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Abstract Nonlinear Leslie matrix models have a long history of use for modeling the
dynamics of semelparous species. Semelparous models, as do nonlinear matrix models
in general, undergo a transcritical equilibrium bifurcation at inherent net reproductive
number R0 = 1 where the extinction equilibrium loses stability. Semelparous models
however do not fall under the purview of the general theory because this bifurcation
is of higher co-dimension. This mathematical fact has biological implications that
relate to a dichotomy of dynamic possibilities, namely, an equilibration with over
lapping age classes as opposed to an oscillation in which age classes are periodically
missing. The latter possibility makes these models of particular interest, for example,
in application to the well known outbreaks of periodical insects. While the nature of
the bifurcation at R0 = 1 is known for two-dimensional semelparous Leslie models,
only limited results are available for higher dimensional models. In this paper I give a
thorough accounting of the bifurcation at R0 = 1 in the three-dimensional case, under
some monotonicity assumptions on the nonlinearities. In addition to the bifurcation
of positive equilibria, there occurs a bifurcation of invariant loops that lie on the
boundary of the positive cone. I describe the geometry of these loops, classify them
into three distinct types, and show that they consist of either one or two three-cycles and
heteroclinic orbits connecting (the phases of) these cycles. Furthermore, I determine
stability and instability properties of these loops, in terms of model parameters, as
well as those of the positive equilibria. The analysis also provides the global dynamics
on the boundary of the cone. The stability and instability conditions are expressed in
terms of certain measures of the strength and the symmetry/asymmetry of the inter-age
class competitive interactions. Roughly speaking, strong inter-age class competitive
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interactions promote oscillations (not necessarily periodic) with separated life-cycle
stages, while weak interactions promote stable equilibration with overlapping life-
cycle stages. Methods used include the theory of planar monotone maps, average
Lyapunov functions, and bifurcation theory techniques.

Keywords Nonlinear Leslie models · Semelparity · Bifurcation · Equilibria ·
Synchronous orbits · Periodic cycles · Invariant loops · Heteroclinic cycles ·
Over-lapping life cycle stages · Separated life cycle stages
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1 Introduction

The goal of this paper is to describe the bifurcations that occur in three stage, nonli-
near Leslie models for the dynamics of semelparous populations as the inherent net
reproductive number R0 passes through 1. Generally, as R0 increases through 1 in a
nonlinear matrix model, the extinction equilibrium destabilizes and there bifurcates
from that equilibrium a (global) continuum branch of positive equilibria whose sta-
bility depends on the direction of bifurcation [3,6]. For semelparous Leslie models,
however, the bifurcation scenario is not so simple.

It is known, for example, that a continuum branch of so-called synchronous cycles
also bifurcates from the extinction equilibrium at R0 = 1. Synchronous cycles reside
on the boundary of the positive cone and visit coordinate hyperplanes sequentially.
They describe temporally synchronized collections of age cohorts (with at least some
missing cohorts at any point in time) that appear in periodic outbreaks. The most
extreme case is when only one cohort is present at any point in time, which is called a
single-class cycle. It is known, in some cases at least, that the synchronous cycles are
embedded in invariant loops, lying on the boundary of the positive cone, that consist of
orbits that heteroclinically connect the (phases) of the synchronous cycle [4,5,11–14].

The existence of these two bifurcating branches presents an alternative between two
different dynamics for a semelparous population: one in which equilibration occurs
with all generations present and another of non-equilibrating oscillations in which
some age cohorts are absent at each point in time. A crucial problem, then, is to deter-
mine which of the two dynamics (if either) is stable or, more precisely, to determine
conditions under which one or the other is stable. The answer to this question is, in
general, a complicated one; it is not, for example, simply determined by the direction
of bifurcation [5].

In [5] one can find a complete accounting of the bifurcation at R0 = 1, including the
stability question, for two-dimensional (2D) semelparous Leslie models, that is to say,
for semelparous models that entail only a juvenile stage and an adult stage of equal time
duration. It turns out that one and only one of the two bifurcating branches (positive
equilibria or single-class synchronous two-cycles) is stable for R0 near 1; which branch
is stable is determined by certain measures of the intensity of inter-class and intra-class
competition. Roughly speaking, intense inter-class competition between the juvenile
and adult stages (relative to intra-class competition) promotes stability of the single-
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class two-cycle branch and hence temporally separated age classes, while less intense
inter-class competition leads to equilibration with overlapping generations. One can
find this theme throughout the literature on semelparous species [1,2,4,7,8,11–13,15,
16,18,19,21–23,31]. It is one (but not the only) hypothesis put forth to explain the
synchronization of the life cycles, and consequently the famous periodic outbreaks,
of periodical insects (such as cicadas). Other studies of 2D semelparous models, but
not from a bifurcation point-of-view, appear in [11,21,22].

The limited dynamics possible in the 2D case allow for a rather straightforward
analysis of the bifurcation at R0 = 1. In three or higher dimensions, however, the
dynamics and their analyses become considerably more complicated. In this paper I
will give a complete description of the bifurcation at R0 = 1 for three-dimensional
(3D) case under some monotonicity assumptions on the nonlinear interaction terms.
I will show that the bifurcating single-class three-cycles are embedded in invariant
loops lying on the boundary of the positive cone. I will characterize the geometry of
(and the dynamics on) these bifurcating loops into three distinct types: A, SS, and
W S (see Fig. 2). Each type consists of synchronous orbits that heteroclinically connect
(the phases of) the single-class three-cycle, in the case of type A, or (the phases of)
the single-class three-cycle and a two-class three-cycle, in the case of types SS and
W S. In all cases, the bifurcating loop is a chain of synchronous three-cycles whose
phases are heteroclinically connected by synchronous orbits, a structure I will call a
heteroclinic chain.

I will also characterize the stability of the equilibria and the invariant loops in
terms of model parameters. Crucial to this characterization are the definitions of two
ratios ρ1, ρ2 that measure the relative effects of inter-class versus intra-class competi-
tion on class specific survivorships. The (ρ1, ρ2)-plane is sub-divided into regions of
strong or weak (inter-class) competition and symmetric or asymmetric competition.
Asymmetric competition occurs when younger (older) classes affect older (younger)
classes but not vice versus. Based on the four possibilities of strong-symmetric, weak-
symmetric, weak-asymmetric and strong-asymmetric competition, I characterize the
stability properties of the bifurcating positive equilibria and characterize both the type
and stability of the bifurcating invariant loops (heteroclinic chains).

The focus in this paper is on the bifurcation event at R0 = 1, and the analysis and
results are valid only for R0 � 1 (R0 greater than, but close to 1). The main result
appears as Theorem 6 in Sect. 5. The dynamics on the boundary of the positive cone
are studied in Sect. 3 and those on the interior of the cone in Sect. 4. The analysis
makes use of bifurcation theory methods, the Implicit Function Theorem, the theory
of planar monotone maps (as developed in [25] and [36]), and average Lyapunov
functions. Mathematical details are placed in an appendix.

2 Preliminaries

Let R3+ denote the non-negative cone in 3D Euclidean space and let int
(
R3+

)
denote

its interior. A semelparous Leslie (age class) model

x̂(t + 1) = L
(
x̂(t)

)
x̂(t), t = 0, 1, 2, . . . (1)
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is characterized by a projection matrix of the form

L(x̂) =
⎛

⎜
⎝

0 0 b(x̂)τ3(x̂)

τ1(x̂) 0 0

0 τ2(x̂) 0

⎞

⎟
⎠

where x̂ = col(x, y, z) ∈ R3+ and where the functions τi : R3+ → (0, 1] and b : Rm+ →
int

(
R1+

)
describe age class specific (per unit time) survivorship and recruitment rates

respectively. In this model there are two juvenile (non-reproductive) age classes x and
y whose members survive one unit of time with probabilities τ1 and τ2. There is a single
adult age class z whose members survive a unit of time with probability τ3 at the end
of which they produce offspring, at a per capita rate b, and then die. The eigenvalues
of the inherent projection matrix L(0̂) (here 0̂ denotes the origin col(0, 0, 0)) are the
three cube roots of the inherent net reproductive number

R0 � b(0̂)τ1(0̂)τ2(0̂)τ3(0̂) > 0.

Thus, L(0̂) is irreducible but not primitive. The linearization principle and Theorem
3 of [9] (also see Theorem 1.1.3 in [3] and [28]) imply that the extinction equilibrium
x̂ = 0̂ is locally asymptotically stable (LAS) if R0 < 1 and is unstable if R0 > 1.
This loss of stability suggests a bifurcation of nontrivial equilibria at R0 = 1. This
is confirmed by Theorem 1 below (and for higher dimensional models by the results
in [5]).

Note that the boundary ∂R3+ of the cone is forward invariant under the map L
(
x̂
)

x̂ .
In fact, the non-negative coordinate axes, and their planar interiors, are each forward
invariant. Indeed orbits visit the axes and the coordinate planes sequentially. Orbits on
the boundary ∂R3+ are called synchronous orbits and periodic orbits on the boundary
are called synchronous cycles. More specifically, single-class 3-cycles and two-class
3-cycles have the respective forms

⎛

⎝
∗
0
0

⎞

⎠ →
⎛

⎝
0
∗
0

⎞

⎠ →
⎛

⎝
0
0
∗

⎞

⎠ →
⎛

⎝
∗
0
0

⎞

⎠ ,

⎛

⎝
∗
∗
0

⎞

⎠ →
⎛

⎝
0
∗
∗

⎞

⎠ →
⎛

⎝
∗
0
∗

⎞

⎠ →
⎛

⎝
∗
∗
0

⎞

⎠ .

where the asterisks indicate positive numbers.
Most structured population dynamic models assume that the dependence of vital

rates on population densities is through a dependence on one or more weighted popu-
lations sizes. I make that assumption here and consider the 3D semelparous Leslie
model (1) with survivorships

τi (x̂) = si gi (wi ) , wi � βi1x + βi2 y + βi3z, 0 < si ≤ 1

with weighted population sizes wi defined by the competition coefficients βi j ≥ 0 in
the competition matrix B �

(
βi j

)
. I also assume the per capita birth rate of adults

is a (density independent) constant b(x̂) ≡ b0 > 0. A normalization gi (0) = 1
implies that si and b0 are the inherent (density independent) survivorships and birth
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rate respectively. Without loss in generality, one can assume g′
i (0) = −1 (re-scaling

the interaction coefficients βi j if necessary). Finally, let b � b0s3 denote the inherent
per adult recruitment rate. Our interest lies in competition within and among age
classes and accordingly the functions gi (w) are assumed monotone decreasing for
w ≥ 0 (Allee effects are ignored).

In summary, the basic assumptions made here for the 3D semelparous model equa-
tions

x(t + 1) = bg3 (w3(t)) z(t)

y(t + 1) = s1g1 (w1(t)) x(t) (2)

z(t + 1) = s2g2 (w2(t)) y(t).

are
0 < si ≤ 1, b > 0

gi ∈ C1
(
(−γ,+∞) → R1+

)
, gi : R1+ → (0, 1]

gi (0) = 1, g′
i (0) = −1, g′

i (w) < 0 for w ∈ R1+

(3)

for some constant γ > 0. Note that the functions hi ∈ C1
(
(−γ,+∞) → R1+

)
defined

by hi (w) � gi (w)w are continuously differentiable and satisfy hi (0) = 0, h′
i (0) = 1.

It is further assumed that

hi : R1+ → R1+ is bounded and h′
i (w) > 0 for w ∈ R1+. (4)

A prototypical example for which (3) and (4) hold is the discrete logistic (or Beverton-
Holt) nonlinearity [26,27,32,33]

gi (w) = 1

1 + w
(5)

for which γ = 1 and hi (w) = w/(1 + w).
The monotonicity assumption on hi in (4) rules out over-compensatory density

feedback effects. This allows us to focus on the oscillatory implications of semelpa-
rity and inter-class competition while avoiding the potentially compounding factor of
oscillations caused by over-compensatory effects (such as those that can occur, for
example, by use of the well-known exponential Ricker nonlinearity). Mathematically,
this assumptions allows use of the powerful theory of planar monotone maps.

In order to state a preliminary theorem concerning the bifurcation at R0 = 1, we
need some definitions. A positive equilibrium pair (r, x̂) ∈ R1× R3+ is a pair for which
x̂ ∈ int (R3+), the interior of the non-negative cone, and for which x̂ is an equilibrium of
(2) for inherent net reproductive value R0 = r . A three-cycle pair (r, x̂) ∈ R1 × R3+ is
a pair for which x̂ 	= 0̂ and for which the initial condition x̂(0) = x̂ yields a three-cycle
of (2) for inherent net reproductive value R0 = r . If x̂ lies on the positive coordinate
axes (or in the positive coordinate planes), then (r, x̂) is a single-class (two-class)
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three-cycle pair. An unbounded continuum of equilibrium pairs (or k-cycle pairs) is
a connected set of equilibrium (or k-cycle) pairs (r, x̂) that is unbounded in R1 × R3+.
The spectrum of the continuum is the range of r = R0 values associated with pairs
from the continuum. A continuum bifurcates from (r, x̂) = (1, 0̂)means that its closure
contains (1, 0̂). Finally, (2) is permanent means there exist constants δ1, δ2 > 0 such
that

(x(0), y(0), z(0)) ∈ R3+\0̂ 
⇒
0 < δ1 ≤ liminf

t→+∞ (x(t)+ y(t)+ z(t)) ≤ limsup
t→+∞

(x(t)+ y(t)+ z(t)) ≤ δ2.

Theorem 1 Assume (3) holds for the three age class semelparous Leslie model (2).

(a) If R0 < 1 then the origin col(x, y, z) = col(0, 0, 0) is globally asymptotically
stable (GAS) on R3+.
Suppose in addition that (4) holds and at least one intra-class competition coef-
ficient β j j is nonzero.

(b) If R0 > 1 then (2) is permanent.
(c) There exists a compact, forward invariant set of the form

C � {(x, y, z) : 0 ≤ x ≤ c1, 0 ≤ y ≤ c2, 0 ≤ z ≤ c3}
for some constants ci > 0.

(d) There exist an unbounded continuum of positive equilibrium pairs and an unboun-
ded continuum of single-class three-cycle pairs that bifurcate from (r, x̂) =
(1, 0̂). The spectrum of each continuum is unbounded. That is to say, for each
R0 > 1 there exists a positive equilibrium in int (R3+) and a single-class three-

cycle on ∂R3+\0̂ of (2).

Proof Part (a) of this theorem follows from Theorem 1.2.1 in [3] (also see Theorem 3
in [24] and Proposition 3.3 in [23]).

Part (b) also follows from Theorem 1.2.1 in [3] once we show (2) is dissipative,
i.e., there exists a constant δ2 such that lim supt→+∞ (x(t)+ y(t)+ z(t)) ≤ δ2 for
all orbits in the cone R3+. Suppose that β33 	= 0 and let h0

3 � supw≥0 h3(w), which is
finite by assumption (4). (The cases β11 	= 0 and β22 	= 0 are handled similarly). The
inequalities

0 ≤ x (t + 1) = bβ−1
33 g3 (w3(t)) β33z (t)

≤ bβ−1
33 g3 (w3(t)) w3 (t)≤ R0s−1

1 s−1
2 β−1

33 h0
3

(6)0 ≤ y (t + 1) ≤ s1x (t)

0 ≤ z (t + 1) ≤ s2 y(t)

show that after at least three applications of the map defined by (2) any orbit in R3+ lies
in the compact set C � {(x, y, z) : 0 ≤ x ≤ c1, 0 ≤ y ≤ c2, 0 ≤ z ≤ c3} where

c1 � R0s−1
1 s−1

2 β−1
33 h0

3, c2 � R0s−1
2 β−1

33 h0
3, c3 � R0β

−1
33 h0

3.

Thus, we can take δ2 � k R0 where k � β−1
33 s−1

2 s−1
1 (1 + s1 + s1s2) h0

3.
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The inequalities (7) also imply that C is forward invariant, which proves part (c).
Part (d) is a consequence of Theorems 2.2 and 3.1 in [5]. These theorems assert

the existence of an unbounded continuum of positive equilibrium pairs (R0, x̂) and
of an unbounded continuum of single-class three-cycle pairs (R0, x̂) both of which
bifurcate from the origin at R0 = 1. If the spectrum of the equilibrium continuum were
bounded, then (since δ2 is proportional to R0) it would follow that all the equilibria
associated with pairs from the continuum would also be bounded. Since this contradicts
the unboundedness of the bifurcating continuum, we conclude that the spectrum is
infinite, i.e., there is an equilibrium for every R0 > 1. A similar argument holds for
the continuum of three-cycles, since C contains any periodic cycle (it contains all
orbits after three iterations). �


Theorem 1 lets us restrict our attention throughout the rest of the paper to R0 > 1.
The alternatives offered by the two bifurcating continua in part (d) correspond to
the biological alternatives of equilibration with over-lapping age classes or period
three oscillations with temporally separated age classes. The next section concerns
the embedding of the single-class three-cycle on an invariant of one of three types and
with the stability properties of the dynamics on the boundary of the cone.

3 Dynamics on the boundary of R3+

Denote the non-negative coordinate axes by A+. Then A0+ � A+\0̂ and P0+ �
∂R3+\A+ are the positive coordinate axes and positive coordinate planes respecti-
vely. It follows from the features of the semelparous Leslie model (2) that each of the
sets in the decompositions ∂R3+ = P0+∪ A0+∪{0̂} and R3+ = int

(
R3+

)∪ P0+∪ A0+∪{0̂}
are forward invariant. Orbits lying in A0+ sequentially visit the coordinate axes and
are single-age class orbits. Orbits lying in P0+ sequentially visit the coordinate planes
and are two-age class orbits. Throughout this paper, the composite map refers to the
map obtained by three applications of (2).

Consider first the dynamics on the positive coordinate axes A0+. A point col (x, 0, 0)
∈ A0+ on the positive x-axis is mapped by the composite map to a point on the positive
x-axis. In other words, the composite map defines a scalar map from R1+ into itself, a
fixed point of which is a single-class three-cycle of (2). This scalar map has the form

x(t + 1) = R0γ (x(t)) x(t) (7)

where, under the assumptions (3) and (4),

γ (x)�g3 (β33s2g2 (β22s1g1 (β11x) x) s1g1 (β11x) x) g2 (β22s1g1 (β11x) x) g1 (β11x)

is a continuously differentiable function that maps R1+ → (0, 1] that satisfiesγ (0) = 1.
Also η(x) � γ (x)x is monotone increasing and bounded for x ≥ 0 and η′(0) = 1. It
follows that for R0 > 1 the Eq. (7) has a positive equilibrium x∗ that is GAS on R1+.
A similar analysis holds for points on the y-axis or on the z-axis. The positive fixed
points x∗, y∗, z∗ of the composite, lying on the three coordinate axes, make up the
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single-class three-cycle in Theorem 1:

⎛

⎝
x∗
0
0

⎞

⎠ →
⎛

⎝
0
y∗
0

⎞

⎠ →
⎛

⎝
0
0
z∗

⎞

⎠ →
⎛

⎝
x∗
0
0

⎞

⎠ → · · · . (8)

Theorem 2 Assume (3) and (4) hold and that R0 > 1. The single-class three-cycles
in Theorem 1(d) are GAS on the coordinate axes A0+.

According to this theorem, when R0 > 1 all populations founded with only one
age class present will tend asymptotically to a periodic three-cycle with age classes
temporally separated.

Consider now the dynamics on the positive coordinate planes P0+. The positive
quadrant int

(
R2+

)
of the x, y-plane is mapped into itself by the composite map. The

resulting planar map has the form

x(t + 1) = R0γ1 (x(t), y(t)) x(t)
(9)

y(t + 1) = R0γ2 (x(t), y(t)) y(t).

It is possible to write formulas for γi (x, y) in terms of the gi (as we did above for
the scalar case), but it is not necessary to display them here. Suffice it to say that the
monotonicity assumptions contained in (3) and (4) imply that the partial derivatives
of the functions η1(x, y) � γ1 (x, y) x and η2(x, y) � γ2 (x, y) y satisfy

∂xη1 > 0, ∂yη1 < 0, ∂xη2 < 0, ∂yη2 > 0

on int
(
R2+

)
. Moreover, the inequalities we obtain by replacing the strict inequalities

with ≤ and ≥ hold on the closure R2+. These inequalities imply the planar map on the
cone is strictly competitive on the cone R2+ and strongly competitive on the interior
int

(
R2+

)
of the cone (Proposition 2.1 in [36]). Since there is a unique equilibrium on

each axis and the origin is a repeller when R0 > 1, it follows that hypotheses (H1–H4)
in [36] hold for the planar map (9).

Lemma 1 [36] Assume (3) and (4) hold and that R0 > 1. The omega limit set of every
orbit of the composite of the map (9) is contained in the closed square

S∗ �
{
(x, y) ∈ R2+ | 0 ≤ x ≤ x∗, 0 ≤ y ≤ y∗}

and exactly one of the following alternatives hold:

(a) there is a positive fixed point (x+, y+) in the interior of the square S∗;
(b) (x0, y0) ∈ R+ and x0 > 0 
⇒ limt→+∞ (x(t), y(t)) = (x∗, 0);
(c) (x0, y0) ∈ R+ and y0 > 0 
⇒ limt→+∞ (x(t), y(t)) = (0, y∗).

Analogous lemmas also hold for the other two coordinate planes. What these results
tell us about the Leslie model (2) is the following.
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Fig. 1 The regions Ωi for the
parameters ρi in (10) are defined
for i = 1, 2, 3, and 4 by the
following inequalities
respectively: (1) both ρi < 1;
(2) ρ1 + ρ2 < 2 and either
ρ1 < 1, ρ2 > 1 or ρ1 > 1,
ρ2 < 1; (3) ρ1 + ρ2 > 2, and
either ρ1 < 1, ρ2 > 1 or
ρ1 > 1, ρ2 < 1; and (4) both
ρi > 1

Ω3

ρ1
0 1 2

ρ2

0

1

2

Ω2

Ω2
Ω3

Ω4

Ω1

Lemma 2 Assume (3) and (4) hold and that R0 > 1. The omega limit set of every
orbit on the boundary ∂R3+ of the Leslie model (2) lies on the boundary ∂C∗ of the
closed cube

C∗ �
{
(x, y, z) ∈ R3+ | 0 ≤ x ≤ x∗, 0 ≤ y ≤ y∗, 0 ≤ z ≤ z∗}

and exactly one of the following two alternatives hold for (2):

(a) there exists a (nontrivial) two-class three-cycle lying on ∂C∗;
(b) all orbits on ∂R3+\0̂ tend to the single-age class three-cycle as t → +∞.

Consider the first alternative (a) in Lemma 2. Specifically, consider the existence
of two-class three-cycles when R0 > 1 is near 1, i. e., for R0 � 1. It turns out
(Lemma 3) that whether or not there exists a non-negative two-class three-cycle for
R0 � 1 depends on parameter constraints that involve the ratios

ρ1 = β21 + s1β32 + s1s2β13

β11 + s1β22 + s1s2β33
, ρ2 = β31 + s1β12 + s1s2β23

β11 + s1β22 + s1s2β33
(10)

(for which we assume least one β j j 	= 1). The denominator that appears in these ratios
involves the intra-class competition coefficients β j j while the numerators involve the
inter-class competition coefficients βi j , i 	= j . These ratios serve as measures of the
intensity of inter-class competition (relative to the intensity of intra-class competition).
Specifically, the ratio ρ1 measures the total effect that each juvenile class has on the
survivorships on the older classes and the effect that adults have on the survivorship of
newborns. The ratio ρ2 measures total effect that each juvenile class has on the survi-
vorships on the younger classes and the effect that newborns have on the survivorship
of adults.

The four parameter regions in the (ρ1, ρ2)-plane depicted in Fig. 1 will play decisive
roles in determining in dynamics near the bifurcation point R0 = 1. Region Ω1
corresponds to weak inter-class competition and since by definition both ρi < 1 on
this region, we call the competition weak symmetric (since competition with both
older and younger age classes is weak). Similarly, we interpret region Ω4 as a region
of strong symmetric competition. Regions Ω2 and Ω4, on the other hand, correspond
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84 J. M. Cushing

to asymmetric competition, since one ρi is less than 1 and the other is greater than
1, i.e., competition with older (younger) age classes is weak while competition with
younger (older) age classes is strong. We refer toΩ2 as the parameter region of weak
asymmetric competition and to Ω3 as the region of strong asymmetric competition.

The following lemma extends the basic bifurcation result in Theorem 1 by showing
that, in addition to positive equilibria and single-class three-cycles, there is a branch
of two-class three-cycles that also bifurcates at R0 = 1. (The proof appears in the
Appendix.)

Lemma 3 Assume (3) and (4) hold and that at least one intra-class competition
coefficient β j j is nonzero. If ρ1ρ2 	= 1 then a continuum of two-class three-cycles
bifurcates from the origin at R0 = 1. For R0 ≈ 1 these are the only two-class three-
cycles near the origin, but they do not lie on ∂R3+ for R0 � 1. For R0 � 1, on the
other hand, we have the following alternatives:

(a) If (ρ1, ρ2) ∈ Ω1 ∪ Ω4 (symmetric competition) then the bifurcating two-class
three-cycles lie on P0+;

(b) If (ρ1, ρ2) ∈ Ω2 ∪Ω3 (asymmetric competition) then the bifurcating two-class
three-cycles do not lie on ∂R3+.

Lemmas 2 and 3 lead to the following result, which is the main theorem of this
section (see the Appendix for a proof).

Theorem 3 Assume that (3) and (4) hold, that at least one intra-class competition
coefficient β j j is nonzero, and that ρ1ρ2 	= 1. For each R0 � 1 the single-class three-
cycle is GAS on the positive axes A0+ and the following alternatives hold, according
to the parameter regions defined in Fig. 1:

(a) If (ρ1, ρ2) ∈ Ω1 (weak symmetric competition) then the two-class three-cycle is
globally attracting on the positive coordinate planes P0+;

(b) If (ρ1, ρ2) ∈ Ω2 ∪Ω3 (asymmetric competition) then the single-class three-cycle
is GAS on P0+ ∪ A0+ = ∂R3+\0̂;

(c) If (ρ1, ρ2) ∈ Ω4 (strong symmetric competition) then the single-class three-cycle
attracts all initial points on P0+ ∪ A0+ = ∂R3+\0̂ except for the stable manifold
of a saddle, two-class three-cycle lying on the P0+. In each coordinate plane, this
stable manifold is the graph of a continuous increasing function of one variable
and therefore has measure zero.

On the parameter region Ω2 ∪Ω3 of asymmetric competition, the composite map
yields planar maps on each of the coordinate planes, all of whose orbits tend to an
equilibrium on the coordinate axes. This fact and the stable/unstable manifold theorem
[17] lead to heteroclinic manifolds of orbits that heteroclinically connect the equilibria
on adjacent coordinate axes. Altogether these equilibria and heteroclinic manifolds
form an invariant loop of type A in Fig. 2. With regard to the original Leslie model
(2), the three equilibria constitute the points of a single-class three-cycle and the orbits
lying on the heteroclinic manifolds, which visit the coordinate planes (and hence the
heteroclinic manifolds) sequentially, approach the three-cycle in both forward and
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Fig. 2 For R0 � 1 in the semelparous Leslie model (2) there exist invariant loops of one of the three
geometries shown. In parameter region Ω2 ∪ Ω3, the loop is an heteroclinic cycle of type A. In region
Ω4, the loop is of type SS and in region Ω1 it is of type W S. The open circles on the coordinate axes A0+
are the points of the single-class three-cycle (the axes equilibria of the composite map). In types SS and
W S, the solid circles interior to the coordinate planes P0+ are the points of the two-class three-cycle (the
planar equilibrium of the composite). The oriented curves consist of heteroclinic orbits that connect the
phase shifts of these three-cycles. The temporal motion is counter-clockwise, visiting the coordinate planes
sequentially

reverse time. More specifically, these orbits approach different phases of the single-
class three-cycle in forward and reverse time (which phases are determined by the
coordinate plane in which the orbit’s initial point lies).

In brief: on the parameter regionΩ2 ∪Ω3 of asymmetric competition in the Leslie
model (2), the bifurcating invariant loop is of type A in Fig. 2. The loop consists of a
single-class three-cycle together with synchronous (i.e., two-class) orbits that hetero-
clinically and sequentially connect the phases of this three-cycle. Thus, all orbits on
this heteroclinic cycle approach the single-class three-cycle. (For more on heteroclinic
cycles see [4,12,13].)

On the parameter region Ω4 of strong symmetric competition, all planar orbits of
the composite map (except the planar equilibria and their stable manifolds) tend to
one of the axes equilibria. This includes those orbits lying on the unstable manifolds
of planar equilibria, which approach an axis equilibrium in forward time and a planar
equilibrium in reverse time. These heteroclinic orbits form six heteroclinic manifolds
which, together with the (six) equilibria, constitute an invariant loop of the composite
map of type SS seen in Fig. 2. With regard to the original Leslie model (2), the
three axes equilibria constitute the points of the single-class three-cycle and the three
planar equilibria constitute the points of the two-class three-cycle. Orbits lying on
the heteroclinic manifolds of the composite visit the coordinate planes (and hence the
heteroclinic manifolds) sequentially, and they approach the single-class three-cycle in
forward time and the two-class three-cycle in reverse time. More specifically, these
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heteroclinic orbits approach a phase of the single-class three-cycle in forward time
and a phase of the two-class three-cycle in reverse time (which phases are determined
by the coordinate plane in which the orbit’s initial point lies).

In brief: on the parameter regionΩ4 of strong symmetric competition in the Leslie
model (2), the bifurcating invariant loop is of type SS pictured in Fig. 2. The loop
consists of a single-class three-cycle and a two-class three-cycle together with syn-
chronous (i.e., two-class) orbits that heteroclinically connect a phase of the two-class
three-cycle with a phase of the single-class three-cycle. Thus, all orbits on this hetero-
clinic chain (except the two-class three-cycle) approach the single-class three-cycle.

On the parameter region Ω1 of weak symmetric competition in the Leslie model
(2), a similar analysis shows the existence of an invariant loop of type W S shown in
Fig. 2. The dynamic on this loop is the reverse time version of type SS. That is, this
loop consists of a single-class three-cycle and a two-class three-cycle together with
synchronous (two-class) orbits that heteroclinically connect a phase of the single-
class three-cycle with a phase of the two-class three-cycle. Thus, all orbits on this
heteroclinic chain (except the single-class three-cycle) approach the two-class three-
cycle.

From a biological point of view the results in this section assert that a semelparous
population described by Leslie models of the form (2 ) will, if initiated with at least one
missing age class, asymptotically tend to an oscillation of period three in which either
only one or only two age-classes are present at any point in time. More specifically,
if inter-class competition is weak and symmetric (parameter region Ω1) populations
initiated with only one age class will tend to a three-cycle oscillation with age classes
temporally separated while those initiated with two age classes present will tend to a
three-cycle with exactly two age classes present at any time. However, if inter-class
competition is increased (parameter region Ω2 ∪Ω3 ∪Ω4) then populations with at
least one initially missing age class will tend to an oscillation of period three in which
only one age class present at any time (except for those on the stable manifold of a
saddle, two-class three-cycle which exists on parameter region Ω4).

4 Dynamics on R3+

Theorem 3 describes the dynamics of the semelparous model (2) on the boundary of
the non-negative cone when R0 � 1. The focus of this section is on the dynamics in
the interior of the cone R3+.

According to Theorem 1 there exists an equilibrium in the interior of the cone for
R0 � 1. Since there is no explicit formula for this positive equilibrium, it is not straight-
forward to perform a linearization stability analysis. However, for R0 � 1 an approxi-
mation to the equilibrium is accessible by means of standard Lyapunov-Schmidt
(or center manifold) calculations. This approximation in turn provides approximations
to the Jacobian at the equilibrium and therefore to its eigenvalues. Similar calculations
provide approximations to the bifurcating single-class three-cycle, to the Jacobian
of the composite map, and to its eigenvalues. These approximation give information
about the local asymptotic stability properties of the equilibria and of the single-class
three-cycle by means of the linearization principle. The details appear in the Appendix.
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Theorem 4 Assume the semelparous Leslie model (2) satisfies (3) and (4) and assume
that at least one β j j is nonzero. For each R0 � 1 we have on R3+ that

(a) the positive equilibrium is LAS if (ρ1, ρ2) ∈ Ω1 ∪Ω2 (weak competition) and is
unstable (a saddle) if (ρ1, ρ2) ∈ Ω3 ∪Ω4 (strong competition);

(b) the single-class three-cycle is unstable if (ρ1, ρ2) ∈ Ω1 ∪Ω2 ∪Ω3 (asymmetric
or weak symmetric competition) and LAS is (ρ1, ρ2) ∈ Ω4 (strong symmetric
competition).

Consider populations that initiate in int (R3+), i.e., with all three age classes present.
Theorem 4 suggests that when inter-class competition is weak (i.e., on regions Ω1 or
Ω2) these population will equilibrate with overlapping generations. (I say “suggests”
because, mathematically, this stability conclusion is only local in nature, although we
conjecture that the positive equilibrium is globally attracting on int (R3+).) On the
other hand, when inter-class competition is strong and symmetric (i.e., on regionΩ4)
Theorem 4 implies that such populations will not equilibrate with overlapping gene-
rations (part (a)); instead the theorem suggests these populations will asymptotically
approach the single-class three-cycle with separated generations. (Similarly part (b)
only asserts the local stability of the three-cycle.)

Note that on parameter regionΩ3 both the positive equilibrium and the single-class
three-cycle are unstable. In this case of weak-asymmetric competition, the long term
dynamics on R3+ are still unclear. Theorem 5 below shows that the boundary of the
positive cone is an attractor in this case, which means that asymptotically orbits in
int (R3+) approach the heteroclinic cycle of type A lying on the boundary of the cone.
∂R3+\0̂ is an attractor if there exists an open neighborhood U ⊂ R3+ of ∂R3+\0̂

(in the relative topology of R3) such that orbits with initial conditions in U have
ω-limit sets in ∂R3+\0̂. On the other hand, ∂R3+ is a repeller if there exists a neighbo-
rhood U ⊂ R3+ of ∂R3+ such that for the orbit from each initial condition not in ∂R3+
there exists a time T > 0 such that the orbit lies outside of U for all t ≥ T . A proof
of the following theorem (that utilizes average Lyapunov function theory) appears in
the Appendix.

Theorem 5 Assume that the semelparous Leslie model (2) satisfies (3) and (4), that
at least one β j j is nonzero, and that R0 � 1.

(a) For (ρ1, ρ2) ∈ Ω3 ∪Ω4 (strong competition) the boundary set ∂C\0̂ ⊂ ∂R3+\0̂
is an attractor.

(b) For (ρ1, ρ2) ∈ Ω1 ∪ Ω2 (weak competition) the boundary set ∂C ⊂ ∂R3+ is a
repeller.

This theorem implies that for weak intra-class competition no temporal separa-
tion of age classes occurs (regardless of the nature of the global asymptotic attractor
on int (R3+)). For strong competition age class separation and synchronization occurs
(since orbits on ∂R3+ temporally visit the three coordinate planes sequentially), regard-
less of the nature of the asymptotic attractor on the boundary ∂R3+. On the region Ω3
of weak asymmetric competition, the single-class three-cycle is unstable and the tem-
poral segregation of age-class occurs as a result of the attracting heteroclinic cycle of
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type A lying on ∂R3+. That dynamic has the population sequentially visiting the neigh-
borhood of successive phases of the single-class three-cycle (in episodes of increasing
duration). See Fig. 5 below. On the region Ω4 of strong symmetric competition, the
attractor is the heteroclinic chain of type SS on which, however, the dynamic is asymp-
totically period-locked onto the single-class three-cycle.

5 Concluding remarks

With regard to the nature of the bifurcation that occurs at the origin at R0 = 1, the
following theorem is a corollary of Theorems 3, 4, and 5.

Theorem 6 Consider the nonlinear semelparous Leslie model (2) under the assump-
tions (3)–(4) and assume at least one β j j 	= 0 and ρ1ρ2 	= 1. The extinction equili-
brium loses stability as the inherent net reproductive number R0 increases through 1,
at which point transcritical bifurcations of both positive equilibria and invariant loops
(heteroclinic chains) occur. The bifurcation is supercritical, i.e., the positive equilibria
and heteroclinic chains exist for R0 � 1.

On the parameter regionΩ2 ∪Ω3 of asymmetric inter-class competition, the bifur-
cating invariant loops are heteroclinic cycles of type A (see Fig. 2). On the regionΩ2
of weak-asymmetric competition, the positive equilibria are (locally asymptotically)
stable and the heteroclinic cycles are unstable. On the regionΩ3 of strong-asymmetric
competition, the reverse is true, i.e., the positive equilibria are unstable and the hete-
roclinic cycles are locally attracting.

On the parameter region Ω1 ∪Ω4 of symmetric inter-class competition, the bifur-
cating invariant loops are heteroclinic chains of type W S or SS (see Fig. 2). On the
regionΩ1 of weak-symmetric competition, the positive equilibria are (locally asymp-
totically) stable and the heteroclinic chains are of type W S and unstable. On the
region Ω4 of strong-symmetric competition, the positive equilibria are unstable and
the heteroclinic chains are of type SS and locally attracting.

The bifurcation of invariant loops for the semelparous Leslie model (2) is not
unexpected because of the complex conjugate pair of eigenvalues that crosses the unit
circle at R0 = 1. In general this is predicted by the well-known Neimark-Sacker (or
discrete Hopf bifurcation) Theorem [17,30,34]. However, that well-known theorem
does not apply to (2) for two reasons: a real eigenvalue also leaves the unit circle at
R0 = 1 and the complex roots leave at a cube root of unity (a “resonance” case not
covered by the Neimark–Sacker Theorem).

The bifurcation Theorem 6 concerns the stability on the cone R3+ of two bifurca-
ting entities for R0 � 1: positive equilibria (overlapping age cohorts) and heteroclinic
chains (synchronized and non-overlapping age cohorts). The stability results are local
and the global nature of the dynamics on the interior of the cone remains an open
question. The results in Sect. 3, on the other hand, provide a complete accounting of
the dynamics on the boundary of the cone and that analysis is global. The boundary
dynamics are not only of mathematical interest. A population founded with a missing
age cohort (for example, by a dispersing life cycle stage) will be subject to those
dynamics. As we have seen, the boundary dynamics always lead asymptotically to
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Fig. 3 Parameter Region Ω1. This figure shows sample orbits for the model equations (2) with the non-
linearities (5) and parameter values b = 4, s1 = 0.5, s2 = 0.75 and competition coefficient matrix

B =
⎛

⎝
0.01 0 0
0.01 0.01 0
0.01 0.01 0.01

⎞

⎠ . These parameters imply R0 = 1.5 and (ρ1, ρ2) = (0.800, 0.533) ∈ Ω1.

a An orbit with initial condition (x0, y0, z0) = (1, 0, 0) on the coordinate axes A0+ (solid circles) tends
to a single-class three-cycle on the coordinate axes. An orbit with initial condition (x0, y0, z0) = (1, 1, 0)
in the positive coordinate planes P0+ (open circles) tends to a two-class three-cycle on the planes. b An

orbit with initial condition (x0, y0, z0) = (1, 10, 1) in the interior of R3+ tends to the positive equilibrium
(xe, ye, ze) = (10.367, 4.693, 3.062). c Three plots illustrate the time series for the adult component z of
the orbits in a and b. The top plot shows the equilibration of the orbit in the interior of R3+. The lower left
plot shows the approach to a two class three-cycle by the orbit on the coordinate planes. The lower right
plot shows the approach to the single-class three-cycle of the orbit on the coordinate axes

synchronized age cohorts (with either one or two missing age classes at every point
in time). A perturbation which causes an occurrence of overlapping age cohorts (i.e.,
into int (R3+)) can break the synchronization, however, provided the inter-age class
competition is sufficiently weak (so that the boundary is a repeller). Another interes-
ting case for the importance of the boundary dynamics occurs when two (or more)
semelparous species compete (a problem we do not consider here). The synchronized
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Fig. 4 Parameter Region Ω2. This figure shows sample orbits for the model equations (2) with the nonli-
nearities (5) and the same parameter values as in Fig. 1 (and hence R0 = 1.5) except with the competition

coefficient matrix B =
⎛

⎝
0.01 0 0
0.01 0.01 0
0.01 0.03 0.01

⎞

⎠ which implies (ρ1, ρ2) = (1.333, 0.5333) ∈ Ω2. a An orbit

(x0, y0, z0) = (15, 0, 0) on the coordinate axes A0+ (solid circles) and an orbit with initial condition

(x0, y0, z0) = (2, 3, 0) in the positive coordinate planes P0+ (open circles) both tend to the single-class
three-cycle on the coordinate axes. b An orbit with initial condition (x0, y0, z0) = (30, 5, 8) in the interior
of R3+ tends to the positive equilibrium. (xe, ye, ze) = (8.458, 3.900, 2.655). c Three plots illustrate the
time series for the adult component z of the orbits in a and b. The top plot shows the equilibration of the
orbit in the interior of R3+. The lower two plots show the approach to the single-class three-cycle by both
the coordinate axis and coordinate plane orbits in a

cycles for each species turn out to allow for competitive coexistence in circumstances
that otherwise would be ruled out by the competitive exclusion principle [10].

Illustrative numerical examples of the dynamics on the cone and on its boundary
appear in Figs. 3–6 for each of the parameter regions Ωi .

The results in this paper rely on the monotonicity assumptions in (3)–(4). These
assumptions allow for the application of monotone flow theory and an understanding
of the global dynamics on the boundary of the positive cone. Consequently, the results
do not apply to the exponential (Ricker) type nonlinearities that are often employed
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Fig. 5 Parameter region Ω3. This figure shows sample orbits for the model equations (2) with the nonli-
nearities (5) and the same parameter values as in Fig. 1 (and hence R0 = 1.5) except with the competition

coefficient matrix B =
⎛

⎝
0.01 0 0
0.03 0.01 0
0.01 0.02 0.01

⎞

⎠. These parameters imply (ρ1, ρ2) = (2.133, 0.5333) ∈ Ω3.

a An orbit with initial condition (x0, y0, z0) = (15, 0, 0) on the coordinate axes A0+ (solid circles) and

an orbit with initial condition (x0, y0, z0) = (2, 3, 0) in the positive coordinate planes P0+ (open circles)

both tend to the single-class three-cycle on the coordinate axes. b An orbit in the interior of R3+ with initial
condition (x0, y0, z0) = (1, 1, 1) (open square) tends to the heteroclinic cycle of type A lying on the
boundary ∂R3+. c Three plots illustrate the time series for the adult component z of the orbit in b. The lower
two graphs show, left to right, an episode of three-cycle dynamics and a transitional shift from one phase
to another respectively

in model studies of semelparous populations (e.g. see [4,11,12,21,22]). However,
since all of the results in this paper are restricted to the case when R0 is near 1 (and
therefore for positive equilibria and synchronous cycles near the origin), it is natural to
conjecture that they remain valid under only local monotonicity assumptions, namely,
g′

i (0) < 0 and h′
i (0) > 0. If that conjecture is correct, then the results here would also

apply to models with exponential nonlinearities for R0 near 1.

123



92 J. M. Cushing

(a) (b)

t
0 200 400 600 800 1000

z

0

2

4

6

50 100 150 200

z

0

2

4

6

(c)

t
0 20 40

0

2

4

6

0

2

4

6

8

0
5

10
15

20
25

30

5

10

z

xy

0

2

4

6

8

z

5

10y

0
5

10
15

20
25

30
x

0

Fig. 6 Parameter Region Ω4. This figure shows sample orbits for the model equations (2) with the nonli-
nearities (5) and the same parameter values as in Fig. 1 (and hence R0 = 1.5) except with the competition

coefficient matrix B =
⎛

⎝
0.01 0 0
0.02 0.01 0
0.02 0.02 0.01

⎞

⎠ . These parameters imply (ρ1, ρ2) = (1.600, 1.067) ∈ Ω4.

a An orbit with initial condition (x0, y0, z0) = (15, 0, 0) on the coordinate axes A0+ (solid circles) and

an orbit with initial condition (x0, y0, z0) = (1, 1, 0) in the positive coordinate planes P0+ (open circles)

both tend to the single-class three-cycle on the coordinate axes. b An orbit in the interior of R3+ with initial
condition (x0, y0, z0) = (5, 1, 1) (open square) tends to single-class three-cycle on the coordinate axes.
c Three plots illustrate the time series for the adult component z of the orbits in a and b. All three plots
show approach to the single-class three-cycle

In a recent paper Kon and Iwasa [23] consider semelparous Leslie models of
arbitrary dimension for general nonlinearities without the constraints of monotoni-
city or R0 � 1. They obtain conditions that ensure the instability or local stability of
single-class cycles. For the 3D models we consider in this paper (and for R0 � 1) it
turns out that their conditions are sufficient (although not necessary) to place (ρ1, ρ2)

in regions Ω1 and Ω4, as is commensurate with our results here. While they consider
more general models and consider arbitrary R0 > 1, they do not consider the case of
asymmetric competition, characterize the dynamics for symmetric competition, study
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two-class three-cycles, or consider the structure of the invariant loops (heteroclinic
chains) on the boundary of the cone.

Since the approach in this paper is based on bifurcation theory methods and are
restricted to R0 � 1, it is not known to what extent the results remain valid for arbitrary
R0 > 1. In particular, the relevance of the parameter regions in characterizing the
equilibrium and invariant loop dynamics is an open question for large R0 > 1. A
recent paper of Diekmann et al. [14] contains results concerning heteroclinic orbits
for arbitrary R0 > 1 (obtained by carrying simplex methods) for a special class of
models, namely models with Beverton–Holt nonlinearities (5) and a restriction on
the weighted population sizes wi (which implies, among other things, that vital rates
in the Leslie matrix remain constant on a planar simplex in R3+). For example, for
such models of three dimension the authors obtain the existence of a heteroclinic
cycle of type A for arbitrary R0 > 1 (Corollary 1.3 in [14]). We can guarantee the
latter requirement when R0 is close to 1 for asymmetric competition (i.e., parameters
in regions Ω2 or Ω3), but not for arbitrary R0 > 1. (Other papers concerned with
heteroclinic cycles are [4,12,13].)

Only models of dimensional three are studied in this paper. Semelparous Leslie
models of dimension higher than three are also of interest [2,12,20,23,29,35,37].
This is particularly true for applications to the dynamics of periodical insects such
as cicadas, whose synchronous outbreaks have historically been of interest because
they are of such long periods. In principle, the mathematical analyses carried out in
this paper are applicable to higher dimensional models, although the details of the
approach taken here become computationally formidable. If that analyses were car-
ried out, or if a different approach could be found to study the bifurcation at R0 = 1,
it is likely that invariant loops (possibly more than one) will be found to bifurcate
at R0 = 1, along with the positive equilibrium, and that these loops, although with
increasingly complicated structure as the dimension increases, will consist of hetero-
clinic connections to the phases of synchronous cycles (in an increasing complexity of
possible combinations). It is also to be anticipated that the stability issue will reduce to
a choice between the positive equilibrium (overlapping age classes) and the boundary
of the cone on which the invariant loops reside (synchronized age cohorts) and that this
choice will be determined by some measure of the intensity of inter-class competition
expressed by analogs of the ratios ρ1 ,ρ2 for the 3D case studied here.
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No. 0414212.

Appendix

Proof of Lemma 3 The composition map has the form

⎛

⎜
⎝

x

y

z

⎞

⎟
⎠ →

⎛

⎜
⎝

R0γ1 (x, y, z) x

R0γ2 (x, y, z) y

R0γ3 (x, y, z) z

⎞

⎟
⎠
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where

γ1 (x, y, z) � g3 (β31x2 + β32 y2 + β33z2) g2 (β21x1 + β22 y1 + β23z1)

×g1 (β11x + β12 y + β13z)

γ2 (x, y, z) � g1 (β11x2 + β12 y2 + β13z2) g3 (β31x1 + β32 y1 + β33z1)

×g2 (β21x + β22 y + β23z)

γ3 (x, y, z) � g2 (β21x2 + β22 y2 + β23z2) g1 (β11x1 + β12 y1 + β13z1)

×g3 (β31x + β32 y + β33z)

and xi = xi (x, y, z), yi = yi (x, y, z), zi = zi (x, y, z) are defined by

x1(x, y, z) � bg3 (β31x + β32 y + β33z) z,

x2(x, y, z) � bg3 (β31x1 + β32 y1 + β33z1) z1

y1(x, y, z) � s1g1 (β11x + β12 y + β13z) x,

y2(x, y, z) � s1g1 (β11x1 + β12 y1 + β13z1) x1

z1(x, y, z) � s2g2 (β21x + β22 y + β23z) y,

z2(x, y, z) � s2g2 (β21x1 + β22 y1 + β23z1) y1.

Two-class three-cycles correspond to fixed points of this map with exactly one zero
component. It is sufficient to study the map in the (x, y)-plane. In the (x, y)-plane
such fixed points satisfy

x = R0γ1 (x, y, 0) x, y = R0γ2 (x, y, 0) y (11)

with nonzero x and y or equivalently

Γ1 (x, y, R0) � R0γ1 (x, y, 0)− 1 = 0, Γ2 (x, y, R0) � R0γ2 (x, y, 0)− 1 = 0.

(12)

One can solve these equations in the neighborhood of the origin and R0 = 1 by use
of the Implicit Function Theorem. For that purpose we need the Jacobian of the pair
Γ1, Γ2 evaluated at x = y = 0 and R0 = 1. Note that γi (0, 0, 0) = 1 and hence
Γi (0, 0, 1) = 0. Define

d � β11 + s1β22 + s1s2β33

and let ∂0
x and ∂0

y denote partial differentiation followed by evaluation at x = y = 0
and R0 = 1. Using the assumptions gi (0) = 1 and g′

i (0) = −1 in (3), we calculate the
derivatives ∂0

x y1 = s1, ∂
0
y y1 = 0, ∂0

x z1 = 0, ∂0
y z1 = s2 and ∂0

x x2 = 0, ∂0
y x2 = s−1

1 ,
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∂0
x z2 = s1s2, ∂

0
y z2 = 0, and then

∂0
xΓ1 = −d, ∂0

yΓ1 = −β12 − s2β23 − s−1
1 β31,

∂0
xΓ2 = −β21 − s1β32 − s1s2β13, ∂0

yΓ2 = −s−1
1 d.

Thus,

det

(
∂0

xΓ1 ∂0
yΓ1

∂0
xΓ2 ∂0

yΓ2

)

= s−1
1 d2 (1 − ρ1ρ2)

and, if ρ1ρ2 	= 1, then the Implicit Function Theorem implies the existence of a unique
branch of solutions

x = x+ (R0) , y = y+ (R0) (13)

of (12) which is defined and continuously differentiable for R0 near 1 and that
satisfies x+ (1) = 0, y+ (1) = 0. An implicit differentiation of the two equations
Γi (x+ (R0) , y+ (R0)) = 0 with respect to R0 leads to equations that one can solve
for

x ′+(1) = d−1 1 − ρ2

1 − ρ1ρ2
, y′+(1) = s1d−1 1 − ρ1

1 − ρ1ρ2
.

A study of these formulas shows that x+ (R0) and y+ (R0) are both positive if and
only if both ρi < 1 or both ρi > 1, i.e., on regions Ω1 and Ω4.

All that remains to prove is the last sentence in the statement of Lemma 3. This
follows from the uniqueness assertion of the Implicit Function Theorem which implies,
in a neighborhood of the origin and R0 = 1, that the only solutions of (12) lie on the
branch (13). For R0 sufficiently close to 1 we know from Lemma 1 that any possible
positive equilibrium must lie in the square (0, x∗) × (0, y∗). For R0 even closer to
1 if necessary this square lies in the neighborhood of uniqueness guaranteed by the
Implicit Function Theorem (since both x∗ and y∗ tend to 0 as R0 tends to 1). �

Proof of Theorem 3 That the single-class three-cycle is GAS on the positive axes
A0+ follows from Theorem 2. The dynamics of the composite map on the (forward
invariant) positive quadrant of the (x, y)-plane are described by the equations

xt+1 = R0γ1 (xt , yt , 0) xt

(14)yt+1 = R0γ2 (xt , yt , 0) yt

γ1 (x, y, 0) � g3 (β31x2 + β33z2) g2 (β22 y1 + β23z1) g1 (β11x + β12 y)

γ2 (x, y, 0) � g1 (β11x2 + β13z2) g3 (β32 y1 + β33z1) g2 (β21x + β22 y) .

There are two axes equilibria

(
x
y

)
=

(
x∗
0

)
and

(
0
y∗

)
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where x∗ and y∗ are points on the single-class three-cycle (8). A linearization analysis
requires the dominant eigenvalue of the Jacobian of (14) evaluated at each of these
two equilibria, namely,

J2(x
∗, 0) =

(
R0∂x (xγ1(x, 0, 0)) R0x∂yγ1 (x, 0, 0)

0 R0γ2 (x, 0, 0)

)∣
∣∣∣∣
x=x∗

J2(0, y∗) =
(

R0γ1 (0, y, 0) 0

R0 y∂xγ2 (0, y, 0) R0∂y (yγ2(0, y, 0))

)∣
∣∣∣∣
y=y∗

.

The eigenvalues of these triangular matrices appear along the diagonals. Two of the
eigenvalues are those of the one dimensional maps on the forward invariant x-axis and
y-axis and satisfy

0 < R0∂x (xγ1(x, 0, 0)) |x=x∗ < 1, 0 < R0∂y (yγ2(0, y, 0)) |y=y∗ < 1.

(Recall that the equilibria of the composite are stable on the coordinate axes.) The
stability determining eigenvalues are the positive real numbers R0γ2 (x∗, 0, 0) and
R0γ1 (0, y∗, 0). We can approximate the magnitudes of these quantities for R0 � 1
by using the (Lyapunov-Schmidt) expansions

x∗(ε)= d−1ε+ O
(
ε2), y∗(ε)= s1d−1ε+ O

(
ε2), z∗(ε)= s1s2d−1ε+ O

(
ε2)

(15)

where ε � R0 − 1. (Here we used ∂0
x F = s1s2∂

0
z g3 + ∂0

x g1 + s1∂
0
y g2 in correction to

the formula for this derivative that appears in [5].) To first order in ε we have that

g1
(
β13z∗) = 1 − β13s1s2d−1ε + O

(
ε2), g2

(
β21x∗) = 1 − β21d−1ε + O

(
ε2),

g3
(
β32 y∗) = 1 − β32s1d−1ε + O

(
ε2)

(recall g′
i (0) = −1) and thus arrive at the expansions

R0γ2
(
x∗, 0, 0

) = R0g1
(
β13z∗) g3

(
β32 y∗) g2

(
β21x∗) = 1 + (1 − ρ1)ε + O

(
ε2)

R0γ1
(
0, y∗, 0

) = R0g3
(
β31x∗) g2

(
β23z∗) g1

(
β12 y∗) = 1 + (1 − ρ2) ε + O

(
ε2)

for the stability determining eigenvalues. It follows that the composite equilibrium
(x∗, 0) is LAS for R0 � 1 if ρ1 > 1 and unstable if ρ1 < 1, and the composite
equilibrium (0, y∗) is LAS for R0 � 1 if ρ2 > 1 and unstable if ρ2 < 1. Similar
calculations lead to analogous results for the composite dynamics on the y, z-plane
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and the z, x-plane. Specifically, ρ1 > 1 (respectively ρ1 < 1) implies

(x∗, 0) is LAS (respectively unstable) in the x, y-plane

(y∗, 0) is LAS (respectively unstable) in the y, z-plane

(z∗, 0) is LAS (respectively unstable) in the z, x-plane

and ρ2 > 1 (respectively ρ2 < 1) implies

(0, y∗) is LAS (respectively unstable) in the x, y-plane

(0, z∗) is LAS (respectively unstable) in the y, z-plane

(0, x∗) is LAS (respectively unstable) in the z, x-plane.

Part (a). In the parameter region (ρ1, ρ2) ∈ Ω1 the axes equilibria of the composite
are unstable (saddles whose stable manifolds are the coordinate axes) and therefore it
follows from Theorem 5.3 [36] that the positive planar equilibrium (x+, y+) is globally
attracting on the coordinate planes P0+. To finish the proof of part (a) we need to show
that (x+, y+) is LAS. The proof of Lemma 3 implies

x+ = d−1 1 − ρ2

1 − ρ1ρ2
ε + O

(
ε2

)
, y+ = s1d−1 1 − ρ1

1 − ρ1ρ2
ε + O

(
ε2

)
.

A straightforward, but tedious, calculation shows that the Jacobian of (14), to first
order, is (

1 0

0 1

)

+
⎛

⎝
− 1−ρ2

1−ρ1ρ2
− 1

s1
ρ2

1−ρ2
1−ρ1ρ2

−s1ρ1
1−ρ1

1−ρ1ρ2
− 1−ρ1

1−ρ1ρ2

⎞

⎠ ε + O
(
ε2

)
(16)

and that the eigenvalues are real and, to first order, have expansions

λ1 = 1 − ε + O
(
ε2

)
, λ2 = 1 + (ρ1 − 1) (ρ2 − 1)

ρ1ρ2 − 1
ε + O

(
ε2

)
. (17)

On parameter region Ω1 where both ρi < 1 we see that both eigenvalues satisfy
0 < λi < 1. It follows that the fixed point (x+, y+) of the composite is LAS. Simi-
lar analyses carried out on the other two coordinate planes lead to the same result.
Consequently, the two-age class three-cycle is LAS on the boundary ∂R3+.

Part (b). In the parameter regionsΩ2 andΩ3 there exist no planar equilibria of the
composite and therefore no two-class three-cycles on the boundary ∂R3+ (Lemma 3(b)).
It follows from Lemma 2(b) that the single-class three-cycle is globally attracting on
P0+ ∪ A0+ = ∂R3+\0̂.

Part (c). Consider the parameter region (ρ1, ρ2) ∈ Ω4. Since bothρi > 1, it follows
from the analysis of the coordinate axes equilibria of the composite map above that
the single-class three-cycle is LAS on the boundary ∂R3+. Also in this case we see
from (17) that the composite fixed point (x+, y+) in the (x, y)-coordinate plane is a
saddle. Moreover, from the expansion (16) we find that the Jacobian of (14), evaluated
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at the fixed point (x+, y+), has a positive determinant for ε � 0. Part (c) follows from
Theorem 5 in [25].

Proof of Theorem 4(a) From Theorem 2.1 in [5] follows, for ε � R0 − 1 > 0 suffi-
ciently small, the equilibrium expansion

⎛

⎝
xe(ε)

ye(ε)

ze(ε)

⎞

⎠ = 1

∆

⎛

⎝
1
s1

s1s2

⎞

⎠ ε + O
(
ε2) (18)

where

∆ � (β31 + β11 + β21)+ s1 (β32 + β12 + β22)+ s1s2 (β33 + β13 + β23) > 0.

From this follow ε-expansions for the Jacobian of (2 ) evaluated at (18) and its eigen-
values λ:

J (xe(ε), ye(ε), ze(ε)) = J0 + J1ε + O
(
ε2), λ(ε) = λ0 + λ1ε + O

(
ε2).

Here

J0 =
⎛

⎜
⎝

0 0 1
s1s2

s1 0 0

0 s2 0

⎞

⎟
⎠

and hence λ0 is one of the cube roots of unity: λ0 = 1 and (−1±√
3i)/2. Stability for

ε � 0 is determined by λ0 + λ1ε. Let v0 and w0 denote the right and left eigenvectors
of J0 associated with λ0 normalized so that w0v0 = 1. To first order we have J0v1 =
λ0v1 + (λ1v0 − J1v0) and hence λ1 = w0 J1v0. A straightforward expansion of each
term in the Jacobian results in

J1 = 1

∆

⎛

⎜
⎜⎜⎜⎜⎜
⎝

−β31 −β32

β11+β21
s1s2

+ β12+β22
s2+β13 + β23 − β33

−2s1β11

−s2
1β12 − s2

1 s2β13
−β12s1 −β13s1

−β21s1s2
−s2β21

−2s1s2β22 − s1s2
2β23

−β23s1s2

⎞

⎟
⎟⎟⎟⎟⎟
⎠

.

For λ0 = 1 these formulas yield the first order coefficient λ1 = −1/3. For λ0 =(
−1 + i

√
3
)
/2 they yield a complex coefficient λ1 = a1 + ib1 where

a1 � 1

6∆
(β11+β21−2β31−2s1β12+s1β22 + s1β32 + s1s2β13 − 2s1s2β23 + s1s2β33)

b1 �
√

3

6∆
(β21 −β11 − s1β22 + s1β32 + s1s2β13 − s1s2β33) .

For λ0 =
(
−1 + i

√
3
)
/2 the coefficient is the conjugate λ1 = a1 − ib1.

123



Three stage semelparous Leslie models 99

For ε � 0 the eigenvalue λ(ε) = 1 − ε/3 + O
(
ε2

)
satisfies 0 < λ(ε) < 1. As a

result the stability of the positive equilibrium depends on the magnitude of the complex
eigenvalue

λ(ε) = (a0 + b0i)+ (a1 + ib1) ε + O
(
ε2), a0 � −1/2, b0 �

√
3/2

for ε � 0. Since |λ(ε)|2 = 1 + 2ε (a0a1 + b0b1)+ O
(
ε2

)
we see that a0a1 + b0b1 <

0 
⇒ |λ(ε)| < 1 and a0a1 + b0b1 > 0 
⇒ |λ(ε)| > 1 for ε � 0. A calculation
shows a0a1 + b0b1 = d (ρ1 + ρ2 − 2) /6∆ and hence ρ1 + ρ2 < 2 
⇒ |λ(ε)| < 1
and ρ1 +ρ2 > 2 
⇒ |λ(ε)| > 1 for ε � 0. Note that when the equilibrium is unstable
it is a saddle with a one dimensional stable manifold. �

Proof of Theorem 4(b) To lowest order for ε � 0, the points on the single-class three-
cycle (8) are (15). For ε � 0 we can determine the local stability of the three-cycle
from the eigenvalues λi (ε) = λi (0) + λ′

i (0)ε + O
(
ε2

)
of the Jacobian Φ (ε) of the

composite, which is equal to the triple product

Φ (ε) = J
(
0, 0, z∗ (ε)

)
J

(
0, y∗ (ε) , 0

)
J

(
x∗ (ε) , 0, 0

)
. (19)

A straightforward calculation shows Φ(0) = I and λi (0) = 1. Thus Φ (ε) =
I + Φ ′(0)ε + O

(
ε2

)
and λi (ε) = 1 + λ′

i (0)ε + O
(
ε2

)
. The eigenvalue equation

Φ (ε) v (ε) = λ (ε) v (ε), to lowest order, shows that λ′
i (0) is an eigenvalue of Φ ′(0)

which (a tedious calculation done with the aid of a computer algebra program) turns
out to be a triangular matrix of the form

Φ ′(0) =
⎛

⎝
−1 ∗ ∗
0 1 − ρ1 0
0 0 1 − ρ2

⎞

⎠ .

The asterisks represent unneeded terms, since the eigenvalues if Φ ′(0) appear along
the diagonal. The eigenvalues of Φ(ε) are, to first order in ε,

λ1(ε) = 1 − ε + O
(
ε2), λ2(ε) = 1 + (1 − ρ1) ε + O

(
ε2),

λ3(ε) = 1 + (1 − ρ2) ε + O
(
ε2).

For ε � 0 it follows that 0 < λ1(ε) < 1 and the stability of the single-class three-cycle
depends on λ2(ε) and λ3(ε). For ε � 0 the only case when both satisfy 0 < λi (ε) < 1
is when both ρi > 1 (i.e., on region Ω4). If at least one ρi < 1 (i.e., for parameters
from region Ω1 ∪Ω2 ∪Ω3), then the three-cycle is unstable. �

Proof of Theorem 5 See Theorems A.1 and A.2 in [23] (and relevant earlier refe-
rences) for the following theorem concerning a continuous map T : X → X on a
metric space X .

Theorem 7 Suppose S ⊂ X is a compact subset such that S and X\S are forward
invariant under a mapping T . Then S is a repeller if there exists a continuous function
P : X → R+ such that
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(a) P(x̂) = 0 ⇐⇒ x̂ ∈ S
(b) for all x̂ ∈ S

sup
t≥1

t−1∏

i=0

ψ
(

T i (x̂)
)
> 1 (20)

whereψ : X → R+ is a continuous function satisfying P
(
T

(
x̂
)) ≥ ψ

(
x̂
)

P
(
x̂
)
.

If, on the other hand, P
(
T

(
x̂
)) ≤ ψ

(
x̂
)

P
(
x̂
)

and

inf
t≥1

t−1∏

i=0

ψ
(

T i (x̂)
)
< 1 (21)

then S is an attractor.

The following lemma helps to define X and S for an application of Theorem 7
to (2).

Lemma 4 Assume (3) and (4) hold, that at least one βi i 	= 0, and that R0 > 1 for
(2). There exist positive constants k1, k2, δ0 such C\E(δ) is forward invariant for all
positive δ ≤ δ0 , where E(δ) is the ellipsoid

E(δ) �
{

(x, y, z) ∈ R3+ :
(

x

k1δ

)2

+
(

y

k2δ

)2

+
( z

δ

)2
< 1

}

.

Proof We need to show that (x, y, z) ∈ C\E(δ) implies (x ′, y′, z′) ∈ C\E(δ)
where (x ′, y′, z′) is the image of (x, y, z) under (2). In spherical coordinates x =
ρ sin ϕ cos θ, y = ρ sin ϕ sin θ, z = ρ cosϕ, ρ ≥ 0, (θ, ϕ) ∈ D � {(θ, ϕ) : 0 ≤ θ ≤
π/2, 0 ≤ ϕ ≤ π/2} the goal is to pick k1, k2, δ so that

(
ρ sin ϕ cos θ

k1δ

)2

+
(
ρ sin ϕ sin θ

k2δ

)2

+
(ρ cosϕ

δ

)2 ≥ 1 (22)

implies σ (ρ, θ, ϕ) ≥ 1 where

σ (ρ, θ, ϕ) �
(

bĝ3 (ρ, θ, ϕ) ρ cosϕ

k1δ

)2

+
(

s1ĝ1 (ρ, θ, ϕ) ρ sin ϕ cos θ

k2δ

)2

+
(

s2 ĝ2 (ρ, θ, ϕ) ρ sin ϕ sin θ

δ

)2

and ĝi (ρ, θ, ϕ) � bgi (w3 (ρ, θ, ϕ)), wi (ρ, θ, ϕ) � βi1ρ sin ϕ cos θ + βi2ρ sin ϕ
sin θ + βi3ρ cosϕ. Inequality (22) is equivalent to

ρ ≥ η(δ, θ, ϕ) � k1k2δ
((

k2
2 cos2 θ + k2

1 sin2 θ
)

sin2 ϕ + k2
1k2

2 cos2 ϕ
)1/2 . (23)
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The monotonicity assumptions (3)-(4) imply that σ (ρ, θ, ϕ) is non-decreasing in ρ
and as a result

m(δ, θ, ϕ) � min
ρ≥η(δ,θ,ϕ) σ (ρ, θ, ϕ) = σ (η(δ, θ, ϕ), θ, ϕ) .

To lowest order in δ it turns out that m(δ, θ, ϕ) = m0 (θ, ϕ)+ O (δ) where

m0 (θ, ϕ) �
b2k2

2 cos2 ϕ + k2
1

(
s2

1 cos2 θ + s2
2 k2

2 sin2 θ
)

sin2 ϕ

k2
1k2

2 cos2 ϕ + (
k2

2 cos2 θ + k2
1 sin2 θ

)
sin2 ϕ

.

A calculation yields

dm0(θ, ϕ)

dϕ
=

[
k2

2

(
k2

1s1 − bk2

) (
bk2 + k2

1s1

)
cos2 θ

+ k2
1k2

2 (k1k2s2 − b) (b + k1k2s2) sin2 θ
]

sin 2ϕ.

This derivative is nonnegative on D provided both terms in the coefficient are positive.
This occurs if k1 and k2 are chosen so that

bk−1
1 s−1

2 < k2 < b−1k2
1s1. (24)

Then min0≤ϕ≤π/2 m0(θ, ϕ) = m0(θ, 0) = b2k−2
1 which in turn implies

minD m0(θ, ϕ) = b2k−2
1 . Hence minD m0(θ, ϕ) > 1 provided k1 < b. In summary,

choose k1 so that
(

b2s−1
1 s−1

2

)1/3
< k1 < b and then k2 so that (24) holds. Then

σ (ρ, θ, ϕ) ≥ m(δ, θ, ϕ) = m0 (θ, ϕ) + O (δ) > 1 for all δ > 0 sufficiently small.
�


For the semelparous Leslie model (2) we define the functions

P
(
x̂
)

� xyz

ψ(x̂) �
P

(
T

(
x̂
))

P
(
x̂
) = R0g3 (β31x + β32 y + β33z) g1 (β11x + β12 y + β13z)

×g2 (β21x + β22 y + β23z)

for use in Theorem 7. The map T is that defined by the semelparous Leslie model
equations (2). Assume R0 > 1 so that the system is permanent (Theorem 1).

Lemma 5 Assume (3) and (4). For any orbit on ∂R3+\0̂

lim inf
t→∞

1

t

t−1∑

i=0

lnψ
(

T i (x̂)
)

≥ ln R0
∏3

i=1gi
(
βi1x∗ + βi2 y∗ + βi3z∗) . (25)
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Proof By Lemma 2 the ω-limit set of any orbit on the forward invariant set ∂R3+\0̂
lies in the cube C∗. Therefore, for an arbitrary but fixed number δ > 0 any orbit on
∂R3+\0̂ satisfies 0 ≤ x(t) ≤ x∗ + δ, 0 ≤ y ≤ y∗ + δ, 0 ≤ z ≤ z∗ + δ for t

sufficiently large. Since gi (u) is decreasing, it follows for any orbit on ∂R3+\0̂ that

ψ
(

T i (x̂)
)

= R0

3∏

i=1

gi (βi1x(i)+ βi2 y(i)+ βi3z(i))

≥ R0

3∏

i=1

gi
(
βi1

(
x∗ + δ

) + βi2
(
y∗ + δ

) + βi3
(
z∗ + δ

))
.

Since δ > 0 is arbitrary (25) follows. �

From (15) and (25) we have ln R0Π

3
i=1gi (βi1x∗ + βi2 y∗ + βi3z∗) = 1 +

(2 − ρ1 − ρ2) ε + O
(
ε2

)
and

lim inf
t→∞

1

t

t−1∑

i=0

lnψ
(

T i (x̂)
)

≥ ln
[
1 + (2 − ρ1 − ρ2) ε + O

(
ε2

)]
. (26)

This inequality holds for any orbit in ∂R3+\0̂ when ε � 0 (i.e., R0 � 1).
Let X � C\E(δ).By Lemma 4 this compact set is forward invariant for all positive

δ ≤ δ0. The same is true of the (compact) boundary set S � X ∩ ∂R3+ (since C and
∂R3+ are forward invariant). We choose these sets in Theorem 7.

(a) On the parameter regions Ω3 and Ω4 (i.e., for ρ1 + ρ2 > 2), inequality (26)
implies, for ε � 0, that lim inf t→∞ t−1Σ t−1

i=0 lnψ
(
T i (x̂)

)
< 0 for any orbit on

∂R3+ (and hence on S). Thus, there exists a sequence t j → +∞ such that

Σ
t j −1
i=0 lnψ

(
T i (x̂)

)
< 0 and hence Π

t j −1
i=0 ψ

(
T i (x̂)

)
< 1. This implies the

inequality (21) holds and Theorem 7 implies S is an attractor. Since the neigh-
borhood N is arbitrarily small, it follows that ∂C\0̂ is an attractor.

(b) On the parameter regions Ω1 and Ω2 (i.e., for ρ1 + ρ2 < 2), ε � 0 implies
lim inf t→∞ t−1Σ t−1

i=0 lnψ
(
T i (x̂)

)
> 0 for any orbit on ∂R3+ (and hence on S).

Thus, for large t it follows that Σ t−1
i=0 lnψ

(
T i (x̂)

)
> 0 and hence Π t−1

i=0ψ(
T i (x̂)

)
> 1. This means the inequality 20) holds and Theorem 7 implies S

is a repeller. Since N is an arbitrarily small neighborhood of the origin, ∂C is a
repeller.
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