0

0

e(v/D)xU ′
1U

′
2dx

=

∫ x0

0

[
g

(
I0e

−k0x exp(−k1

∫ x

0

e(v/D)sU2(s)ds)

)
− d

]
U1U2e

(v/D)xdx.

Therefore

De(v/D)x0U1(x0) [U ′
2(x0)− U ′

1(x0)]

=

∫ x0

0

[
g

(
I0e

−k0x exp(−k1

∫ x

0

e
v
D

sU1(s))

)
− g

(
I0e

−k0x exp(−k1

∫ x

0

e
v
D

sU2(s))

)]
U1U2e

v
D

x.
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The right hand side of the above equality is positive while the left hand side is nonpositive,
a contradiction. Thus we complete the proof of Theorem 1. ¤

5. Dependence of d∗(v, L,D) on v: Proofs of Theorems 2 and 3

This section is devoted to proofs of Theorems 2 and 3.
Recall that d∗(v, L, D) satisfies

(5.1)

{
−Dϕxx + vϕx − g(I0e

−k0x)ϕ = −d∗(v, L, D)ϕ in (0, L),

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L), ϕ > 0 in (0, L).

Set ψ = e−(v/D)xϕ. Then, ψ satisfies

(5.2)

{
−Dψxx − vψx − g(I0e

−k0x)ψ = −d∗(v, L, D)ψ in (0, L),

ψx(0) = ψx(L) = 0, ψ > 0 in (0, L).

Lemma 5.1. ψx < 0 in (0, L).

Proof. Multiplying (5.2) by e(v/D)x, we rewrite the resulting equation as

(5.3)

{
−D(e(v/D)xψx)x − e(v/D)xg(I0e

−k0x)ψ = −d∗(v, L, D)ψe(v/D)x in (0, L),

ψx(0) = ψx(L) = 0.

Integrating (5.3) in (0, L), we have
∫ L

0

e(v/D)xψ[g(I0e
−k0x)− d∗] dx = 0,

which implies that g(I0e
−k0x)−d∗ changes sign in (0, L). Since g(I0e

−k0x) is strictly decreasing
in (0, L), there exists a unique x0 ∈ (0, L) such that g(I0e

−k0x) > d∗ for 0 < x < x0 and
g(I0e

−k0x) < d∗ for x0 < x < L. Hence, by (5.3) we see that (e(v/D)xψx)x < 0 for 0 < x < x0

and (e(v/D)xψx)x > 0 for x0 < x < L, i.e., e(v/D)xψx is strictly decreasing in (0, x0) and
strictly increasing in (x0, L). Since ψx(0) = ψx(L) = 0, we have ψx < 0 in (0, L). ¤
Lemma 5.2. d∗(v, L, D) is strictly monotone decreasing in v.

Proof. Recall that d∗(v, L,D) satisfies

(5.4)

{
Dψxx + vψx + g(I0e

−k0x)ψ = d∗(v, L,D)ψ in (0, L),

ψx(0) = ψx(L) = 0.

We normalize ψ such that
∫ L

0
ψ2 = 1. It can be shown that d∗ and ψ are smooth functions of

v (see e.g., [1, 2]). For simplicity of the notation, we denote ∂ψ/∂v by ψ′, etc. Differentiating
(5.4) with respect to v, we have

(5.5)

{
Dψ′xx + vψ′x + ψx + g(I0e

−k0x)ψ′ = d′∗ψ + d∗ψ′ in (0, L),

ψ′x(0) = ψ′x(L) = 0.

Multiplying (5.5) by e(v/D)x, we rewrite the result as

(5.6) D(e(v/D)xψ′x)x + e(v/D)xψx + e(v/D)xg(I0e
−k0x)ψ′ = d′∗ψe(v/D)x + d∗ψ′e(v/D)x in (0, L).

Multiplying (5.6) by ψ and integrating the resulting equation in (0, L), we have

(5.7)

−D

∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψψx +

∫ L

0

e(v/D)xψ′ψg(I0e
−k0x)

= d′∗

∫ L

0

ψ2e(v/D)x + d∗

∫ L

0

ψψ′e(v/D)x.
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Multiplying (5.4) by e(v/D)x, we write the result as

(5.8) D(e(v/D)xψx)x + e(v/D)xg(I0e
−k0x)ψ = d∗e(v/D)xψ.

Multiplying (5.8) by ψ′ and integrating it in (0, L), we have

(5.9) −D

∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψ′ψg(I0e
−k0x) = d∗

∫ L

0

ψψ′e(v/D)x.

It follows from (5.7) and (5.9) that

(5.10) d′∗ =

∫ L

0
e(v/D)xψψx dx∫ L

0
e(v/D)xψ2

.

This together with Lemma 5.1 and the positivity of ψ imply that d′∗ < 0. ¤
To study the asymptotic behavior of d∗ for sufficiently large v (either positive or negative),

we first recall the following result (Theorem 1, [4]):

Lemma 5.3. Let λ(v) denote the principal eigenvalue of

(5.11)

{ −∆ψ − v∇m · ∇ψ + c(x)ψ = λψ in Ω,

∇ψ · n|∂Ω = 0,

where Ω is a domain in RN with smooth boundary ∂Ω and n is the outward unit normal
vector on ∂Ω. Suppose that m ∈ C2(Ω̄) and c ∈ C(Ω̄), and all critical points of m are
non-degenerate. Then

lim
v→∞

λ(v) = min
M

c,

where M is the set of local maximum of m(x).

Lemma 5.4. We have

lim
v→∞

d∗(v, L, D) = g(I0e
−k0L), lim

v→−∞
d∗(v, L,D) = g(I0).

Proof. Applying Lemma 5.3 with Ω = (0, L) and m(x) = x, we see that M = {L} and

lim
v→∞

(−d∗(v, L, D)) = min
M

(−g(I0e
−k0x)) = −g(I0e

−k0L).

Similarly, applying Lemma 5.3 with Ω = (0, L) and m(x) = −x, we see that M = {0}
and

lim
v→−∞

(−d∗(v, L,D)) = min
M

(−g(I0e
−k0x)) = −g(I0),

which completes the proof. ¤
Lemma 5.5. Suppose that 0 < d < g(I0e

−k0L). Then for any v ∈ (−∞,∞),
∫ L

0

P (x; v) dx >
1

k1

ln
I0e

−k0L

g−1(d)
> 0.

Proof. Integrate the equation of P (x; v) in (0, L), we have
∫ L

0

P (x; v) [g(I(x))− d] dx = 0.

Hence, g(I(x))− d changes sign in (0, L). Since I(x) is strictly decreasing, g(I(x))− d must
be negative at x = L. That is,

g(I0e
−k0Le−k1

∫ L
0 P (x;v) dx) < d,

which is equivalent to ∫ L

0

P (x; v) dx >
1

k1

ln
I0e

−k0L

g−1(d)
> 0,
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where the last inequality follows from 0 < d < g(I0e
−k0L). ¤

Proofs of Theorems 2, 3. Theorem 2 follows from Lemmas 5.2 and 5.4. Theorem 3
follows from Theorems 1, 2 and Lemma 5.5. ¤

6. Dependence of d∗(v, L, D) on L: Proofs of Theorems 4 and 5

In this section we investigate the dependence of d∗ on L. First, we establish the mono-
tonicity of d∗ in L.

Lemma 6.1. d∗(v, L, D) is strictly monotone decreasing in L.

Proof. Given any 0 < L1 < L2, we show that d∗(v, L1, D) > d∗(v, L2, D). For simplicity, we
write d∗(v, Li, D) as di, and denote corresponding eigenfunctions ψ(x; v, Li, D) as ψi, i = 1, 2.
Rewrite the equations of ψi as

(6.1)

{
D(e(v/D)xψi,x)x + g(I0e

−k0x)e(v/D)xψi = diψie
(v/D)x in (0, Li),

ψi,x(0) = ψi,x(Li) = 0.

Multiplying the equation of ψ1 by ψ2, the equation of ψ2 by ψ1, and subtracting, we have

(d1 − d2)ψ1ψ2e
(v/D)x = D

[
(e(v/D)xψ1,x)xψ2 − (e(v/D)xψ2,x)xψ1

]
.

Integrating the above equation in (0, L1) and applying boundary conditions of ψ1, ψ2 at
x = 0, we have

(d1 − d2)

∫ L1

0

ψ1ψ2e
(v/D)x dx = −De(v/D)L1ψ2,x(L1)ψ1(L1).

Since ψi > 0 for i = 1, 2 and ψ2,x(L1) < 0 (Lemma 5.1), we see that d1 > d2. ¤
The next two results concern the limiting behaviors of d∗ for small and large L.

Lemma 6.2. limL→0+ d∗(v, L,D) = g(I0).

Proof. Set x = Ly and w(y) = ψ(x). Then w satisfies

(6.2)

{
Dwyy + vLwy + L2g(I0e

−k0Ly)w = d∗(v, L, D)L2w in (0, 1),

wy(0) = wy(1) = 0.

We normalize w such that max[0,1] w = 1. It is easy to show that as L → 0+, passing
to a subsequence if necessary, w → w0 in C2[0, 1], where w0 satisfies w0,yy = 0 in (0, 1),
w0,y(0) = w0,y(1) = 0, and max[0,1] w0 = 1. Hence, w0 ≡ 1; i.e., w → 1 in C2[0, 1].

Multiplying (6.2) by e(v/D)Ly, we can rewrite (6.2) as

(6.3)

{
D

(
e(v/D)Lywy

)
y
+ L2e(v/D)Lyg(I0e

−k0Ly)w = d∗(v, L, D)L2e(v/D)Lyw in (0, 1),

wy(0) = wy(1) = 0.

Integrating (6.3) in (0, 1) and dividing the result by L2, we have

(6.4)

∫ 1

0

e(v/D)Lyg(I0e
−k0Ly)w dy = d∗

∫ 1

0

e(v/D)Lyw dy.

By letting L → 0 in (6.4) and applying w → 1, we see that d∗ → g(I0) as L → 0+. ¤
Lemma 6.3. limL→∞ d∗(v, L,D) = d∞, where d∞ := d∞(v, D) ≥ 0, and is monotone de-
creasing function of v ∈ R1. Moreover, there exists some v0 > 0 such that d∞(v, D) > 0 for
v < v0.
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Proof. Since d∗ is monotone decreasing in L and d∗ > 0, we see that limL→∞ d∗(v, L,D) =
d∞(v, D) for some d∞ = d∞(v, D) ≥ 0. Since d∗ is monotone decreasing in v, we see that
d∞ is also monotone decreasing in v. It remains to show that d∞ > 0 for v ∈ (−∞, v0) for
some v0 > 0. Recall that

−d∗ = inf
ϕ∈H1((0,L))

∫ L

0
e(v/D)x

[
Dϕ2

x − g(I0e
−k0x)ϕ2

]
dx∫ L

0
e(v/D)xϕ2

≤ inf
ϕ∈H1((0,L))

∫ L

0
e(v/D)x(Dϕ2

x − aIγ
0 e−k0γxϕ2) dx∫ L

0
e(v/D)xϕ2

,

where the last inequality follows from assumption g(I) ≥ aIγ for I ∈ [0, I0]. Choose the test
function ϕ(x) = e−(v/D)x. By direct calculation,

−d∗ ≤ v2

D
− aIγ

0 (v/D)

k0γ + v/D

1− e−(v/D+k0)L

1− e−(v/D)L
.

By letting L →∞ in the above inequality, we have

−d∞ ≤ v2

D
− aIγ

0 (v/D)

k0γ + v/D
< 0,

where the last inequality holds provided that v(k0γ + v/D) < aIγ
0 . Clearly, if

v0 := min{aIγ
0 /(2k0γ),

√
aIγ

0 D/2},
then d∞(v,D) > 0 for v < v0. ¤

Proofs of Theorems 4, and 5. Theorem 4 follows from Lemmas 6.1, 6.2 and 6.3; Theorem
5 follows from Theorems 1 and 4. ¤

7. Dependence of d∗(v, L, D) on D: Proofs of Theorems 6, 7 and 8

In this section we investigate the dependence of d∗ on D. The proof of the following result
is similar to that of Lemma 5.2:

Lemma 7.1. For any v ≤ 0 and L > 0, d∗(v, L,D) is strictly monotone decreasing in D.

Proof. For simplicity of notation, we denote ∂ψ/∂D by ψ′, etc, where ψ satisfies (5.4).
Differentiate (5.4) with respect to D, we have

(7.1)

{
Dψ′xx + ψxx + vψ′x + g(I0e

−k0x)ψ′ = d′∗ψ + d∗ψ′ in (0, L),

ψ′x(0) = ψ′x(L) = 0.

Multiplying (7.1) by e(v/D)xψ and integrating the resulting equation in (0, L), we have

(7.2)

−D

∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψψxx +

∫ L

0

e(v/D)xψ′ψg(I0e
−k0x)

= d′∗

∫ L

0

ψ2e(v/D)x + d∗

∫ L

0

ψψ′e(v/D)x.

Similarly, multiplying (5.4) by e(v/D)xψ′ and integrating it in (0, L), we have

(7.3) −D

∫ L

0

e(v/D)xψxψ
′
x +

∫ L

0

e(v/D)xψ′ψg(I0e
−k0x) = d∗

∫ L

0

ψψ′e(v/D)x.
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It follows from (7.2) and (7.3) that

(7.4) d′∗ =

∫ L

0
e(v/D)xψψxx∫ L

0
e(v/D)xψ2

.

By Lemma 5.1, ψx < 0 in (0, L). Hence,
∫ L

0

e(v/D)xψψxx = −
∫ L

0

ψx

(
e(v/D)xψ

)
x

= −
∫ L

0

e(v/D)x[ψ2
x + (v/D)ψψx] < 0,

where the last inequality holds for v ≤ 0. Hence, d′∗ < 0 for any v ≤ 0 and D,L > 0. ¤

Lemma 7.2. Given any v ∈ (−∞,∞) and L > 0,

(7.5) lim
D→∞

d∗(v, L, D) =
1

L

∫ L

0

g(I0e
−k0x) dx.

Proof. Recall that ψ satisfies (5.4). We normalize that ψ such that max[0,L] ψ = 1. By
standard elliptic regularity and Sobolev embedding theorem, ψ is uniformly bounded in
C2[0, L] for all D ≥ 1. Therefore, passing to some sequence if necessary, we may assume that
ψ → Ψ in C1, where Ψ satisfies Ψxx = 0 in [0, L], Ψx(0) = Ψx(L) = 0, and max[0,L] Ψ = 1.
Therefore, Ψ ≡ 1; i.e., ψ → 1 in C1[0, L]. Integrating (5.4) in [0, L], we have

D[ψx(L)− ψx(0)] + v[ψ(L)− ψ(0)] +

∫ L

0

g(I0e
−k0x)ψ dx = d∗

∫ L

0

ψ.

Since ψx(0) = ψx(L) = 0 and ψ → 1 as D → ∞, by letting D → ∞ in the above equation,
we obtain (7.5). ¤

Lemma 7.3. Suppose that v ≤ 0. Then

lim
D→0+

d∗(v, L, D) = g(I0).

Proof. Recall that

(7.6) −d∗ = inf
ψ∈H1(0,L)

∫ L

0
e(v/D)x

[
Dψ2

x − g(I0e
−k0x)ψ2

]
dx∫ L

0
e(v/D)xψ2dx

.

For ε ∈ (0, L/4), set

ψ(x) =





1, 0 ≤ x ≤ ε,

2− x

ε
, ε ≤ x ≤ 2ε,

0, 2ε ≤ x ≤ L.

Hence,

−d∗ ≤
D

∫ 2ε

ε
e(v/D)xψ2

x∫ 2ε

0
e(v/D)xψ2

−
∫ 2ε

0
e(v/D)xg(I0e

−k0x)ψ2

∫ 2ε

0
e(v/D)xψ2

≤ D

ε2

e2vε/D − evε/D

evε/D − 1
− g(I0e

−2k0ε).

By letting D → 0+, as v ≤ 0, we have lim infD→0+ d∗ ≥ g(I0e
−2k0ε). By letting ε → 0, we

obtain lim infD→0+ d∗ ≥ g(I0). As d∗ < g(I0), we see that limD→0+ d∗ = g(I0). ¤

Lemma 7.4. Suppose that v > 0. Then

lim
D→0+

d∗(v, L, D) = g(I0e
−k0L).
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Proof. Recall that d∗(v, L,D) satisfies

(7.7)

{
Dϕxx − vϕx + g(I0e

−k0x)ϕ = d∗ϕ in (0, L),

Dϕx(0) = vϕ(0), Dϕx(L) = vϕ(L), ϕ > 0 in (0, L).

Set w(x) = e−(v/D)ηxϕ, where η is some constant which will be chosen differently for
different purposes. Then, w satisfies

(7.8)





Dwxx + v(2η − 1)wx + w

[
v2

D
η(η − 1) + g(I0e

−k0x)− d∗

]
= 0 in 0 < x < L,

Dwx = v(1− η)w at x = 0, L.

Set η = 1 − C1D/v2, where C1 is some positive constant to be chosen later. Then w
satisfies

(7.9)





Dwxx + v(1− 2C1D

v2
)wx + w[−C1(1− C1D

v2
) + g(I0e

−k0x)− d∗] = 0, 0 < x < L,

wx = (C1/v)w at x = 0, L.

Let x∗ ∈ [0, L] such that w(x∗) = max0≤x≤L w(x). Since wx(0) > 0, x∗ 6= 0. If x∗ ∈ (0, L),
wxx(x

∗) ≤ 0 and wx(x
∗) = 0. By (7.9) we have

−C1(1− C1D/v2) + g(I0e
−k0x∗)− d∗ ≥ 0,

which is impossible if we choose C1 = 2g(I0) and D < v2/(4g(I0)). Therefore, x∗ = L; i.e.,
w(x) ≤ w(L) for every x ∈ [0, L]. Hence,

ϕ(x)

ϕ(L)
≤ e−

v
D

(1−C1D

v2 )(L−x).

Next, we choose η = 1 + C2D/v2, where C2 > 0 is to be chosen later. By (7.8), w satisfies

(7.10)





Dwxx + v(1 +
2C2D

v2
)wx + w[C2(1 +

C2D

v2
) + g(I0e

−k0x)− d∗] = 0, 0 < x < L,

wx = −(C2/v)w at x = 0, L.

Let x∗ ∈ [0, L] such that w(x∗) = min0≤x≤L w(x). Since wx(0) < 0, x∗ 6= 0. If x∗ ∈ (0, L),
wxx(x∗) ≥ 0 and wx(x∗) = 0. By (7.10) we have

C2(1 + C2D/v2) + g(I0e
−k0x∗)− d∗ ≤ 0,

which implies that d∗ > C2. Choose C2 = g(I0). As d∗ < g(I0), we must have x∗ = L; i.e.,
w(x) ≥ w(L) for every x ∈ [0, L]. Therefore,

ϕ(x)

ϕ(L)
≥ e−

v
D

(1+
C2D

v2 )(L−x).

Integrating (7.7) in (0, L) and dividing the result by ϕ(L), we have

(7.11)

∫ L

0

ϕ(x)

ϕ(L)

[
g(I0e

−k0x)− d∗
]

dx = 0.

Set y = (L− x)/D. Then ϕ satisfies

(7.12) e−v(1+
C2D

v2 )y ≤ ϕ(L−Dy)

ϕ(L)
≤ e−v(1−C1D

v2 )y.

We can rewrite (7.11) as

(7.13)

∫ L/D

0

ϕ(L−Dy)

ϕ(L)

[
g(I0e

−k0(L−Dy))− d∗
]

dy = 0.
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By (7.12), we can apply Lebesgue dominant convergent theorem and pass to the limit in
(7.13) to obtain

lim
D→0+

d∗ =
limD→0+

∫ L/D

0
ϕ(L−Dy)

ϕ(L)
g(I0e

−k0(L−Dy)) dy

limD→0+

∫ L/D

0
ϕ(L−Dy)

ϕ(L)
dy

=

∫∞
0

e−vyg(I0e
−k0L) dy∫∞

0
e−vy dy

= g(I0e
−k0L).

This completes the proof. ¤
Lemma 7.5. For any L > 0, there exists some v1 > 0 such that if v < v1, then

(7.14) d∗(v, L, D) >
1

L

∫ L

0

g(I0e
−k0x) dx

for sufficiently large D.

Proof. Let ψ1 be the unique solution of

(7.15)





ψ1,xx =
1

L

∫ L

0

g(I0e
−k0x) dx− g(I0e

−k0x), 0 < x < L,

ψ1,x(0) = ψ1,x(L) = 0,

∫ L

0

ψ1(x) dx = 0.

In particular, multiplying the first equation of (7.15) by ψ1 and integrating the result in
(0, L), we have

(7.16)

∫ L

0

g(I0e
−k0x)ψ1(x) dx =

∫ L

0

ψ2
1,x dx > 0,

where the last strict inequality follows from the fact that g(I0e
−k0x) is non-constant.

Set ψ = 1 + ψ1/D in (7.6), we have

(7.17) d∗ ≥
∫ L

0
e(v/D)x

[−Dψ2
x + g(I0e

−k0x)ψ2
]
dx∫ L

0
e(v/D)xψ2dx

.

By direct calculations,
∫ L

0

e(v/D)x
[−Dψ2

x + g(I0e
−k0x)ψ2

]
dx

=

∫ L

0

g +
1

D

[
v

∫ L

0

xg(I0e
−k0x) dx−

∫ 1

0

ψ2
1,x + 2

∫ L

0

g(I0e
−k0x)ψ1

]
+ O(1/D2)

=

∫ L

0

g +
1

D

[
v

∫ L

0

xg(I0e
−k0x) dx +

∫ 1

0

ψ2
1,x

]
+ O(1/D2),

where the last equality follows from (7.16); Similarly,
∫ L

0

e(v/D)xψ2dx = L +
v

2D
L2 + O(1/D2).

Hence,

(7.18)

d∗ − 1

L

∫ L

0

g(I0e
−k0x)

≥ 1

DL

[∫ L

0

ψ2
1,x − v

(
L

2

∫ L

0

g(I0e
−k0x)−

∫ L

0

xg(I0e
−k0x)

)]
+ O(1/D2).
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We claim that

(7.19) Λ :=
L

2

∫ L

0

g(I0e
−k0x)−

∫ L

0

xg(I0e
−k0x) > 0.

To establish this assertion, note that

(7.20)

Λ =

∫ L

0

g(I0e
−k0x)(

L

2
− x)

=

∫ L

0

[g(I0e
−k0x)− g(I0e

−k0L/2)](
L

2
− x),

where the last equality follows from
∫ L

0

g(I0e
−k0L/2)(

L

2
− x) = g(I0e

−k0L/2)

∫ L

0

(
L

2
− x) = 0.

Since functions g(I0e
−k0x)− g(I0e

−k0L/2) and L/2− x are strictly monotone decreasing, and
both vanish at x = L/2, we see that [g(I0e

−k0x)− g(I0e
−k0L/2)](L

2
− x) > 0 for any x 6= L/2.

This together with (7.20) imply that Λ > 0, i.e., (7.19) holds.
Set

v1 :=

∫ L

0
ψ2

1,x

L
2

∫ L

0
g(I0e−k0x)− ∫ L

0
xg(I0e−k0x)

.

By (7.19), v1 > 0. Hence, by (7.18) and the definition of v1 we see that, for any v < v1,
(7.14) holds for sufficiently large D. ¤

Proofs of Theorems 6 and 7. Theorem 6 follows from Lemmas 7.1, 7.2, 7.3, 7.4 and
7.5; In particular, (3.5) follows from Lemmas 7.2, 7.4, 7.5 and the fact that g(I0e

−k0L) <
1
L

∫ L

0
g(I0e

−k0x). Theorem 7 follows from Theorems 1 and 6. ¤

Proof of Theorem 8. Parts (a) and (c) follow from Theorem 1 and the definitions of d
and d. Hence, it suffices to show part (b). Given L > 0 and 0 < v < v1. Set f(D) =
d− d∗(v, L, D). By Lemma 7.4 we have

lim
D→0+

f(D) = d− g(I0e
−k0L) > 0,

where the last inequality follows from assumption on d. Choose D̃ such that d∗(v, L, D̃) =
sup0<D<∞ d∗(v, L, D). By our assumption d < sup0<D<∞ d∗(v, L, D), f(D̃) < 0. Let Dmin ∈
(0, D̃) be such that f(Dmin) = 0, f(D) ≥ 0 for D ∈ (0, Dmin) and there exists some δ > 0
such that f(D) < 0 for D ∈ (Dmin, Dmin + δ). Choose D = Dmin + δ. By the definition of
f , we have d ≥ d∗(v, L, D) for 0 < D ≤ Dmin and d < d∗ for d ∈ (Dmin, D). By Theorem 1,
(3.1) has no positive steady state for 0 < D ≤ Dmin and a unique positive steady state for
d ∈ (Dmin, D). Similarly, we can show that there exist Dmax and D such that D ≤ D < Dmax

and (3.1) has no positive steady state for D ≥ Dmin and a unique positive steady state for
d ∈ (D,Dmax). ¤

8. Asymptotic behaviors of steady states P (x; v) for large |v|
This section is devoted to proofs of Theorems 9 and 10. Let P (x; v) denote the unique

positive steady state of (3.8), i.e.,

(8.1)

{
Pxx − vPx + (g(I)− d) P = 0, 0 < x < 1,

Px(0)− vP (0) = Px(1)− vP (1) = 0,

where I is given by (2.4).
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Lemma 8.1. If v ≤ 0, then Px < 0 in (0, 1).

Proof. Integrating the equation of P (x; v) in (0, 1), we have
∫ 1

0

P [g(I(x))− d] dx = 0.

Since I(x) is strictly deceasing in (0, 1), there exists some x0 ∈ (0, 1) such that g(I(x)) > d
in (0, x0) and g(I(x)) < d in (x0, 1). By the equation of P , Pxx − vPx < 0 in (0, x0) and
Pxx − vPx > 0 in (x0, 1). Hence, Px − vP in strictly monotone decreasing in (0, x0) and
strictly increasing in (x0, 1). As Px = vP at x = 0, 1, Px− vP < 0 in (0, 1). Since v ≤ 0 and
P > 0, Px < 0 in (0, 1). ¤

Set

w(x) = e−vηxP (x; v),

where η is some constant which will be chosen differently for different purposes. Clearly,

Px = evηx(vηw + wx)

and

Pxx = evηx(v2η2w + 2vηwx + wxx).

Then, w satisfies

(8.2)

{
wxx + v(2η − 1)wx + w

[
v2η(η − 1) + g(I(x))− d

]
= 0 in 0 < x < 1,

wx = v(1− η)w at x = 0, 1.

Lemma 8.2. If v > 2
√

g(I0)− d, then Px > 0 for 0 ≤ x ≤ 1.

Proof. Set η = 1/2. Then, w satisfies

(8.3)





wxx + w

[
−v2

4
+ g(I(x))− d

]
= 0 in 0 < x < 1,

wx =
v

2
w at x = 0, 1.

If v > 2
√

g(I0)− d, then

v2

4
− g(I(x)) + d > 0

in (0, 1), i.e., wxx > 0 in (0, 1). Since wx(0) > 0, we have wx > 0 in [0, 1]. This implies that

Px = e(v/2)x [(v/2)w + wx] > 0

in [0, 1]. ¤

Lemma 8.3. There exist positive constants Ci (i = 1, 2), both independent of v, such that

(a) if v ≥ C1,

e−
C2
v

(1−x) ≤ P (x; v)

P (1; v)e−v(1−x)
≤ e

C2
v

(1−x)

for every x ∈ [0, 1];

(b) if v ≤ −C1, then

e
C2
v

x ≤ P (x; v)

P (0; v)evx
≤ e−

C2
v

x

for every x ∈ [0, 1].
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Proof. We first set η = 1 − C3/v
2, where C3 is some positive constant to be chosen later.

Then w satisfies

(8.4)

{
wxx + v(1− 2C3/v

2)wx + w[−C3(1− C3/v
2) + g(I(x))− d] = 0 in 0 < x < 1,

wx = (C3/v)w at x = 0, 1.

Let x∗ ∈ [0, 1] such that w(x∗) = max0≤x≤1 w(x). If x∗ ∈ (0, 1), wxx(x
∗) ≤ 0 and wx(x

∗) =
0. By (8.4) we have

−C3(1− C3/v
2) + g(I(x∗))− d ≥ 0,

which is impossible if we choose C3 = 2g(I0) and v > 2
√

g(I0). Hence, for such choices of
C3 and v, x∗ = 0 or x∗ = 1. We consider two cases:

Case 1. v > 0. For this case, since wx(0) > 0, x∗ 6= 0. Therefore, x∗ = 1; i.e., w(x) ≤ w(1)
for every x ∈ [0, 1]. Therefore,

P (x; v) ≤ P (1; v)e−v(1−C3/v2)(1−x),

which can be written as
P (x; v)

P (1; v)e−v(1−x)
≤ e

C3
v

(1−x).

Case 2. v < 0. Since wx(1) < 0, x∗ 6= 1. Therefore, x∗ = 0; i.e., w(x) ≤ w(0) for every
x ∈ [0, 1], which can be written as

P (x; v)

P (0; v)evx
≤ e−

C3
v

x.

For the other side of inequalities, set η = 1 + C4/v
2, where C4 > 0 is to be chosen later.

By (8.2), w satisfies

(8.5)

{
wxx + v(1 + 2C4/v

2)wx + w[C4(1 + C4/v
2) + g(I(x))− d] = 0 in 0 < x < 1,

wx = −(C4/v)w at x = 0, 1.

Let x∗ ∈ [0, 1] such that w(x∗) = min0≤x≤1 w(x). If x∗ ∈ (0, 1), wxx(x∗) ≥ 0 and wx(x∗) =
0. By (8.5) we have

C4(1 + C4/v
2) + g(I(x∗))− d ≤ 0,

which implies that d > C4. Hence, if C4 = d, we must have x∗ = 0 or x∗ = 1. Next we
consider two cases:

Case 1. v > 0. Since wx(0) < 0, x∗ 6= 0. That is, x∗ = 1; i.e., w(x) ≥ w(1) for every
x ∈ [0, 1]. Therefore,

P (x; v) ≥ P (1; v)e−v(1+C4/v2)(1−x),

which can be written as
P (x; v)

P (1; v)e−v(1−x)
≥ e−

C4
v

(1−x).

Case 2. v < 0. Since wx(1) > 0, x∗ 6= 1. That is, x∗ = 0; i.e., w(x) ≥ w(0) for every
x ∈ [0, 1], which can be written as

P (x; v)

P (0; v)evx
≥ e

C4
v

x.

This completes the proof. ¤
Lemma 8.4. For any y ≥ 0,

lim
v→∞

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds = e−y
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and

lim
v→−∞

v

P (0; v)

∫ −y/v

0

P (s; v) ds = e−y − 1.

Proof. First of all, we establish the first limit. By part (a) of Lemma 8.3,

P (s; v)

P (1; v)
≤ eC2/ve−v(1−s).

Hence, ∫ 1−y/v

0

P (s; v)

P (1; v)
ds ≤ eC2/v

∫ 1−y/v

0

e−v(1−s) ds = eC2/v e−y − e−v

v
,

which can be written as

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds ≤ eC2/v[e−y − e−v].

Similarly, by part (a) of Lemma 8.3,

P (s; v)

P (1; v)
≥ e−C2/ve−v(1−s).

Hence,

v

P (1; v)

∫ 1−y/v

0

P (s; v) ds ≥ e−C2/v[e−y − e−v].

This proves the first limit.
For the proof of the second limit, by part (b) of Lemma 8.3, for v ≤ −C1,

eC2/vevs ≤ P (s; v)

P (0; v)
≤ e−C2/vevs.

Hence,

eC2/v e−y − 1

v
≤

∫ −y/v

0

P (s; v)

P (0; v)
ds ≤ e−C2/v e−y − 1

v
,

which can be written as

eC2/v[1− e−y] ≤ −v

P (0; v)

∫ −y/v

0

P (s; v) ds ≤ e−C2/v[1− e−y].

This completes the proof. ¤
Lemma 8.5. Suppose that d ∈ (0, g(I0e

−k0)). Then,

lim
v→∞

P (1; v)

v
= κ∗,

where κ∗ > 0 is uniquely determined by
∫ 1

0

g(I0e
−k0−k1κ∗z) dz = d.

Proof. Dividing (3.1) by P (1; v), integrating in (0, 1) and applying the boundary condition
in (3.1), we have ∫ 1

0

P (x; v)

P (1; v)
[g(I(x))− d] dx = 0.

Set x = 1− y/v. We can rewrite the above equation as

(8.6)

∫ v

0

P (1− y/v; v)

P (1; v)

[
g(Ĩ(y))− d

]
dy = 0,



21

where

Ĩ(y) = I0e
−k0(1−y/v)−k1

∫ 1−y/v
0 P (s;v)ds.

We claim that P (1; v)/v is uniformly bounded for all v. To establish this assertion, we
argue by contradiction: If not, passing to a sequence if necessary we may assume that
P (1; v)/v →∞ as v →∞. Then by Lemma 8.4,

∫ 1−y/v

0

P (s; v)ds =
P (1; v)

v
· v

P (1; v)

∫ 1−y/v

0

P (s; v) ds →∞

pointwisely in y as v →∞. Hence, Ĩ(y) → 0 pointwisely as v →∞. As

e−C2/ve−y ≤ P (1− y/v; v)

P (1; v)
≤ eC2/ve−y

for every y ∈ (0, v), we see that

P (1− y/v; v)

P (1; v)
→ e−y

pointwisely in y as v →∞. Moreover,

P (1− y/v; v)

P (1; v)

∣∣∣g(Ĩ(y))− d
∣∣∣ ≤ eC2/ve−y[g(I0) + d]

for every y ∈ (0, v). Hence, we can apply the Lebesgue Dominant Convergent Theorem and
let v →∞ in (8.6) to conclude that

∫ ∞

0

e−y(g(0)− d) = 0,

which is a contradiction as g(0) = 0 and d > 0.
Hence, P (1; v)/v is bounded uniformly for large v. Passing to a sequence if necessary, we

may assume that P (1; v)/v → κ as v →∞ for some constant κ ≥ 0. For this case,

∫ 1−y/v

0

P (s; v)ds =
P (1; v)

v
· v

P (1; v)

∫ 1−y/v

0

P (s; v) ds → κe−y.

Hence,

Ĩ(y) → I0e
−k0−k1κe−y

pointwisely in y as v → ∞. Following the same argument as before, we can apply the
Lebesgue Dominant Convergent Theorem and let v →∞ in (8.6) to conclude that

(8.7)

∫ ∞

0

e−y[g(I0e
−k0−k1κe−y

)− d] dy = 0.

We claim that κ > 0: if κ = 0, then from (8.7) we obtain g(I0e
−k0) = d, which contradicts

our assumption d < g(I0e
−k0). By the new variable z = e−y, (8.7) can be rewritten as

F (κ) = d, where

F (κ) :≡
∫ 1

0

g(I0e
−k0−k1κz) dz.

Since F (0) = g(I0e
−k0) > d, limκ→∞ F (κ) = 0, and F is strictly decreasing in (0,∞) we see

that there exists a unique κ∗ such that F (κ∗) = d. Since κ∗ is independent of the choice of
sequence, we see that P (1; v)/v → κ∗ as v →∞. ¤
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Lemma 8.6. Suppose that d ∈ (0, g(I0)). Then,

lim
v→−∞

P (0; v)

v
= κ∗,

where κ∗ < 0 is uniquely determined by
∫ 1

0

g(I0e
k1κ∗(1−z)) dz = d.

Proof. Dividing (3.1) by P (0; v), integrating in (0, 1) and applying the boundary condition
in (3.1), we have ∫ 1

0

P (x; v)

P (0; v)
[g(I(x))− d] dx = 0.

Set x = −y/v. We can rewrite the above equation as

(8.8)

∫ −v

0

P (−y/v; v)

P (0; v)

[
g(Î(y))− d

]
dy = 0,

where

Î(y) = I0e
k0y/v−k1

∫−y/v
0 P (s;v)ds.

We claim that P (0; v)/v is uniformly bounded for all large negative v. If not, we may
assume that P (0; v)/v →∞ as v → −∞. Then by part (b) of Lemma 8.4,

∫ −y/v

0

P (s; v)ds =
P (0; v)

v
· v

P (0; v)

∫ −y/v

0

P (s; v) ds →∞

pointwisely in y as v → −∞. Hence, Ĩ(y) → 0 pointwisely as v → −∞. As

eC2/ve−y ≤ P (−y/v; v)

P (0; v)
≤ e−C2/ve−y

for every y ∈ (0,−v), we see that P (−y/v; v)/P (0; v) → e−y pointwisely in y as v → −∞.
Moreover,

P (−y/v; v)

P (0; v)

∣∣∣g(Î(y))− d
∣∣∣ ≤ e−C2/ve−y[g(I0) + d]

for every y ∈ (0,−v). By the Lebesgue Dominant Convergent Theorem and let v → −∞
in (8.8) we have that

∫∞
0

e−y(g(0) − d) = 0, which is a contradiction as g(0) = 0 and
d > 0. Hence, P (0; v)/v is bounded uniformly for large negative v. Passing to a sequence if
necessary, we may assume that P (0; v)/v → κ∗ as v → −∞ for some constant κ∗ ≤ 0. For
this case,

∫ −y/v

0

P (s; v)ds =
P (0; v)

v
· v

P (0; v)

∫ −y/v

0

P (s; v) ds → κ∗[e−y − 1].

Hence, Î(y) → I0e
k1κ∗[1−e−y ] pointwisely in y as v → −∞. Following the same argument as

before, we can let v → −∞ in (8.8) to conclude that

(8.9)

∫ ∞

0

e−y[g(I0e
k1κ∗[1−e−y ])− d] dy = 0.

We claim that κ∗ < 0: if κ∗ = 0, from (8.9) we obtain g(I0) = d, which contradicts our
assumption d < g(I0). By the new variable z = e−y, (8.9) can be rewritten as G(κ∗) = d,
where

G(κ) :≡
∫ 1

0

g(I0e
k1κ(1−z)) dz.
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Since G(0) = g(I0) > d, limκ→−∞ G(κ) = 0, and G is strictly increasing in (−∞, 0) we see
that there exists a unique κ∗ < 0 such that G(κ∗) = d. Since κ∗ is independent of the choice
of sequence, we see that P (0; v)/v → κ∗ as v → −∞. ¤

Lemma 8.7. There exist positive constants C5, C6, both independent of v, such that

(a) if v ≥ C5, ∣∣∣∣
P (x; v)

P (1; v)
− e−v(1−x)

∣∣∣∣ ≤
C6

v2

for every x ∈ [0, 1].

(b) if v ≤ −C5, ∣∣∣∣
P (x; v)

P (0; v)
− evx

∣∣∣∣ ≤
C6

v2

for every x ∈ [0, 1].

Proof. We first establish part (a). By part (a) of Lemma 8.3 we have

g1(x; v) ≤ P (x; v)

P (1; v)
− e−v(1−x) ≤ g2(x; v),

where gi(x; v) (i = 1, 2) are given by

g1(x; v) = (e−C2(1−x)/v − 1)e−v(1−x)

and

g2(x; v) = (eC2(1−x)/v − 1)e−v(1−x).

It is easy to check that

∂g1(x; v)

∂x
= ve−v(1−x)[e−C2(1−x)/v(1 + C2/v

2)− 1].

For large v, the only critical point (denoted by x1) of g1 in [0, 1] is determined by

eC2(1−x1)/v = 1 + C2/v
2,

which implies that x1 = 1− (1/v)(1 + o(1)) for large v. Hence,

g1(x1; v) ≥ −C2

v2
e−v(1−x1) ≥ −C7

v2

for some positive constant C7 independent of v. As g1 attains the global minimum at x = x1

in [0, 1], we see that
P (x; v)

P (1; v)
− e−v(1−x) ≥ −C7

v2
.

For g2 we have

∂g2(x; v)

∂x
= (v − C2/v)e−v(1−x)

[
eC2(1−x)/v − 1

1− C2/v2

]
.

For large v, the only critical point (denoted by x2) of g2 in [0, 1] is determined by

eC2(1−x2)/v =
1

1− C2/v2
,

which implies that x2 = 1− (1/v)(1 + o(1)) for large v. Hence,

g2(x2; v) =
C2/v

2

1− C2/v2
e−v(1−x2) ≤ C8

v2
,
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where C8 is some positive constant independent of v. As g2 attains the global maximum at
x = x2 in [0, 1], we see that

P (x; v)

P (1; v)
− e−v(1−x) ≤ C8

v2

for every x ∈ [0, 1]. This establishes (a).
For the proof of part (b), by part (b) of Lemma 8.3 we have

h1(x; v) ≤ P (x; v)

P (0; v)
− evx ≤ h2(x; v),

where hi(x; v) (i = 1, 2) are given by

h1(x; v) = (eC2x/v − 1)evx

and

h2(x; v) = (e−C2x/v − 1)evx.

It is easy to check that

∂h1(x; v)

∂x
= vevx[eC2x/v(1 + C2/v

2)− 1].

For large negative v, the only critical point (denoted by x3) of h1 in [0, 1] is determined by

eC2x3/v = 1/(1 + C2/v
2),

which implies that x3 = −(1/v)(1 + o(1)) for large negative v. Hence,

h1(x3; v) = (−C2/v
2)/(1 + C2/v

2)evx3 ≥ −C9

v2

for some positive constant C9 independent of v. As h1 attains the global minimum at x = x3

in [0, 1], we see that

P (x; v)

P (0; v)
− evx ≥ −C9

v2
.

For h2 we have

∂h2(x; v)

∂x
= (v − C2/v)evx

[
e−C2x/v − 1

1− C2/v2

]
.

For large negative v, the only critical point (denoted by x4) of h2 in [0, 1] is determined by

e−C2x4/v =
1

1− C2/v2
,

which implies that x4 = −(1/v)(1 + o(1)) for large negative v. Hence,

h2(x2; v) =
C2/v

2

1− C2/v2
evx4 ≤ C10

v2
,

where C10 is some positive constant independent of v. As h2 attains the global maximum at
x = x4 in [0, 1], we see that

P (x; v)

P (1; v)
− evx ≤ C10

v2

for every x ∈ [0, 1]. This completes the proof. ¤

Corollary 8.8. There exists some positive constants C11 and C12, both independent of v
such that
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(a) if v ≥ C11, ∣∣P (x; v)− P (1; v)e−v(1−x)
∣∣ ≤ C12

v
for every x ∈ [0, 1];

(b) if v ≤ −C11,

|P (x; v)− P (0; v)evx| ≤ C12

v
for every x ∈ [0, 1].

Proof. For part (a), as P (1; v)/v → κ∗ > 0 as v →∞, by (a) of Lemma 8.7 we have

∣∣P (x; v)− P (1; v)e−v(1−x)
∣∣ = P (1; v)

∣∣∣∣
P (x; v)

P (1; v)
− e−v(1−x)

∣∣∣∣ ≤
C12

v
.

The proof of (b) is similar to that of part (a) and is thus omitted. ¤

Proofs of Theorems 9 and 10. For the proof of Theorem 9, part (a) follows from Lemma
8.2. For the proof of part (b), it follows from Lemma 8.5 that P (1; v)/v → κ∗ as v → ∞
and the existence and uniqueness of κ∗ is also established in Lemma 8.5. The limit (3.10) is
established in Corollary 8.8, from which it follows that P (x; v) → 0 uniformly in any compact
subset of [0, 1). It also follows from Lemma 8.5 and Corollary 8.8 that P (·; v) → κ∗δ(1) as
v →∞. Finally, it follows from Lemma 8.3 that

P (x; v)

P (1; v)e−v(1−x)
→ 1

in L∞(0, 1) as v → ∞. This together with Lemma 8.5 implies that (3.11) holds. This
completes the proof of Theorem 9.

For the proof of Theorem 10, part (a) follows from Lemma 8.1. The proof of part (b) is
similar to that of part (b) of Theorem 9 and is thus omitted. ¤

9. Discussion

In this paper we study a mathematical model on the growth of a single phytoplankton
species in a water column where the species depends solely on light for its metabolism. The
model is described by a nonlocal reaction-diffusion-advection equation, proposed by Huisman
et al. [8, 9]. We focused on the combined effect of death rate, advection (sinking or buoyant)
coefficient, water column depth and turbulent diffusion rate on the persistence of the single
species. Under a general reproductive rate which is an increasing function of light intensity,
we established the existence of critical death rate; i.e., the phytoplankton species survives if
and only if its death rate is less than the critical death rate. We show that the critical death
rate is a strictly monotone decreasing function of advection coefficient and water column
depth and is also a strictly monotone decreasing function of vertical turbulent diffusion
rate for buoyant species. We also determine the asymptotic behaviors of the critical death
rate for sufficiently large sinking or buoyant rate, for shallow or deep water column and for
poorly mixing water column (small turbulent diffusion rate) and well-mixing water columns
(large turbulent diffusion rate). These results enabled us to investigate critical advection
rate, critical water column depth and critical turbulent diffusion rate, which may or may
not exist. For example, if the death rate is suitably small (with fixed water column depth),
the phytoplankton can persist for any sinking/buoyant velocity, i.e., there is no critical
sinking/buoyant velocity under such situation. Similarly, if the death rate is suitably small
(with fixed sinking or buoyant rate), the phytoplankton can persist for any water column
depth, i.e., there is no critical water column depth. Our analysis shows that these critical
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values for water column depth, sinking/buoyant velocity and diffusion rate exist for some
intermediate range of phytoplankton death rates. In short summary, we have shown that

• Critical death rate always exists and it is unique;

• Critical sinking or buoyant rate and critical water column depth only exist for inter-
mediate values of death rates. They are unique whenever they exist;

• Critical turbulent diffusion rate only exist for intermediate values of death rates.
Whenever it exists, it is unique for buoyant species. However, there may exist two
critical turbulent diffusion rates for sinking species.

9.1. Critical water column depth. In 1953 Sverdrup is the first one to introduce the
concept of critical depth of the mixed layer beyond which the phytoplankton growth would
be impossible [9]. In [8] the authors introduced an interesting way to define the critical
water column depth. They considered the positive steady state problem of the same model
(2.1)-(2.4) satisfying (2.5). When the positive steady state exists, they prove the following
nontrivial properties of steady states:

• Let p0 be the plankton population density at the surface of the water column. If we
treat the depth L as a function of p0, then

L = L(p0) =
M

p0

+ O(
1

p2
0

)

as p0 →∞, where M > 0 is some positive constant.

• L(p0) is a monotonically decreasing function of p0: L(p0,1) > L(p0,2) if p0,1 < p0,2.

As a consequence, the critical water column depth is defined in [8] as

(9.1) L∗ = lim
p0→0+

L(p0).

In this paper, we define the critical water column depth L∗ by the equation d = d∗(v, L∗, D),
where d∗ is the critical death rate. We conjecture that L∗ = L∗ whenever they are finite;
i.e., our definition of the critical depth is equivalent to that given by (9.1).

We establish here some lower bound of L∗ in terms of d. For fixed death rate satisfying
d < g(I0), we define the depth Lb as

Lb :=
1

k0

ln
I0

g−1(d)

or equivalently

d = g(I0e
−k0Lb).

It follows that

0 < d < g(I0e
−k0L) ⇔ 0 < L < Lb.

Thus if the water column depth is less than Lb, it follows from part (a) of Theorem 3 that
plankton bloom for any sinking/byoent rate and any turbulent diffusion rate. In particular,
this implies that

L∗ ≥ Lb :=
1

k0

ln
I0

g−1(d)
.

Interestingly, this implies that L∗ → ∞ as k0 → 0+; i.e., if k0 is very small (close to the
self-shading situation), the critical depth will become sufficiently large. This is consistent
with the result from [16] that the self-shading model has positive steady state for any finite
water column depth.
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9.2. Monotonicity of critical rates. By Theorem 2, the critical death rate d∗(v, L, D) is
strictly monotone decreasing for v and L, which is biologically intuitive: the larger v and L
are, the species has more tendency to sink and the deeper the water column is, which leaves
the species less susceptible to the light and makes it harder for the phytoplankton to persist.
It is natural to inquire how other critical rates L∗, α∗ and D∗ depend on their parameters.

• L∗ = L∗(d, v, D) is monotone decreasing in d and v and monotone decreasing in D
when v ≤ 0. To see this, differentiating d = d∗(v, L∗, D) with respect to d,

∂d∗
∂L

· ∂L∗
∂d

= 1.

As ∂d∗/∂L ≤ 0, ∂L∗/∂d < 0 (and also ∂d∗/∂L < 0); Differentiating d = d∗(v, L∗, D)
with respect to v, we have

∂d∗
∂L

· ∂L∗
∂v

+
∂d∗
∂v

= 0.

As ∂d∗/∂L < 0 and ∂d∗/∂v < 0, ∂L∗/∂v < 0. Similarly, we can show that ∂L∗/∂D <
0 provided that v ≤ 0.

• By similar argument as before, we can show that the critical rate v∗ = v∗(d, L, D) is
also monotone decreasing in d and L, and monotone decreasing in D when v ≤ 0.
Similarly, D∗ = D∗(d, v, L) is also monotone decreasing in d, v and L when v ≤ 0;
i.e, the buoyant situation.

It will be of interest to understand the asymptotic behaviors of the critical rates L∗, α∗
and D∗ for large sinking/buoyant rates and poorly and well mixed water columns.

9.3. Future directions. In the case of no sinking/buoyant, it is illustrated numerically
in [11] that if the turbulent diffusion rate is less than a critical value, the phytoplankton
can persist irrespective the water column depth. The role of vertical turbulent diffusion
coefficient becomes more complicated if we include the advection of the phytoplankton species
in the water column. The analysis in [8] suggests that there might exist two critical vertical
turbulent diffusion coefficients for sinking phytoplankton (Figure 5, [8]). When the sinking
velocity is suitably small, the existence of two critical turbulent diffusion rates is confirmed
by part (b) of Theorem 8, in strong contrast with the buoyant case for which there is at most
one critical turbulent diffusion rate, as shown by Theorem 7. It will be of interest to further
investigate how the critical death rate depends upon vertical turbulent diffusion, especially
when the sinking velocity is suitably large.

Regarding phytoplankton density distributions in the water column, we show that the
species forms a thin layer at the surface of the water column for sufficiently large buoyant
rate, and it forms a thin layer at the bottom of the water column for sufficiently large sinking
rate. It will be of interest to understand the asymptotic behaviors of positive steady states
for poorly mixed water columns and for shallow and deep water columns.

Regarding multiple consumer and/or multiple resource problems, we plan to build upon
the current work and further study two species competing for light and/or nutrient in a
water column with advections. We will also investigate the competition of two species for
two complementary nutrients in the oligotrophic ecosystem where the light is amply supplied.
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