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Abstract Vaccination and antiviral treatment are two important prevention and control
measures for the spread of influenza. However, the benefit of antiviral use can be com-
promised if drug-resistant strains arise. In this paper, we develop a mathematical model
to explore the impact of vaccination and antiviral treatment on the transmission dynam-
ics of influenza. The model includes both drug-sensitive and resistant strains. Analytical
results of the model show that the quantities RSC and RRC, which represent the control
reproduction numbers of the sensitive and resistant strains, respectively, provide thresh-
old conditions that determine the competitive outcomes of the two strains. These thresh-
old conditions can be used to gain important insights into the effect of vaccination and
treatment on the prevention and control of influenza. Numerical simulations are also con-
ducted to confirm and extend the analytic results. The findings imply that higher levels of
treatment may lead to an increase of epidemic size, and the extent to which this occurs
depends on other factors such as the rates of vaccination and resistance development. This
suggests that antiviral treatment should be implemented appropriately.

Keywords Influenza · Antiviral treatment · Vaccination · Stability · Drug-resistant
strains

1. Introduction

Influenza (the flu) is a contagious respiratory illness caused by influenza viruses, which
are certain RNA viruses of the Orthomyxoviridae family (Lamb, 1989; Earn et al., 2002).
In humans, common symptoms of influenza infection are fever, sore throat, muscle pains,
severe headache, coughing, and weakness and fatigue. Although it is sometimes confused
with the common cold, influenza is a much more severe disease. It has historically been
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a cause of excessive morbidity and mortality. Three influenza pandemics have occurred
during the twentieth century and killed tens of millions of people. The most famous and
lethal outbreak was the so-called Spanish Flu pandemic (type A influenza, H1N1 sub-
type), which lasted from 1918 to 1919. Older estimates indicate that 40–50 million peo-
ple died from the disease, while from current estimates 50–100 million people were killed
worldwide. Later flu pandemics were not so devastating. They included the 1957 Asian
flu and the 1968 Hong Kong flu, but even these smaller outbreaks killed millions of peo-
ple. In the 1990s, a deadly avian strain named H5N1 has posed the greatest risk for a new
influenza pandemic since it first killed humans in Asia. Because of the high risk for the
avian influenza pandemic and large number of deaths associated with influenza, it is im-
perative to increase our understanding of the influenza disease dynamics. Mathematical
models have provided a useful tool to gain insights into the transmission and control of
the disease. These insights can potentially help guide us to assess the effectiveness and
implications of various preventive and control strategies.

Several recent studies on influenza modeling have focused on the influence of preven-
tion and control measures including vaccination, antiviral use, quarantine, and isolation
(see, for example, Ferguson et al., 2003; Alexander et al. 2004, 2007, 2008; Nuño et al.,
2005; Regoes and Bonhoeffer, 2006; Lipsitch et al., 2007; McCaw and McVernon, 2007;
McCaw et al., 2008). These models have provided useful information about the impact of
various control measures in the disease dynamics. However, most of these models have
considered either vaccination or antiviral use alone. In this paper, we study a model that
includes explicitly both antiviral use and vaccination. We adapt the approach of Lipsitch et
al. (2007) for modeling the drug treatment (without prophylaxis). We extend their model
by including a vaccinated class and vital dynamics (recruitment and mortality). The new
model allows us to examine the effects of antiviral use on the prevalence of both drug-
sensitive and drug-resistant strains under the influence of vaccination.

Mathematical properties of the model system are studied both analytically and nu-
merically. It is shown that the system has three possible equilibrium points including
an endemic equilibrium at which both strains are present. A detailed analysis of stabil-
ity and uniform persistence is conducted, which shows that the dynamic behaviors of
the system are determined by two quantities, RSC(ν, f ) and RRC(ν, f ) (where ν repre-
sents the vaccination rate and f represents the treatment rate; see (3)). Results of the
bifurcation analysis suggest that the effects of drug treatment on the infection levels of
both strains depend not only on the levels of drug use, but also on the rate at which
the population is vaccinated. For example, for a given vaccination rate ν > 0 such that
RSC(ν,0) > RRC(ν,0) > 1, the sensitive strain will be uniformly persistent, while the re-
sistant will be absent. As the treatment rate f increases, the inequality may be reversed
such that 1 < RSC(ν, f ) < RRC(ν, f ), in which case the resistant strain will eliminate the
sensitive strain. Moreover, benefits of antiviral use may be compromised in the sense that
increasing treatment rate may lead to a higher number of cumulative infection. Whether
or not these scenarios are possible and for what values of f they will occur depend on the
level of population immunity determined by ν.

Another interesting finding from our model is that we can derive a new epidemiological
quantity which represents a measure for the total control reproduction number, denoted
by R[n]

TC , of a sensitive case in the nth generation. We demonstrate that R[n]
TC provides a

more suitable measure than the usual control reproduction number RSC in terms of their
capability of detecting a potential negative effect of antiviral use in disease control. More
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specifically, we show that RSC is always a decreasing function of the treatment rate f ,
whereas R[n]

TC may assume its minimum at an intermediate value fc ∈ (0,1) and become
an increasing function of f for f > fc (see Section 6). This captures the phenomenon we
observed about the total number of infections in the numerical simulations of the model.
This suggests that the quantity R[n]

TC can serve as a better indicator than RSC for examining
the effect of drug use on the epidemic size.

The analytical results are also used to guide our numerical studies, which illustrate how
the combination of vaccination and antiviral use may change the competitive outcomes of
the two strains as well as the total infection level, especially in the case when the infection
level increases with drug treatment rate.

The paper is organized as follows. Section 2 introduces the new model which is an
extension of the model in Lipsitch et al. (2007) by including a vaccinated class and vital
dynamics. Threshold conditions for the existence of equilibria are derived in Section 3.
Section 4 includes the analysis of stability and uniform persistence, and Section 5 is de-
voted to numerical simulations. In Section 6, we discuss some issues related to the con-
nection between control reproduction numbers and epidemic sizes. Section 7 summarizes
the findings and conclusions.

2. Model description

In Lipsitch et al. (2007), an SIR type of epidemic model is proposed to study the effect
of prophylaxis and drug treatment on the proportions of sensitive- and resistant-strains
of influenza infections. It is assumed that a fraction of infected individuals will receive
prophylaxis and that among the individuals who are not prophylaxed a fraction will be
treated. It is also assumed that drug-resistant cases may arise as a consequence of antiviral
use. Vital dynamics and vaccination are not considered and the transmission rates of the
two strains may be different.

The model presented in this paper adopts a similar structure as that in Lipsitch et al.
(2007). We introduce a vaccinated class and include vital dynamics. As the main purpose
of this model is to look at the interaction between vaccination and drug use, we neglect
prophylaxis and consider only drug treatment. Let N denote the total number of the popu-
lation which is divided into six subclasses: susceptible (S), vaccinated (V ), infected with
the sensitive strain and untreated (ISU) or treated (IST ), infected with the resistant strain
(IR), and recovered (R). Assume that there is a constant recruitment rate Λ (into the sus-
ceptible class) and a per-capita natural death rate μ. A transition diagram between these
epidemic classes is shown in Fig. 1. Susceptible individuals are vaccinated at per-capita
rate ν and the immunity wanes at per-capita rate σ . The functions λS(t) and λR(t) rep-
resent the rates at which a susceptible individual becomes infected with the sensitive and
resistant strains, respectively. A fraction f of infected individuals with the sensitive strain
receives treatment, and with a probability c an individual who received treatment will de-
velop drug resistance. The transmission rate by an individual who received treatment will
be reduced by a factor δ. An infected individual in the Ij (j = ST,SU,R) class recovers at
the rate kj , and a recovered individual may lose immunity at the rate w (w = 0 in the case
of permanent immunity). The definitions of all variable and parameters are summarized
in Table 1. All parameters are positive except that 0 ≤ f < 1 and 0 ≤ c < 1.
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Fig. 1 Diagram of transitions between epidemiological classes.

Table 1 Definitions of frequently used symbols

Parameter Description

Λ Recruitment rate of individuals
1
μ Average life-span
ν Rate at which susceptible individuals are vaccinated
1
ω Average time of losing immunity acquired by infection
1
σ Average time of losing vaccine-induced immunity
βS Transmission coefficient of the untreated infected individuals
βR Transmission coefficient of the drug-resistant infected individuals
δ Reduction factor in infectiousness due to the antiviral treatment
f Fraction of the new infected cases who are treated
c Fraction of the treated infected cases who progress to the drug-resistant stage

1
kU

Average infected length of the untreated cases

1
kT

Average infected length of the treated cases

1
kR

Average infected length of the drug-resistant cases

Based on the transition diagram in Fig. 1, the model is described by the following
system of differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= Λ − (μ + ν)S − λS(t)S − λR(t)S + ωR + σV,

dV
dt

= νS − (σ + μ)V,

dISU
dt

= (1 − f )λS(t)S − μISU − kUISU,

dIST
dt

= f (1 − c)λS(t)S − μIST − kT IST ,

dIR
dt

= λR(t)S + f cλS(t)S − μIR − kRIR,

dR
dt

= kT IST + kUISU + kRIR − (μ + ω)R,

(1)

where

λS(t) = βS

ISU + δIST

N
, λR(t) = βR

IR

N
,
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N = S + V + ISU + IST + IR + R, and βS and βR denote the transmission coefficients for
the sensitive and resistant strains, respectively.

3. Steady states and reproduction numbers

Notice that the total population size N satisfies the equation

N ′ = Λ − μN

and that N(t) → Λ
μ

as t → +∞, we know that the biologically feasible region

Γ =
{

(S,V , ISU, IST , IR,R) : 0 ≤ S,V, ISU, IST , IR,R,

S + V + ISU + IST + IR + R ≤ Λ

μ

}

is positively invariant for the system (1). Therefore, in what follows, we consider only
solutions with initial conditions inside the region Γ , in which the usual existence, unique-
ness of solutions and continuation results hold.

The system (1) always has the disease-free equilibrium (DFE)

E0 = (
S0,V 0,0,0,0,0

)
,

where

S0 = σ + μ

σ + μ + ν
N0, V 0 = ν

σ + μ + ν
N0, N0 = Λ

μ
(2)

represent the numbers of susceptible, vaccinated, and total populations, respectively, in
the absence of infection. The existence of other equilibria are determined by the two
quantities, RSC and RRC , given by

RSC = σ + μ

σ + μ + ν

[
(1 − f )RSU + f (1 − c)RST

]
,

RRC = (σ + μ)

(σ + μ + ν)
RR,

(3)

where

RSU = βS

μ + kU

, RST = βSδ

μ + kT

, RR = βR

μ + kR

. (4)

The biological interpretations of these quantities are as follows. RST and RSU represent
the numbers of secondary sensitive cases produced by a treated and untreated sensitive
case, respectively, during the period of infection in a susceptible population. Notice that
each sensitive case may either receive treatment with probability f or remain untreated
with probability 1 − f , and only a fraction f (1 − c) of treated sensitive cases remains
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sensitive (the fractionf c becomes resistant). Notice also that (σ + μ)/(σ + μ + ν) is the
fraction of the population that is susceptible. Thus, RSC (S for sensitive and C for control)
represents the number of secondary sensitive cases produced by a typical sensitive case
during the period of infection in a population where control measures (vaccination and
treatment) are implemented.

Similarly, RR in (4) represents the number of secondary resistant cases produced by a
resistant case during the period of infection in a completely susceptible population. Thus,
RRC (R for resistant and C for control) represents the number of secondary resistant cases
produced by a typical resistant case, i.e., the control reproduction number for the resistant
strain, during the period of infection in a population where the fraction of susceptibles is
(σ + μ)/(σ + μ + ν). A detailed derivation of RSC and RRC are given in Appendix A.

For ease of presentation, we discuss the cases f = 0 (no treatment) and f > 0 sepa-
rately.

Case 1: f = 0. Let R0
SC = RSC|f =0 = σ+μ

σ+μ+ν
RSU . In this case, system (1) has two

possible nontrivial boundary equilibria

Ê = (Ŝ, V̂ ,0,0, ÎR, R̂) and Ē = (S̄, V̄ , ĪSU,0,0, R̄), (5)

where

Ŝ = S0

RRC
, V̂ = V 0

RRC
,

ÎR = (μ + ω)N0

μ + ω + kR

(

1 − 1

RRC

)

, R̂ = N0 − Ŝ − V̂ − ÎR,

(6)

and

S̄ = S0

RSC
, V̄ = V 0

RSC
,

ĪSU = (μ + ω)N0

μ + ω + kU

(

1 − 1

RSC

)

, R̂ = N0 − S̄ − V̄ − ĪR.

(7)

It is clear from (6) and (7) that

(a) Ē exists if and only if RSC > 1 > RRC;
(b) Ê exists if and only if RRC > 1 > RSC; and
(c) both Ē and Ê exist if and only if RSC > RRC > 1 or RRC > RSC > 1.

Case 2: 0 < f < 1. In this case, the boundary equilibrium Ē no longer exists. The
reason for this is that when f > 0, the resistant strain will always present whenever the
sensitive strain does due to the de novo resistance. The boundary equilibrium Ê still exists
and is given by (6). There is also a possible interior equilibria (all components are positive)

E∗ = (S∗,V ∗, I ∗
SU, I ∗

ST , I ∗
R,R∗), (8)
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where

S∗ = S0

RSC
, V ∗ = V 0

RSC
,

I ∗
SU = (μ + ω)(RSC − 1)N0

σ+μ

σ+μ+ν
(βS + βRb + βSδa) + ω(1 + a + b)RSC

,

I ∗
ST = aI ∗

SU, I ∗
R = bI ∗

SU, R∗ = N0 − S∗ − V ∗ − I ∗
SU − I ∗

ST − I ∗
R,

(9)

with

a = f (1 − c)(μ + kU)

(1 − f )(μ + kT )
, b = f c(μ + kU )

(1 − f )(μ + kR)(1 − RRC
RSC

)
. (10)

From the expression of ÎR in (6), it is easy to see that

ÎR > 0 if and only if RRC > 1. (11)

Equation (11) implies that Ê exists if and only if RRC > 1. From (9) and (10), we can see
that

I ∗
SU > 0 if and only if RSC > 1,

I ∗
R > 0 if and only if RRC < RSC.

(12)

Equation (12) implies that E∗ exists if and only if RSC > 1 and RRC < RSC . Moreover, it
is easy to verify that E∗ approaches Ē as f → 0.

The above results on the existence of equilibria of system (1) when 0 < f < 1 are
summarized in Theorem 3.1.

Theorem 3.1. Assume that 0 < f < 1. Let RSC, RRC be defined as in (3), and let

RC = max{RSC, RRC}. (13)

Then,

(1) If RC < 1, then only the disease-free equilibrium E0 exists.
(2) If RC > 1, then besides E0, system (1) has also the resistant-strain-only equilibrium

Ê when RRC > 1, and the coexistence equilibrium E∗ when RSC > 1 and RRC < RSC .

The proof of Theorem 3.1 is given in Appendix B.

4. Stability and persistence

The total population size N(t) satisfies the equation dN/dt = Λ−μN and N(t) → Λ/μ

as t → ∞. Using results from Castillo-Chavez and Thieme (1995) and Mischaikow et
al. (1995), we can obtain analytical results by considering the following limiting system
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of (1) in which the total population is assumed to be constant N = Λ/μ:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= Λ − (μ + ν)S − μβS

Λ
(ISU + δIST)S − μβR

Λ
IRS

+ ωR + σ(Λ
μ

− S − ISU − IST − IR − R),

dISU
dt

= (1 − f )
μβS

Λ
(ISU + δIST)S − μISU − kUISU,

dIST
dt

= f (1 − c)
μβS

Λ
(ISU + δIST)S − μIST − kT IST ,

dIR
dt

= μβR

Λ
IRS + f c

μβS

Λ
(ISU + δIST)S − μIR − kRIR,

dR
dt

= kUISU + kT IST + kRIR − (μ + ω)R.

(14)

Notice that the V equation is eliminated from (14) and the variable V (in the S equa-
tion) is replaced by Λ/μ − S − ISU − IST − IR − R. Systems (1) and (14) have the
same set of equilibria and the same existence conditions as given in the previous sec-
tion. For ease of notation, we rearrange the order of variables as (S, IR,R, ISU, IST), and
still use the notation E0, Ê, and E∗ (or Ē when f = 0) to denote these equilibria. That
is, E0 = (S0,0,0,0,0), Ê = (Ŝ, ÎR, R̂,0,0), and E∗ = (S∗, I ∗

R,R∗, I ∗
SU, I ∗

ST) (which co-
incides with Ē = (S̄,0, R̄, ĪSU,0) when f = 0).

4.1. Stability of equilibria

From the derivation of the quantities RSC and RRC (see Appendix A) and Theorem 2 of
Driessche and Watmough (2002), it follows that the DFE, E0, is locally asymptotically
stable (l.a.s.) if RC < 1 and unstable if RC > 1. For the stability of Ê, we consider only
the case when RRC > 1 as Ê does not exist when RRC < 1.

For 0 ≤ f < 1, the Jacobian of system (14) at Ê is

J (Ŝ, ÎR, R̂,0,0) =
(

A11 A12

0 A22

)

,

where

A11 =

⎛

⎜
⎜
⎝

−(μ + ν) − μβR

Λ
ÎR − σ −μβR

Λ
Ŝ − σ ω − σ

μβR

Λ
ÎR 0 0

0 kR −(ω + μ)

⎞

⎟
⎟
⎠ ,

A22 =
(

(1 − f )
μβS

Λ
Ŝ − (μ + kU ) (1 − f )

μβSδ

Λ
Ŝ

f (1 − c)
μβS

Λ
Ŝ f (1 − c)

μβSδ

Λ
Ŝ − (μ + kT )

)

,

and

A12 =

⎛

⎜
⎜
⎝

−μβS

Λ
Ŝ − σ −μβSδ

Λ
Ŝ − σ

f c
μβS

Λ
Ŝ f c

μβSδ

Λ
Ŝ

kU kT

⎞

⎟
⎟
⎠ .

It is shown in Appendix C that all eigenvalues of the matrix A11 have negative real parts.
Thus, the stability of the equilibrium Ê is determined by the eigenvalues of the matrix A22.
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Fig. 2 The bifurcation diagram in (RSC, RRC) plane. The stability of equilibria in each region is given
in Table 2.

Table 2 Existence and stability of equilibria

E0 Ê E∗ if 0 < f < 1 (or Ē if f = 0)

RC > 1 I: RC < 1 LS DNE DNE

IIa : RSC > 1 > RRC US DNE LS (Simulated)
IIb: RSC > RRC > 1 US US LS (Simulated)
IIIa : RRC > 1 > RSC US LS DNE
IIIb: RRC > RSC > 1 US LS E∗ DNE (Ē is US for f = 0)

DNE: does not exist; US: unstable; LS: locally stable

It is also shown that all eigenvalues of A22 have negative real parts if RSC < RRC (which
includes all points (RSC, RRC) in the Region IIIa and Region IIIb in Fig. 2), in which
case, Ê is l.a.s. A22 has one positive eigenvalue if RSC > RRC (see Region IIb in Fig. 2),
in which case Ê is unstable.

Although we do not have an analytic result for the stability of E∗, our numerical studies
indicate that E∗ is globally asymptotically stable whenever it exists, i.e., when 0 < f < 1,
RSC > 1 and RSC > RRC (see Region II = IIa ∪ IIb in Fig. 2).

Similarly, when f = 0, the equilibrium Ē is l.a.s. if RSC > RRC and RSC > 1 (see
Region IIa and Region IIb in Fig. 2) and unstable if RRC > RSC > 1 (see Region IIIb in
Fig. 2).

The stability results for both case 1 (f = 0) and case 2 (f > 0) can be summarized in
the following theorems.

Theorem 4.1. Assume f = 0. Let RC be defined as in (13). Then

(a) E0 is locally asymptotically stable if RC < 1 and unstable if RC > 1;
(b) when RRC > 1, Ê is locally hyperbolically stable if RSC < RRC and hyperbolically

unstable if RSC > RRC;
(c) when RSC > 1, Ē is locally hyperbolically stable if RSC > RRC and hyperbolically

unstable if RSC < RRC .
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Fig. 3 Numerical solutions for the system (1) when RR = 0.9RSU . ISU + IST is the number of sensi-
tive cases and IR is the number of resistant cases. (a) f = 0.13, ν = 0.0017, which lies in Region IIa ;
(b) f = 0.15, ν = 0.001, which lies in Region IIb ; and (c) f = 0.25, ν = 0.001,which lies in Region IIIb .
Initial values are S(0) = 8000,V (0) = 2000, ISU = 1.

Theorem 4.2. Assume 0 < f < 1. Let RC be defined as in (13). Then

(a) E0 is locally asymptotically stable if RC < 1 and unstable if RC > 1;
(b) when RRC > 1, Ê is locally hyperbolically stable if RSC < RRC and hyperbolically

unstable if RSC > RRC;
(c) E∗ is stable whenever it exists, i.e., when 0 < f < 1, RSC > 1 and RSC > RRC .

Results in Theorems 3.1, 4.1, and 4.2 are also summarized in Table 2 and in the bi-
furcation diagram shown in Fig. 2. We have conducted extensive simulations to confirm
these results, some of which are illustrated in Fig. 3. More detailed explanations of the
Fig. 3 are given in Section 5.

4.2. Global stability and uniform persistence

In the special case when the rates of immunity loss from the V and R individuals are equal,
i.e., w = σ , analytical results on the global stability of E0 and Ê and uniform persistence
can be obtained. The simplified system under this assumption is given in Appendix D (see
system (D.2)). The results are stated below.

Theorem 4.3. Consider the limiting system (D.2) and assume w = σ . The DFE E0 is
globally asymptotically stable if RC < 1.

Theorem 4.4. If RRC > 1 ≥ RSC , then the boundary equilibrium Ê of system (D.2) is
globally asymptotically stable.

In addition, the behavior of the local dynamics near E0 and Ê as described in The-
orem 4.2 implies that system (D.2) is uniformly persistent in IntΓ if RSC > RRC > 1;
namely, there exists a constant ξ > 0 such that

lim inf
t→+∞ S(t) > ξ and lim inf

t→+∞ Ii(t) > ξ, for i = SU,ST,R.

Here, ξ is independent of initial data in Γ .
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Fig. 4 Bifurcation diagrams in the (ν, f ) plane for the cases of RR < RSU (in (a)) and RR > RSU
(in (b)). The labeled regions correspond to those in Fig. 2, which is a bifurcation diagram in the
(RSC, RRC) plane. That is, in Region I, RSC < 1 and RRC < 1. In Region IIa , RSC > 1 and RRC < 1.
In Region IIb , RSC > RRC > 1. In Region IIIa , RSC < 1 and RRC > 1. In Region IIIb , RRC > RSC > 1.

Theorem 4.5. Let 0 < f < 1 and RSC > RRC > 1. System (D.2) is uniformly persistent.

The proofs of Theorems 4.3, 4.4, and 4.5 are provided in Appendices D, E, and F,
respectively.

Biological implications of the results in Theorems 4.2–4.5 are the following: (i) when
0 < f < 1 the disease cannot spread if (RSC, RRC) belongs to Region I in Fig. 2; (ii)
both strains will coexist if (RSC, RRC) is in Region II = IIa ∪ IIb; and (iii) only the resis-
tant strain will be present if (RSC, RRC) is in Region III = IIIa ∪ IIIb . Notice that when
0 < f < 1, the resistant strain is always present as long as the disease does not die out.
However, the sensitive strain can persist only if its reproduction number is larger than the
reproduction number of the resistant restrain (RSC > RRC). This nonsymmetry between
the two strains is a consequence of the de novo resistance. Therefore, the use of antiviral
drug may generate a significant competitive advantage for the drug-resistant strain even
if the reproduction number of the resistant strain is much lower than that of the sensitive
strain.

Notice from (3) that RSC and RRC are functions of f and/or ν. Thus, the threshold
conditions determined by RSC and RRC can be rewritten using f and ν, which will make it
more transparent to understand the consequence of varying the treatment and vaccination
rates. Figure 4 illustrates two bifurcation diagrams in the (ν, f ) plane corresponding to
two scenarios. Figure 4(a) is for the case when the basic reproduction number of the drug-
resistant strain is smaller than that of the sensitive strain (i.e., RR < RSU), and Fig. 4(b)
is for the case when RR > RSU . Since the fitness of drug-resistant viruses is not well
known, it is relevant to considered both of the cases. In both Fig. 4(a) and Fig. 4(b), the
regions represented by the letters correspond to those in the bifurcation diagram in Fig. 2
(which is drawn in the (RSC, RRC) plane). The stability results in the regions in Fig. 4 are
summarized in Table 3. We need to point out that the bifurcation diagram shown in Fig. 4
is produced by fixing all parameter values except ν and f . The set of parameter values
used in Fig. 4 is the same as those used in Fig. 3 (see the next section for a more detailed
discussion about Fig. 3).
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Table 3 Parameter values for system (1)

Parameter Estimated value Unit

Λ
μ 10000 number

μ 0.00005 day−1

ν Variable day−1

ω 0.003 day−1

σ 0.003 day−1

βS 0.2835 day−1

βR Variable day−1

δ 0.4 –
f Variable –
c 0.02 –
kU 0.1667 day−1

kT 0.1667 day−1

kR 0.1667 day−1

Figure 4 can be very helpful for examining the joint effect of treatment and vacci-
nation. For example, consider Fig. 4(a) with RR = 0.9RSU < RSU , and consider three
different values of vaccination rates: ν = 0.001, 0.0017, 0.0035. For the smaller value
of ν = 0.001, we see from Fig. 4(a) that (ν, f ) = (0.001,0) lies in Region IIb , in which
Ē is stable (at Ē the resistant strain is absent as f = 0). When f is positive, the coex-
istence equilibrium E∗ begins to emerge. Hence, both the resistant and sensitive strains
will persist. As f continuous to increase, (ν, f ) moves into Region IIIa or IIIb , in which
the sensitive strain is excluded. For the intermediate value of ν = 0.0017, from Fig. 4(a)
(ν, f ) = (0.0017,0) lies in Region IIa , in which Ē is stable. When f becomes positive,
the coexistence equilibrium E∗ emerges and both the resistant and sensitive strains will
persist, which is similar to the case of smaller ν. However, as f continuous to increase,
(ν, f ) will enter Region I, in which both strains will die out. Hence, there is a critical value
of treatment rate, fc , above which the disease can be eliminated. This is clearly different
from the case of smaller ν. For the larger value of ν = 0.0035, (ν, f ) = (0.0035,0) lies
in Region I for all f (see Fig. 4(a)). This implies that the disease will not spread. Some
simulation results using these three ν values are shown in the next section (see Figs. 5, 6,
and 7).

Similar behaviors are observed in Fig. 4(b), in which we assume that RR = 1.1RSU >

RSU with all other parameter values being the same as in Fig. 4(a). The dynamics in
various regions shown in Fig. 4(b) are described in Table 2. Some simulation results for
this case are also discussed in the next section.

5. Numerical results

In this section, we present some numerical simulation results, which confirm or extend
the analytic results and illustrate the effect of two important factors on controlling the
infection: the rate at which susceptible individuals are vaccinated (ν) and the fraction of
new infections with sensitive strain being treated (f ).

We consider the situation in which the population size has reached the steady-state
Λ/μ = 104. Assume that the life span is 1/μ = 60 years, i.e., μ ≈ 0.00005 (day−1). It
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Fig. 5 Simulation results for the case RR = 0.9RSU < RSU and ν = 0.001. (a), (b), (c), and (d) are time
plots of the numbers of sensitive cases ISU(t)+IST (t), the number of resistant cases, IR(t), the cumulative
infected cases of both strains AMT(t), and the cumulative resistant cases AMTR(t), respectively. (e) shows
the profiles of the cumulative cases vs. treatment rate f at a fixed time T = 800. The solid curve in (e) is
for the cumulative cases of both strains, AMT(800), and the dashed curve in (e) is for the cumulative
resistant cases, AMTR(800). Initial values are S(0) = 8000,V (0) = 2000, I (0) = 1.
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Fig. 6 Similar to Fig. 5 except that ν = 0.0017. All other parameter values are the same as in Fig. 5.

is reported by Fiore et al. (2007) that uncomplicated influenza illness typically resolves
after 3–7 days for the majority of persons. Based on this, we assume an average period
of infection to be 6 days, i.e., kU = kT = kR = 0.1667 (day−1). According to CDC, the
protection (immunity) obtained from vaccination lasts about one year (CDC, 2008). As-
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Fig. 7 Similar to Fig. 5 except that ν = 0.0035. All other parameter values are the same as in Fig. 5.

suming that the average length of immunity induced by vaccine (σ ) and by infection (ω)
are the same, we choose σ = ω = 0.003 (day−1) .

Estimates of the basic reproduction number for pandemic influenza vary widely, rang-
ing from 1.68 to 20 (Mills et al., 2004). In this paper, we set RSU = 1.7. The baseline
transmission coefficients for untreated sensitive cases (βS ) can be calculated from the for-
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mula for RSU (see (4)), which gives βS = 0.2835 (day−1). It is suggested (Kiso et al.,
2004) that in normal influenza seasons several percentage of individuals who receive os-
eltamivir treatment may develop resistance to the drug. From this information, we choose
c = 0.02. The reduction in transmission rate due to treatment is chosen to be δ = 0.4. The
control parameters f and ν can vary. The basic reproduction number of the drug-resistant
strain RR can be either greater or smaller than that of the sensitive strain RSU . We will
consider both the case RR/RSU < 1 and the case RR/RSU > 1. The parameter values are
summarized in Table 3.

We first consider the case RR/RSU = 0.9 < 1. In this case, RR = 0.9 × 1.7 = 1.53,
and using the formula for RR in (4) we can get the estimate for βR = 0.2551. Figure 3
illustrates some simulation results for (ν, f ) in various regions shown in the bifurcation
diagram (see Fig. 4(a)). Figure 3(a) is for the case when (ν, f ) lies in Region IIa in which
RSC > 1 > RRC , and Fig. 3(b) is for the case when (ν, f ) lies in Region IIb in which
RSC > RRC > 1. It shows that in both cases the two strains can coexist, with a higher level
of resistant infections in Fig. 3(b). This is because the value of RRC in Fig. 3(b) is higher.
Figure 3(c) is for the case when (ν, f ) lies in Region IIIb in which RRC > RSC > 1.
It suggests that the boundary equilibrium Ê is a globally attractor. We observe that the
simulations shown in this figure confirm the results described in Table 3.

Next, we examine the effect of antiviral treatment on the prevalence of influenza under
a given level of vaccination (i.e., for a fixed value of ν). One of the purposes is to look
at whether increasing treatment rate will always be beneficial in terms of reducing the
infection level. Although the endemic level at E∗ can be used as a measure for examining
the effects of f and ν, it does not provide detailed information for short-term behaviors.
As we are also interested in transient dynamics including epidemic peak size and the time
to the peak, the measure we choose to use here is the cumulative number of infected
cases (termed cumulative incidence). This quantity is different from the final epidemic
size for epidemic models without demographics, which have been considered in many
recent studies (see, for example, Ma and Earn, 2006; Arino et al., 2007; Feng, 2007).
Nevertheless, it provides a reasonable criterion for examining the short-term effect of
different control strategies for endemic diseases with demographics.

Let AMT(t) denote the total cumulative incidence of both strains at time t and let
AMTR(t) denote the cumulative incidence of the resistant strain at time t . Then these
quantities can be calculated by using the following formulas:

AMT(t) =
∫ t

0

(
λS(τ )S(τ ) + λR(τ)S(τ )

)
dτ,

AMTR(t) =
∫ t

0

(
λR(τ)S(τ ) + f cλS(τ )S(τ )

)
dτ,

where S(t), λS(t), and λR(t) are given by the solutions of the system (1).
We consider three fixed values of vaccination rate: ν = 0.001,0.0017,0.0035. The

simulation results corresponding to these ν values are demonstrated in Figs. 5, 6, and 7,
respectively. In all three figures, (a) shows the time plots for the number of sensitive cases
(ISU + IST ) with various treatment rates (f ); (b) shows the time plots for the number of
resistant cases (IR) with various values of f ; (c) is the time plot of the total incidence; (d)
is the time plot of the total incidence of resistant strain; and (e) plots the total cumulative
incidence at an end time T (= 800) as a function of the treatment rate f .
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We observe in Figs. 5–7 that for the sensitive strain, as f increases, the peak size for
this strain decreases and the time to the peak can be delayed (see (a)). However, for the
resistant strain, an increase in f has also increased the peak size for this strain (see (b)).
It seems from Figs. 5–6 that a slight increase in vaccination rate ν (from 0.001 and to
0.0017) may dramatically influence the effect of treatment in terms of reducing the peak
size for both strains (see (a) and (b)). It seems that the variation in the total incidence
between different treatment rates is much smaller in Fig. 5(c) than that in Figs. 6(c),
whereas the variation in the total incidence of resistant strain between different treatment
rates is much larger in Fig. 5(d) than in Fig. 6(d). This is more easy to see from Figs. 5(e)
and 6(e). This suggests again that a slight increase in ν (from 0.001 to 0.0017) can be
very helpful for treatment to be more effective. For example, when f is increased from
0.2 to 0.3, the total incidence (AMT) is reduced by 0.75% when ν = 0.001 (see Fig. 5(e))
comparing to 50% when ν = 0.0017 (see Fig. 6(e)), while the total incidence of resistant
strain (AMTR) is increased by 75% when ν = 0.001 comparing to 40% when ν = 0.0017.

We now look at the case RR = 1.1RSU > RSU . For presentation purposes, we choose a
different set of values for the vaccinated rates for the simulations: ν = 0.001, 0.0023, and
0.0035. The results are shown in Figs. 8, 9, 10. We observe that the numbers of cases of
both strains are significantly reduced with increases vaccination rates ν (see Figs. 8(a–d)–
10(a–d)). This clearly demonstrates the important role of vaccination in reducing the in-
fection levels. It is also shown in Figs. 8(e)–10(e) that the variations in the total incidences
(AMT) between various treatment rates f are not as large as for the case when RR < RSU

(see Figs. 5–7). This is in part due to the fact that the resistant strain has a higher basic
reproduction number which can significantly diminish the effect of drug.

The most interesting scenario is the one when ν = 0.0035. From Fig. 10(e), we see
that the total incidence (AMT) decreases with f for f < 0.1, but it becomes increasing
with f when f > 0.1. We can also see from Fig. 10(b) that, for large f , the peak size
of resistant infections increases with f as well. This shows that increasing treatment rate
may potentially have a severe negative impact. Similar effect is also present in the model
of Lipsitch et al. (2007). This suggests that it is very important to determine such critical
level(s) of treatment rates (in this case f = 0.1) so that the benefit of drug treatment will
not be compromised. It is equally important to identify the threshold level of vaccination
above which negative effects of treatment are likely to occur.

6. More on control reproduction numbers

As discussed in the last section that, in some cases, the level of infection may actually get
higher when treatment rate is increased (see Fig. 10(e)). This possibility, however, cannot
be reflected by the reproduction numbers RSC and RRC , which are shown in Section 4
to completely determine the dynamics of the system. To see this, we consider the partial
derivative of RSC (see (3) and (4)):

∂RSC

∂f
= (1 − c)RST − RSU,

which is a constant independent of f . From 0 < c < 1, δ ≤ 1, and kT > kU , we know that
RST < RSU , and hence, ∂RSC

∂f
< 0. That is, RSC is a decreasing function of f for a given

value of ν. It is clear from (3) and (4) that RRC does not depend on f .
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Fig. 8 Similar to Fig. 5 except that RR = 1.1RSU > RSU and ν = 0.001. All other parameter values are
the same as in Fig. 5.

The main reason for this discrepancy between the reproduction numbers (RSC and
RRC) and the epidemic size (AMT), concerning their dependence on drug treatment, can
be explained as follows. When a person is infected with the drug-sensitive strain, the
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Fig. 9 Similar to Fig. 8 except that ν = 0.0023. All other parameter values are the same as in Fig. 8.

number of secondary cases consist of three components:

(i)
S0

N0
(1 − f )RSU, (ii)

S0

N0
f (1 − c)RST , (iii)

S0

N0
f cRR.
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Fig. 10 Similar to Fig. 8 except that ν = 0.0035. All other parameter values are the same as in Fig. 8.

The component (i) represents the number of new sensitive cases if the person is untreated.
The component (ii) represents the number of new sensitive cases if the person is treated
and did not develop resistance. The component (iii) represents the number of cases with
acquired resistance due to antiviral use (de novo resistance). Clearly, the quantity RSC is
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Fig. 11 (a) Plots of R[2]
TC = RTC vs. treatment rate f for three different values of RR . It shows that

the total control reproduction number in the second generation is a linear function of f . (b) Plots of the

total reproduction number in the third generation, R[3]
TC , vs. f for three different values of RR . It shows

that R[3]
TC is a nonlinear function of f and can become increasing with f after reaching a minimum at

some critical point fc . Parameter values are b = 0.003,μ = 0.0005, ν = 0.001, c = 0.25, RSU = 1.7, and
RST = 0.68.

the sum of only the first two components. Therefore, RSC underestimates the number of
secondary infections by a sensitive case. For ease of reference, we denote the component
(iii) by RAR which will be referred to as acquired reproduction number (the subscript AR

represents acquired resistance), i.e.,

RAR = S0

N0
f cRR = σ + μ

σ + μ + ν
f cRR. (15)

Let RTC (T for total and C for control) denote the sum of all three components, i.e.,

RTC = RSC + RAR.

Clearly, RTC = RTC(ν, f ) is also a function of ν and f . Notice that

∂RTC

∂f
= σ + μ

σ + μ + ν

[−RSU + (1 − c)RST + cRR

]
,

which is independent of f . Thus, RTC is a linear function of f (see Fig. 11). Furthermore,
for a given value of ν, RTC is a decreasing function of f if −RSU +(1−c)RST +cRR < 0,
and it is an increasing function of f if −RSU + (1 − c)RST + cRR > 0. Thus, RTC is
always a monotone function of f , and consequently cannot capture the nonlinear rela-
tionship with f . This suggests that more generations of infections need to be considered.

For the purpose of presentation, denote RTC by R[2]
TC , where the superscript [2] rep-

resents the second generation in which new infections are produced. Let R[3]
TC denote the

number of tertiary infected cases (including tertiary sensitive cases and tertiary resistant
cases) produced by a sensitive case. (The squared root of R[3]

TC gives the average number
of new infection in one generation. To simplify the notation, we will focus on the quantity
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without taking the squared root.) If the total population size N0 is sufficiently large so that
the number of infected cases is relatively small, then S(t)

N(t)
can be closely approximated by

S0

N0 . Hence, R[3]
TC can be expressed by

R[3]
TC = RSC RSC + (RSC + RRC)RAR.

The first and second items in the above expression represent the numbers of tertiary sensi-
tive and resistant cases, respectively, produced in the third generation by a typical sensitive
case. The derivative of R[3]

TC with respect to f is

∂R[3]
TC

∂f
=

(
σ + μ

σ + μ + ν

)2{
2
[−RSU + (1 − c)RST

][−RSU + (1 − c)RST + cRR

]
f

+ cR2
R + RSU

[−2RSU + 2(1 − c)RST + cRR

]}
.

Let

f ∗ = cR2
R + RSU[−2RSU + 2(1 − c)RST + cRR]

2[−RSU + (1 − c)RST ][−RSU + (1 − c)RST + cRR] ,

and let

fc =

⎧
⎪⎨

⎪⎩

0, f ∗ ≤ 0;
f ∗, 0 < f ∗ < 1;
1, f ∗ ≥ 1.

(16)

We can show that if

[−RSU + (1 − c)RST

][−RSU + (1 − c)RST + cRR

]
> 0,

then

∂R[3]
TC

∂f
< 0 for f < fc,

R[3]
TC

∂f
> 0 for f > fc.

Similarly, if

[−RSU + (1 − c)RST

][−RSU + (1 − c)RST + cRR

]
< 0,

then

∂R[3]
TC

∂f
> 0 for f < fc,

R[3]
TC

∂f
< 0 for f > fc.
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Thus, the dependence of R[3]
TC on f is nonlinear (see Fig. 11(b)). Figure 11(b) shows that

there may be a critical value fc such that R[3]
TC decreases for 0 < f < fc and increases for

fc < f < 1.
The key difference between R[3]

TC and R[2]
TC in terms of their functional relationships

with f suggest that R[3]
TC can provide a more accurate description on how treatment might

negatively impact the disease dynamics. Apparently, it would be desirable to be able to
calculate the number of new infections for more generations, which is likely to improve
the description more significantly. Let R[n]

TC (n ≥ 2) denote the reproduction numbers in
nth generation of infections. Then R[n]

TC can be approximately expressed by

R[n]
TC = (RSC)n−1 +

(
n−2∑

i=1

(RSC)i(RRC)n−2−i

)

RAR

=
(

σ + μ

σ + μ + ν

)n−1(
(1 − f )RSU + f (1 − c)RST

)n−1

+
(

σ + μ

σ + μ + ν

)n−1

f c

n−2∑

i=1

(
(1 − f )RSU + f (1 − c)RST

)i
(RR)n−1−i ,

n = 4,5, . . . . (17)

Although for the case of n = 3, we are able to identify analytically the critical value fc

at which R[n]
TC switches its monotonicity (see (16)), it is not easy to do this for general n.

Nonetheless, the analytical formula (17) may be helpful for further exploration of more
suitable presentations of control reproduction numbers. The definitions of various repro-
duction numbers are summarized in Table 4.

Table 4 Definition of various reproduction numbers

Quantities Biological meaning

RSU The number of secondary sensitive cases produced by a untreated sensitive case in the
absence of vaccination and treatment, i.e., the basic reproduction number for the
sensitive strains.

RST The number of secondary sensitive cases produced by a treated sensitive case in the
absence of vaccination and treatment.

RR The number of secondary resistant cases produced by a resistant case in the absence of
vaccination and treatment, i.e., the basic reproduction number for the resistant strains.

RSC The number of secondary sensitive cases produced by a sensitive case in the presence of
vaccination and treatment.

RRC The number of secondary resistant cases produced by a resistant case in the presence of
vaccination and treatment, i.e., the control reproduction number for the resistant
strains.

RTC(R[2]
TC) The number of total secondary cases (including the sensitive cases and the resistant

cases) produced by a sensitive case in the presence of vaccination and treatment, i.e.,
the control reproduction number for the sensitive strains.

R[n]
TC , n ≥ 2 The number of new infections in the nth generation (including the sensitive cases and the

resistant cases) produced by a sensitive case in the presence of vaccination and
treatment.
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7. Discussion

In this paper, we studied an influenza model that includes both drug sensitive and drug
resistant strains and vaccination. The main purposes of this study is to examine the joint
impact of vaccination and treatment on the prevalence of the disease influenced by the de-
velopment of resistance due to drug treatment. A detailed stability and persistence analy-
sis is presented and extensive numerical simulations are conducted using parameter values
relevant to influenza. The mathematical results are used to interpret the biological impli-
cations of various strategies for disease control and prevention.

Our analysis show that the qualitative behaviors of the model are completely deter-
mined by three key quantities: RSC (the sensitive reproduction number), RRC (the re-
sistant reproduction number), and RC = max{RSC, RRC} (see the bifurcation diagram in
Fig. 2 and Table 3). More specifically, the disease will die out if RC < 1, and it will
spread if RC > 1. the competitive outcomes of the two strains are determined by the rela-
tive magnitudes of RSC and RRC . These results are obtained by analyzing the stability of
biologically feasible equilibria and the uniform persistence of the system (D.2).

The stability results for E0 (the disease-free equilibrium) and Ê (the boundary equi-
librium at which only the resistant strain is present) are obtained analytically, and the
stability of the coexistence equilibrium E∗ is obtained via numerical simulations. These
results provide important qualitative understanding of the effects of treatment and vacci-
nation on the infection levels of both strains. For example, when 0 < f < 1, the resistant
strain will always persist in the population provided that RTC > 1 even if the reproduction
number of the resistant strain RR < 1 is less than 1. This suggests that antiviral treatment
tends to promote persistence of the resistant strain in the sense that the resistant strain can
only invade the population in the presence of drug use (since the resistant infection cannot
persist in the population alone when RR < 1).

One of the interesting findings in this paper is that, despite the key role that the repro-
duction numbers RSC and RRC play in determining the qualitative behaviors of the system
as mentioned above, they do not provide appropriate measures for examining the effect
of antiviral use (described by the treatment rate f ) on the level of infection (cumulative
cases of both strains). This is because the fact that RSC is always a decreasing function of
f (see (3)) and RRC does not depend on f , whereas the size of total infection can increase
with f in some cases (see Fig. 10). The reason for this discrepancy between reproduction
numbers and infection size is that RSC represents only a fraction of secondary cases pro-
duced by one sensitive case. The other fraction of new cases that are resistant (represented
by RAR, see (15)) is not accounted for.

To take account of RAR, we derived the new quantity R[n]
TC (the subscript T for total and

C for control) which represents the total number of new infections in the nth generation
(n > 2) produced by one sensitive case. (R[n]

TC)1/n gives the average reproduction number
by one sensitive case per generation. We showed for n = 3 that, under certain conditions,
there exists a critical value fc ∈ (0,1) such that R[3]

TC decreases with f for f < fc but
increases with f for f > fc . This suggests that the number R[n]

TC may provide a better
quantity than RSC or RC for examining the effect of treatment on the level of infection.

We remark that, since R[3]
TC (and R[n]

TC for all n > 2) is a function of both the treatment
rate f and the vaccination rate ν, the critical value fc (above which the benefit of antiviral
use can be compromised) varies with ν. Therefore, the critical level of treatment is depen-
dent on the immunity level of the population. Similarly, since RSC is a function of f and
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ν and RRC is a function of ν, the relative magnitudes of RSC and RRC will depend on the
levels of antiviral use and vaccination. Hence, the influence of treatment on the prevalence
of both strains will also depend on the vaccination level (see Fig. 4 for the bifurcation dia-
gram in the (ν, f ) plane). We need to point out that, for demonstration purposes, we have
presented our results for the case in which a compromise of antiviral benefits may occur
only when the vaccination level is above a threshold. This does not imply that the nega-
tive effect of antiviral use will not occur in the absence of vaccine or when vaccination
of susceptibles is not available (e.g., in the case of an influenza pandemic), as a similar
result has also been shown in models without vaccination (see Lipsitch et al., 2007).

Another contribution of this paper is the derivation of the new epidemiological quan-
tity, R[n]

TC . The concept of reproduction numbers have been very useful in the study of
disease control and prevention. It has been shown for simple models that the basic and
control reproduction numbers are directly linked to the final size of infections in epi-
demic models without demographics. However, it is not the case in our model which is
an endemic model with demographics. Our results suggest that an inverse relationship
between the usual reproduction number and the infection level may occur. The main rea-
son for this is that a fraction of new cases produced by an initially sensitive case will be
drug-resistant, which will then produce resistant cases at a different rate in the following
generation. A consequence of this process is that the traditionally defined reproduction
number may not provide an accurate description for changes in the final size of infec-
tion affected by antiviral use. This is indeed observed in the numerical simulations of our
model, which demonstrated that although in most cases drug treatment may reduce the
epidemic size and delay the time to the peak of an epidemic, it may in some cases lead
to an increased cumulative incidence and a higher epidemic peak. Therefore, while the
reproduction numbers calculated under the traditional definition can provide useful infor-
mation for the qualitative dynamics, it may not be appropriate for assessing the effect of
control measures on the disease prevalence.

The model considered in this paper assumes that individuals in the vaccinated class are
completely immune to both strains. This assumption can be relaxed to allow for partial
cross-immunity to the resistant strain. The model can also be generalized by including
prophylaxis. We have began to study the more generalized model and will publish the
results elsewhere.
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Appendix A: Derivation of the quantities RSC and RRC

Noticing that the model has three infected variables, namely ISU , IST , and IR , it follows
that, using the notation of Driessche and Watmough (2002), the matrices F and V (cor-
responding to the new infection terms and the remaining transfer terms, respectively) are



26 Qiu and Feng

given by

F = σ + μ

σ + μ + ν

⎛

⎝
(1 − f )βS (1 − f )βSδ 0
f (1 − c)βS f (1 − c)βSδ 0

f cβS f cβSδ βR

⎞

⎠ ,

V =
⎛

⎝
μ + kU 0 0

0 μ + kT 0
0 0 μ + kR

⎞

⎠ .

Thus,

F V −1 =
(

F11 0
F21 F22

)

,

where

F11 = σ + μ

σ + μ + ν

⎛

⎝

(1−f )βS

μ+kU

(1−f )βSδ

μ+kT

f (1−c)βS

μ+kU

f (1−c)βSδ

μ+kT

⎞

⎠ ,

F21 = σ + μ

σ + μ + ν

(
f cβS

μ + kU

,
f cβSδ

μ + kT

)

, F22 = (σ + μ)βR

(σ + μ + ν)(μ + kR)
.

Let

RSU = βS

μ + kU

, RST = βSδ

μ + kT

, RR = βR

μ + kR

.

Then we have

RSC = ρ(F11)

= σ + μ

σ + μ + ν

(
(1 − f )βS

μ + kU

+ f (1 − c)βSδ

μ + kT

)

= σ + μ

σ + μ + ν

(
(1 − f )RSU + f (1 − c)RST

)
,

RRC = ρ(F22) = βR(σ + μ)

(σ + μ + ν)(μ + kR)
= (σ + μ)

(σ + μ + ν)
RR,

(A.1)

and

RC = ρ
(

F V −1
) = max{RSC, RRC}, (A.2)

where ρ(M) represents the spectral radius of the nonnegative matrix M .
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Appendix B: Proof of Theorem 3.1

The equilibria of system (1) are the solutions of the following equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ − (μ + ν)S − μβS

Λ
ISUS − μβSδ

Λ
ISTS − μβR

Λ
IRS + ωR + σV = 0,

νS − (σ + μ)V = 0,

(1 − f )
μβS

Λ
SISU + (1 − f )

μβSδ

Λ
SIST − (μ + kU )ISU = 0,

f (1 − c)
μβS

Λ
SISU + f (1 − c)

μβSδ

Λ
SIST − (μ + kT )IST = 0,

μβR

Λ
IRS + f c

μβS

Λ
SISU + f c

μβSδ

Λ
SIST − (μ + kR)IR = 0,

kT IST + kUISU + kRIR − (μ + ω)R = 0.

(B.1)

In order to solve the algebraic Eqs. (B.1), we consider three cases as follows.
Case 1: IR = 0. In this case, from the fifth equation of (B.1) and the fact that S > 0 and

0 < f < 1, we have ISU = IST = 0. Substitution of IR = ISU = IST = 0 in (B.1) yields that

S = (σ + μ)Λ

μ(σ + μ + ν)
:= S0, V = νΛ

μ(σ + μ + ν)
:= V 0, R = 0.

Case 2: IR > 0 and IST = 0. In this case, it follows from the fourth and fifth equations
of (B.1) that ISU = 0 and S = S0

RRC
:= Ŝ. Substitution of IST = 0, ISU = 0, S = Ŝ in (B.1)

gives
⎧
⎪⎪⎨

⎪⎪⎩

Λ − (μ + ν)Ŝ − μβR

Λ
IRŜ + ωR + σV = 0,

νŜ − (σ + μ)V = 0,

kRIR − (μ + ω)R = 0.

(B.2)

Solving the linear algebraic equations (B.2), we obtain

V = V 0

RRC
:= V̂ , IR = (μ + ω)N0

(μ + ω + kR)

(

1 − 1

RRC

)

:= ÎR,

R = N0 − Ŝ − V̂ − ÎR := R̂.

Case 3: IR > 0 and IST > 0. It follows from the third and fourth equations of (B.1) that
{

((1 − f )
μβS

Λ
S − (μ + kU ))ISU + (1 − f )

μβSδ

Λ
SIST = 0,

f (1 − c)
μβS

Λ
SISU + (f (1 − c)

μβSδ

Λ
S − (μ + kT ))IST = 0.

(B.3)

The fact that IST > 0 implies that
∣
∣
∣
∣
∣

((1 − f )
μβS

Λ
S − (μ + kU)) (1 − f )

μβSδ

Λ
S

f (1 − c)
μβS

Λ
S (f (1 − c)

μβSδ

Λ
S − (μ + kT ))

∣
∣
∣
∣
∣
= 0. (B.4)

Solving (B.4) gives

S = (μ + kU )(μ + kT )Λ

(μ + kU)f (1 − c)βSμδ + (μ + kT )(1 − f )βSμ
= S0

RSC
:= S∗.
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Substitution of S = S∗ in (B.1) yields that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Λ − (μ + ν)S∗ − μβS

Λ
ISUS∗ − μβSδ

Λ
ISTS∗ − μβR

Λ
IRS∗ + ωR + σV = 0,

νS∗ − (σ + μ)V = 0,

(1 − f )
μβS

Λ
S∗ISU + (1 − f )

μβSδ

Λ
S∗IST − (μ + kU )ISU = 0,

μβR

Λ
IRS∗ + f c

μβS

Λ
S∗ISU + f c

μβSδ

Λ
S∗IST − (μ + kR)IR = 0,

kT IST + kUISU + kRIR − (μ + ω)R = 0.

(B.5)

After extensive algebraic calculations, the solution of the linear algebraic equations (B.5)
is

V = V 0

RSC
:= V ∗,

ISU = (μ + ω)(RSC − 1)N0

σ+μ

σ+μ+ν
(βS + βRb + βSδa) + ω(1 + a + b)RSC

:= I ∗
SU,

IST = aI ∗
SU := I ∗

ST , IR = bI ∗
SU := I ∗

R,

R = N0 − S∗ − V ∗ − I ∗
SU − I ∗

ST − I ∗
R := R∗,

where a = f (1−c)(μ+kU )

(1−f )(μ+kT )
and b = f c(μ+kU )

(1−f )(μ+kR)(1− RRC
RSC

)
.

From the above analysis, it follows that the system (B.1) has three possible nonnegative
solutions. Therefore, the system (1) has three possible equilibria E0, Ê, and E∗. From the
expression of ÎR , it is easy to see that ÎR > 0 if and only if RRC > 1. Similarly, we can
easily see that I ∗

SU > 0 if and only if RSC > 1, and I ∗
R > 0 if and only if RRC < RSC . When

RC < 1, i.e., RSC ≤ 1 and RRC ≤ 1, it follows that either ÎR < 0 and I ∗
SU < 0, or ÎR < 0

and I ∗
R < 0. Thus, system (1) has only one equilibrium E0. When RRC > 1, it follows that

the resistant-strain-only equilibrium Ê exists. This implies that the system (1) has two
nonnegative equilibria, E0 and Ê. When RSC > RRC and RSC > 1, it is easy to see that
the coexistence equilibrium E∗ exists. This completes the proof of Theorem 3.1.

Appendix C: Proof of the stability of the matrix A11

Let λj (A11), j = 1,2,3, be the eigenvalues of the matrix A11 with �(λ1(A11)) ≤
�(λ2(A11)) ≤ �(λ3(A11)). Direct calculation yields that Det(A11) = −μβR

Λ
ÎR(σ +

μ)(kR + μ + ω) < 0. It then follows that λ1(A11)λ2(A11)λ3(A11) < 0. This means that
either �(λi(A11)) < 0 for i = 1,2,3, or �(λ1(A11)) < 0 < �(λ2(A11)) ≤ �(λ3(A11)).
Since Tr(A11) = −(μ + ν + μβR

Λ
ÎR + σ) < 0, we know that �(λ1(A11) + λ2(A11)) < 0

and �(λ1(A11) + λ3(A11)) < 0. Now let us consider the second additive compound (Li
and Muldowney, 1995; Arino et al., 2003) of the matrix A11:

A
[2]
11 =

⎛

⎜
⎜
⎝

−(μ + ν) − μβR

Λ
ÎR − σ 0 −ω + σ

kR −(μ + ν) − μβR

Λ
ÎR − σ − (ω + μ) −μβR

Λ
Ŝ − σ

0 μβR

Λ
ÎR −(ω + μ)

⎞

⎟
⎟
⎠ .
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Straightforward calculations yield that

DetA[2]
11 = −

(

μ + ν + μβR

Λ
ÎR + σ

)(

μ + ν + μβR

Λ
ÎR + σ + ω + μ

)

(ω + μ)

− ωkR

μβR

Λ
ÎR + σkR

μβR

Λ
ÎR

−
(

μβR

Λ
Ŝ + σ

)
μβR

Λ
ÎR

(

μ + ν + μβR

Λ
ÎR + σ

)

< 0.

The conditions μβR

Λ
Ŝ = (μ+kR) and σkR

μβR

Λ
ÎR < (

μβR

Λ
Ŝ +σ)

μβR

Λ
ÎR(μ+ν + μβR

Λ
ÎR +σ)

are used in the last step. The eigenvalues of A
[2]
11 are λi(A11) + λj (A11),1 ≤ i < j ≤ 3. It

then follows that

−1 = sgn
(
det(A[2]

11 )
)

= sgn
(�(

λ1(A11) + λ2(A11)
)�(

λ1(A11) + λ3(A11)
)�(

λ2(A11) + λ3(A11)
))

= sgn
((�(

λ2(A11) + λ3(A11)
)))

.

This together with �(λ1(A11)+λ2(A11)) < 0 and �(λ1(A11)+λ3(A11)) < 0, implies that
�(λi(A11)) < 0 for all i = 1,2,3, i.e., the matrix A11 is stable.

Appendix D: Proof of Theorem 4.3

Let W = V + R, then system (1) can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = Λ − (μ + ν)S − λS(t)S − λR(t)S + σW,

I ′
SU = (1 − f )λS(t)S − μISU − kUISU,

I ′
ST = f (1 − c)λS(t)S − μIST − kT IST ,

I ′
R = λR(t)S + f cλS(t)S − μIR − kRIR,

W ′ = νS + kT IST + kUISU + kRIR − (μ + σ)W.

(D.1)

The limiting system of (D.1) is

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = Λ − (μ + ν)S − μβS

Λ
(ISU + δIST)S − μβR

Λ
IRS

+ σ(Λ
μ

− S − ISU − IST − IR),

I ′
SU = (1 − f )

μβS

Λ
(ISU + δIST)S − μISU − kUISU,

I ′
ST = f (1 − c)

μβS

Λ
(ISU + δIST)S − μIST − kT IST ,

I ′
R = μβR

Λ
IRS + f c

μβS

Λ
(ISU + δIST)S − μIR − kRIR.

(D.2)

If RC < 1, then RSC < 1 and RRC < 1. From Theorem 4.2, E0 is locally asymptotically
stable. In the following, we only need to prove that the DFE E0 is a global attractor.
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From the first equation in (D.2), it follows that

S ′ ≤ σ + μ

μ
Λ − (σ + μ + ν)S.

By the comparison principle, we have S(t) ≤ σ+μ

σ+μ+ν
Λ
μ

+ (S(0) − σ+μ

σ+μ+ν
Λ
μ
)e−(σ+μ+ν)t .

Without loss of generality, we can assume that S(t) ≤ σ+μ

σ+μ+ν
Λ
μ

. Then it follows from the
second and third equations of (D.2) that

{
I ′

SU ≤ (
σ+μ

σ+μ+ν
(1 − f )βS − μ − kU)ISU + σ+μ

σ+μ+ν
(1 − f )βSδIST ,

I ′
ST ≤ σ+μ

σ+μ+ν
f (1 − c)βSISU + (

σ+μ

σ+μ+ν
f (1 − c)βSδ − μ − kT )IST .

(D.3)

Then by the comparison principle (Smith, 1995), it is easy to show that ISU(t) → 0 and
IST(t) → 0 as t → +∞ if RSC < 1. From the fourth equation of (D.2), we have

I ′
R ≤

(
σ + μ

σ + μ + ν
βR − μ − kR

)

IR + σ + μ

σ + μ + ν
f cβSISU + σ + μ

σ + μ + ν
f cδIST .

Since ISU(t) → 0, IST(t) → 0 as t → +∞ and RRC < 1, we have IR(t) → 0 as t → +∞.
Similarly, from the fifth equation in (14) it is easy to see that R(t) → 0 as t → +∞.
Substitution of these into the first equation in (14) gives S(t) → S0 as t → +∞. This
implies that the DFE E0 is a global attractor. The proof of Theorem 4.3 is completed.

Appendix E: Proof of Theorem 4.4

Using a similar argument as in the proof of Theorem 4.3, we can show that ISU(t) → 0
and IST(t) → 0 as t → +∞ if RSC < 1. Then the limiting system of (D.2) is

{
S ′ = Λ − (μ + ν)S − μβR

Λ
IRS + σ(Λ

μ
− S − IR),

I ′
R = μβR

Λ
IRS − μIR − kRIR.

(E.1)

Let (F,G) be the vector field defined by system (E.1). Then for the Dulac function
D(S, IR) = 1

SIR
, there holds

∂DF

∂S
+ ∂DG

∂IR

= − Λ

S2IR

− σ(Λ
μ

− IR)

S2IR

< 0.

Thus, (E.1) does not have a limit cycle. Therefore, the local stability of Ê implies the
global stability in IntΓ . This completes the proof of Theorem 4.4.

Appendix F: Proof of Theorem 4.5

Define

X = {
(S, ISU, IST , IR) : S ≥ 0, ISU ≥ 0, IST ≥ 0, IR ≥ 0

}
,

X0 = {
(S, ISU, IST , IR) : S > 0, ISU > 0, IST > 0, IR > 0

}
,

∂X0 = X \ X0.

(F.1)
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It then suffices to show that (D.2) is uniformly persistent with respect to (X0, ∂X0) (see
Wang and Zhao, 2004). From (D.2), it follows that both X and X0 are positively invariant.
Clearly, ∂X0 is relatively closed in X and system (D.2) is point dissipative. Consider the
following set using solutions (S(t), ISU(t), IST(t), IR(t)) of system (D.2)

M∂ = {
(S(0), ISU(0), IST(0), IR(0)) : (S(t), ISU(t), IST(t), IR(t)) ∈ ∂X0,∀t ≥ 0

}
.

We can show that

M∂ = {
(S, ISU, IST , IR) ∈ ∂X : ISU = 0, IST = 0

}
(F.2)

if 0 < f < 1. Assume that (S(0), ISU(0), IST(0), IR(0)) ∈ M∂ . It suffices to show that
ISU(t) = 0 and IST(t) = 0 for all t ≥ 0. Suppose not. Then there exists a t0 ≥ 0 such that
ISU(t0) > 0 or IST(t0) > 0 and IR(t0) = 0. Since 0 < f < 1, we have

I ′
R(t0) = f c

μβS

Λ

(
ISU(t0) + δIST(t0)

)
> 0.

It follows that there is an ε0 such that IR(t) > 0 for t0 < t < t0 + ε0. This means that
(S(t), ISU(t), IST(t), IR(t)) /∈ ∂X0 for t0 < t < t0 + ε0, which contradicts the assumption
that (S(0), ISU(0), IST(0), IR(0)) ∈ M∂ . Thus, (F.2) holds. Just as in the proof of Theo-
rem 4.4, we can easily prove that Ê is globally asymptotically stable in IntM∂ . Moreover,⋃

x∈M∂
ω(x) = {E0, Ê}. By Theorem 4.6 of Thieme (1993), we only need to show that

Ws(E0) ∩ X0 = ∅,Ws(Ê) ∩ X0 = ∅ if RRC > 1 and RSC > 1.
Since RRC > 1, we can choose an η > 0 small enough such that RRC − μβR

Λ(μ+kR)
η > 1.

Assume that Ws(E0) ∩ X0 �= ∅. Then there exists a positive solution (S̄(t), ĪSU(t), ĪST(t),

ĪR(t)) with (S̄(0), ĪSU(0), ĪST(0), ĪR(0))) ∈ X0, such that (S̄(t), ĪSU(t), ĪST(t), ĪR(t)) →
E0 as t → +∞. Thus, when t is sufficiently large, we have S0 − η < S̄(t) < S0 + η and
ĪR(t) → 0. From the fourth equation of system (D.2) , it follows that

Ī ′
R ≥ μβR

Λ
(S0 − η)ĪR − (μ + kR)ĪR. (F.3)

By the comparison principle (Smith, 1995), we have that ĪR(t) → +∞ when t is suf-
ficiently large. This contradicts ĪR(t) → 0 as t → +∞. Thus, we must have Ws(E0) ∩
X0 = ∅.

In the following, we prove that Ws(Ê) ∩ X0 = ∅. Assume the contrary, that is,
Ws(Ê) ∩ X0 �= ∅. Then there exists a positive solution (S̃(t), ĨSU(t), ĨST(t), ĨR(t)) with
(S̃(0), ĨSU(0), ĨST(0), ĨR(0)) ∈ X0, such that (S̃(t), ĨSU(t), ĨST(t), ĨR(t)) → Ê as t →
+∞. Since RSC > RRC > 1, we can choose a ρ > 0 small enough such that

(1 − f )μβS(Ŝ − ρ)

Λ(μ + kU )
+ f (1 − c)μβSδ(Ŝ − ρ)

Λ(μ + kT )
> 1.

Thus, when t is sufficiently large, we have Ŝ − ρ ≤ S̃(t) ≤ Ŝ + ρ,0 ≤ ĨSU(t) ≤ ρ,0 ≤
ĨST(t) ≤ ρ, ÎR − ρ ≤ ĨR(t) ≤ ÎR + ρ and

{
Ĩ ′

SU ≥ (((1 − f )
μβS

Λ
)(Ŝ − ρ) − μ − kU )ĨSU + (1 − f )

μβS

Λ
δ(Ŝ − ρ)ĨST ,

Ĩ ′
ST ≥ f (1 − c)

μβS

Λ
(Ŝ − ρ)ĨSU + (f (1 − c)

μβS

Λ
δ(Ŝ − ρ) − μ − kT )ĨST .
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By the comparison principle (Smith, 1995), we have ĨSU(t) → +∞, ĨST(t) → +∞ as
t → +∞. This contradicts ĨSU(t) → 0, ĨST(t) → 0 as t → +∞. The above assertion is
thus proved, i.e., Ws(Ê) ∩ X0 = ∅.

Since Ws(E0) ∩ X0 = ∅, Ws(Ê) ∩ X0 = ∅, and {E0, Ê} are acyclic in ∂X0, by The-
orem 4.6 of Thieme (1993) we are able to conclude that the system (1) is uniformly
persistent with respect to (X0, ∂X0). This completes the proof of Theorem 4.5.
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