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Advances in Portfolio Risk Control 

Spurred by the increased interest in applying “risk control” techniques in an asset allocation 
context, we offer a practitioner’s review of techniques that have been newly proposed or revived 
from academic history. We discuss minimum variance, “1/N” or equal-weighting, maximum 
diversification, volatility weighting and volatility targeting – and especially equal risk contribution 
or “risk parity”, a concept that has become a real buzz word. We start from a taxonomy of risk 
control techniques. We discuss their main characteristics and their positives and negatives and 
we compare them against each other and against the maximum Sharpe ratio (SR) criterion. We 
illustrate their implications by means of an empirical example. We also highlight some key 
papers from the vast and still growing literature in this field. All in all, we aim to provide a 
practical and critical guide to risk control strategies. It may help to demystify risk control 
techniques, to appreciate both the “forest” and “trees” and to judge these techniques on their 
potential merits in practical investment applications. 

1.1. Introduction 

Recently, there has been increased interest in applying “risk control” techniques 
in an asset allocation context. Some examples of techniques that have been newly 
proposed or revived from academic history are “1/N” or equal-weighting, minimum 
variance, maximum diversification, volatility weighting and volatility targeting – 
and especially equal risk contribution or “risk parity”, a concept that has become a 
real buzz word. In this chapter, we start from a taxonomy of risk control techniques. 
We discuss their main characteristics and their positives and negatives, we compare  
 
 
 
 
                         
Chapter written by Winfried G. HALLERBACH*. 
*Robeco Asset Management 
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them against each other and against the maximum Sharpe ratio (SR) criterion and we 
illustrate their implications by means of an empirical example. We also highlight some 
key papers from the vast and still growing literature in this field. All in all, we aim to 
provide a practical and critical guide to risk control strategies that may help to 
appreciate both the “forest” and “trees” and to judge these techniques on their actual 
potential merits in practical investment applications. For an in-depth exposition, 
comparison and evaluation of these strategies, we recommend [RON 14]. 

The main question in risk control is: “does it work?” Do risk control techniques 
achieve the ex ante targeted risk balance or risk profile? Can we avoid hot spots 
(pockets of risk concentration in a portfolio) and can we achieve diversification against 
losses? Apart from this risk-budgeting perspective, a large part of the literature has 
promoted risk control as a full-fledged investment criterion − suggesting that 
controlling the risk dimension is sufficient to build a portfolio or an opportunity to 
reap risk-adjusted outperformance. But, why would ignoring the return dimension ex 
ante produce portfolios that are superior in terms of ex post risk-adjusted performance?  

Several studies indicate that the historical outperformance of risk control 
strategies can be linked to overweighting asset classes that in the rear-view mirror 
have paired high historical risk premia with low-risk levels (as is the case for bonds, 
e.g.), or to implicit exposures to factor premia [JUR 15]. However, focusing directly 
on factor exposures, as is done in factor investing (see [ANG 14]), provides a much 
more efficient and effective way to capture factor premia. Still, focusing only on risk 
aspects when forming a portfolio can be a perfectly sensible heuristic (see [FIS 15]) 
or a starting point if we have only low confidence in ex ante risk premia estimates. 
From the perspective of estimation risk, mis-estimation of risk premia has the 
greatest impact on portfolio composition and especially risk premia are notoriously 
hard to estimate ex ante. For example, suppose that ex ante we cannot meaningfully 
differentiate between all assets’ SRs (so assuming that all SRs are equal), then 
constructing a maximum diversification portfolio (MDP) gives the maximum Sharpe 
ratio portfolio (MSRP). If, in addition to equal SRs, we cannot meaningfully 
differentiate between asset correlations (so also assuming that all correlations are 
uniform), then applying risk parity gives the MSRP. So, besides the risk-budgeting 
dimension, also the potential relevance of risk control techniques in full-fledged 
risk-return optimization is not to be underestimated.  

This chapter is divided as follows. Section 1.2 introduces our empirical example 
and provides some preliminaries. Section 1.3 outlines the MSRP within the familiar 
mean-variance framework. Next, we discuss the risk control strategies. The main 
skeleton of the taxonomy of risk control strategies has a cross-section and a time-
series branch. The objective of risk control in the cross-section is to control a 
portfolio’s risk profile at a given point in time. The focus is across assets: 
reweighting the portfolio constituents so as to obtain a desired risk profile. The main 
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cross-sectional risk control strategies are: 1/N, or the equally weighted portfolio 
(section 1.4), the minimum variance portfolio (MVP) (section 1.5) and the MDP 
(section 1.6). Next, we have risk parity, which comes in two flavors, the equal risk 
contribution portfolio (ERCP) or “full” risk parity (section 1.7) and the inverse 
volatility portfolio (IVP) or “naive” risk parity, implying volatility weighting in 
cross-section (section 1.8). The objective of time-series risk control is to control the 
portfolio risk level over time. There are two closely related time-series techniques: 
volatility weighting over time, or adjusting the exposure to risky assets according to 
the level of forecasted volatility, and volatility targeting, or volatility weighting with 
the specific goal to achieve a prespecified level of portfolio volatility (section 1.9). 
Each of these sections is organized according to a fixed format, starting with main 
references, followed by the recipe to calculate the particular portfolio, its 
characteristics and evaluation. Section 1.10 concludes with an overall evaluation. 
Section 1.11 contains technical details. 

1.2. The empirical example and preliminaries 

We consider monthly returns in excess of the risk-free rate over the decade 
January 2005 through December 2014 for a selection of US asset classes: equities, 
treasuries (Tsies), investment grade (IG) corporates and high yield (HY) corporates. 
The risk-free return comes from the Ibbotson “Stocks, Bills, Bonds and Inflation” 
database. Equity is the market factor from Kenneth French’s database

1. The fixed 
income series are taken from Barclays Capital Live2. All returns are in USD. The 
composition of the market capitalization weighted portfolio “Mkt Cap” is estimated 
as per 2014Q43. “EqWtd” is the equally weighted portfolio.  

Table 1.1 shows the descriptive statistics. Over the past decade, fixed income 
assets were the real winners in terms of risk-adjusted performance. This is not 
surprising given the substantial tail wind from decreasing interest rates. Especially 
Tsies paired a 3% average return with a relatively low level of risk. Equities showed 
the highest volatility, but viewing the SR this was not matched by a proportionally 
higher risk premium. Equities and Tsies were negatively correlated, providing hedge 
opportunities (see the small negative correlation between Tsies and the market cap 

                         
1 The Ibbotson risk free rate and the equity market factor can be downloaded from 
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. 
2 Download from https://live.barcap.com/. 
3 Sources are (1) Securities Industry and Financial Markets Association (SIFMA), US Bond 
Market Outstanding, download from http://www.sifma.org/research/statistics.aspx, (2) World 
Bank, year-end market capitalization of listed companies by country, download from 
http://data.worldbank.org/indicator/CM.MKT.LCAP.CD and (3) Barclays Live (for the 
relative IG and HY capitalizations). 
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portfolio). The highest correlation is between equities and HY, pointing at a strong 
link between equity risk and credit risk. Credit risk is dominant in HY and the 
negative correlation between interest rates and credit spreads manifests itself in the 
negative correlation between Tsies and HY. 

Equities Tsies IG HY Mkt Cap EqWtd 

Market cap 
weight: 53% 29% 14% 4% 100%   

Return 
statistics:             

avge p.a. % 7.54 2.97 4.17 6.62 5.71 5.33 

stdev p.a. % 15.11 4.16 6.04 10.54 8.46 6.78 

Sharpe ratio 0.50 0.71 0.69 0.63 0.67 0.78 

Correlations:             

Equities   –0.30 0.35 0.74 0.98 0.88 

Tsies     0.44 –0.24 –0.11 –0.01 

IG       0.63 0.53 0.73 

HY         0.78 0.90 

Mkt Cap           0.95 

Table 1.1. Statistics of US excess returns (p.a.) over  
the risk-free rate (January 2005 – December 2014) 

1.2.1. Money allocation versus risk allocation 

The money allocation in the market cap portfolio is given in Table 1.1. For the 
risk allocation within the market cap portfolio, we compute the Ordinary Least 
Squares (OLS) regression slope or beta of the assets against the market cap 
portfolio. This beta represents the relative marginal contribution of the 
corresponding asset to the overall portfolio risk (for details, see section 1.11). The 
component risk contribution is given by the product of the portfolio weight and beta. 
Hence, the betas can be interpreted as the adjustment factors to transform money 
allocation into risk allocation (note that the weighted average value of beta is unity). 
The risk allocation within the market cap portfolio is given in Table 1.2. From this 
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table, we see a nasty surprise: at first sight, the market cap portfolio appears to be a 
properly diversified portfolio but in reality more than 90% of the portfolio risk is 
due to equities (this was already forewarned by the high correlation between equities 
and the market cap portfolio as shown in Table 1.1). The same finding is widely 
reported for conventional 60/40 equity-bond portfolios in general, and for typical 
“Yale-type” portfolios (where alternatives and/or commodities are added to main 
holdings of equities and bonds).  

  Eq Tsies IG HY sum 

Market cap weight 53% 29% 14% 4% 100% 

Beta 1.74 –0.06 0.38 0.97   

% Risk contribution 92% –2% 5% 4% 100% 

Table 1.2. Risk attribution with respect to Mkt Cap portfolio 

Although we focus on volatility as the risk measure, most of the results in this 
chapter carry over to downside risk measures such as portfolio loss or value-at-risk 
(VaR). Table 1.3 shows the average of the six largest monthly losses against the 
risk-free rate on the market cap portfolio: equities contributed by far the most to the 
realized losses. The excessive contribution of equities to (downside) risk within 
portfolios that seem only moderately geared toward equities provided the impetus to 
the research into risk control strategies (see also [QIA 05]). In the remainder of this 
chapter, we use this empirical example to illustrate various risk control strategies. 

Mkt Cap index Eq Tsies IG HY 

–6.02 –5.39 –0.04 –0.40 –0.19 

100% 90% 1% 7% 3% 

Table 1.3. Absolute (in %) and relative contribution of assets to the average of the six 
largest losses on the market cap portfolio (in terms of excess returns), 2005–2014 

1.2.2. Implied risk premia and the implied Sharpe ratios 

There is one additional perspective that we want to highlight – a perspective that 
is helpful in evaluating risk control strategies vis à vis the MSRP. For each of the 
portfolios that we discuss, we present the implied risk premia and the implied SRs of 
the individual assets. Instead of using actual risk premia and the variance-covariance 
matrix to calculate the MSRP, we reverse the process and assume that the reference  
portfolio at hand actually is the MSRP. Together with the variance-covariance 
matrix of excess returns, this allows us to derive the “imputed” risk premia 
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(pioneered by Sharpe [SHA 74]); together with the actual (historical) asset standard 
deviations, we can then compute the implied SRs. Hence, given a particular 
portfolio, these implied risk premia (or implied SRs) would make this reference 
portfolio the MSRP. For more details, we refer the reader to section 1.11. 

This reverse portfolio optimization is relevant when there is an uncertainty about 
ex ante risk premia. After all, since the MSRP is the tangency portfolio to the mean-
variance efficient frontier without including risk-free borrowing and lending, this 
portfolio is very sensitive to the input risk premia. Slight differences in these inputs 
can result in very different (and sometimes “unrealistic” or extreme and hence 
unacceptable) portfolios. At the same time, estimating ex ante risk premia is a very 
difficult task. Reverse optimization can help since the assets’ implied risk premia, 
derived from a reference portfolio such as the market capitalization weighted 
portfolio or a risk control portfolio, serve as a sensible starting point. Depending on 
the confidence placed in one’s ex ante views, next we can adjust the implied risk 
premia accordingly. After reoptimization, the resulting portfolio is closer to the 
original portfolio and is less extreme. This two-stage portfolio optimization process 
is originally proposed by Black and Litterman [BLA 92] and extended by Haesen  
et al. [HAE 14] who take the risk parity portfolio as the reference portfolio. 

Table 1.4 presents the implied risk premia and the implied SRs of the market cap 
portfolio. For equities, the implied risk premium is about 25% larger than the 
historical risk premium. For IG, the implied risk premium is about half the historical 
risk premium. So, if the market cap portfolio were the MSRP, equities would have 
to offer a risk premium of 10% and IG of 2%. Conversely, if we felt confident in 
extending the historical risk premia to the future, this implies that we should 
increase the weight of IG and lower the weight of equities in order to increase the 
SR of the market cap portfolio. For Tsies, the implied risk premium (and hence the 
implied SR) is even slightly negative, reflecting the role of Tsies as a hedge in the 
market cap portfolio. Because of the negative correlation of Tsies with equities (and 
HY), their inclusion in the market cap portfolio would be justified even when their 
risk premium were negative. 

  Eq Tsies IG HY Mkt Cap 

Implied risk premium 9.96 –0.32 2.14 5.55 5.71 

Implied Sharpe ratio 0.66 –0.08 0.35 0.53 0.67 

Table 1.4. Implied risk premia (%) and implied  
SRs within the market cap portfolio 

In order to derive the implied risk premia from a portfolio different from the 
market cap portfolio, we first calculate the relative risk aversion coefficient *λ  as  
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implied by the market cap portfolio (see [SHA 74]): dividing the historical risk 
premium on the market cap portfolio by the historical variance of the market cap 
portfolio yields * 8.0=λ . The implied risk premium on an alternative portfolio, 
when assuming that this portfolio is mean-variance optimal, is then given by the 
product of *λ  and its historical variance. This portfolio risk premium is next 
attributed to the assets comprised in the portfolio according to their relative risk 
contributions (or betas) with respect to this portfolio (see section 1.11). 

NOTE.– We use fairly conventional notation. The weight of asset i in portfolio p is 

iw . Individual and portfolio risk premia or “rewards” (average returns in excess of 

the risk-free rate) are denoted by ir  and pr . Individual asset standard deviations or 

volatilities are denoted by iσ  and the portfolio volatility by pσ .The beta of asset i 
with respect to portfolio p is ipβ  (reflecting its relative marginal contribution to 

portfolio volatility) and its correlation with the portfolio is denoted as ipρ . Where 

deemed necessary, technical details are mentioned in the main text; section 1.11 
contains a general background and additional derivations. 

1.3. Maximum Sharpe ratio portfolio (MSRP) 

For a discussion of the SR, see [SHA 94]. For mean-variance portfolio theory 
and for finding the composition of the MSRP, we refer to standard investment texts. 

Recipe: Choose the portfolio weights to maximize the SR: 

{ }
max p

p
p

w

r
SR =

σ
 [1.1] 

Characteristics: (1) For the MSRP, it is not possible to further increase its risk 
premium without increasing its risk. This implies that for all assets the ratios of 
marginal contributions to risk and reward are constant. An asset’s marginal 
contribution to portfolio risk equals /p iw∂ ∂σ , whereas an asset’s marginal 

contribution to the portfolio risk premium simply equals its risk premium, 
/p i ir w r∂ ∂ = . Hence, for all assets within the MSRP, we must have: 

1 1p p

i i j jr w r w
∂ ∂

=
∂ ∂
σ σ

 [1.2] 
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Substituting the definition of beta from equation [1.23] in section 1.11, this 
translates into / /i ip j jp pr r r= =β β  (where the last equality follows from the fact 

that the portfolio beta equals unity). Note that /i ipr β  is the Treynor’s [TRE 66] risk-

adjusted performance ratio. Hence, for each asset within the MSRP, its risk premium 
should be equal to the product of (i) its beta with respect to the MSRP and (ii) the 
risk premium of the MSRP: 

i ip pr r= β  [1.3] 

This is the first-order condition of mean-variance optimality. (2) Since we can 
rewrite the beta as the product of (i) the correlation with the portfolio and (ii) the 
quotient of the asset and portfolio volatility, /ip ip i p=β ρ σ σ , it follows that in the 

MSRP the stand-alone asset SRs and the portfolio’s SR are related by 

i ip pSR SR= ⋅ρ . If i ip pSR SR> ρ , we can increase the SR of the portfolio by 

increasing the weight of (or adding) asset i to the portfolio p. (3) Without any 
additional constraints, the long-only MSRP can be a very concentrated portfolio. (4) 
When all volatilities, correlations and risk premia are the same, then the MSRP is 
the 1/N portfolio (which then also coincides with the ERCP and the MVP). After all, 
diversification lowers risk but in the portfolio context all assets are perfect 
substitutes. It is not possible to lower portfolio risk or increase the portfolio risk 
premium by changing the weights. Hence, we end up with the equally weighted 
portfolio.  

Evaluation: Table 1.5 shows the historical statistics of the portfolios we consider. 
Historically, the MSRP has the maximum SR. This is so by construction, since we 
optimized the SR over the full historical sample period (in-sample). In practical 
applications, we would use trailing historical windows (avoiding a look-ahead bias) 
to periodically recalculate the weights. In this way, the out-of-sample properties of 
the MSRP can be evaluated. The same argument applies to the other strategies that 
we discuss below. Whether the MSRP indeed delivers the maximum SR ex post 
depends on the quality of the inputs, especially the risk premia. 

  Cap Wtd MSRP 1/N MVP MDP ERCP IVP 

avge p.a. 5.71 3.97 5.33 3.68 4.05 4.24 4.46 

stdev p.a. 8.46 3.57 6.78 3.43 3.70 4.19 4.74 
Sharpe 
ratio 0.67 1.11 0.78 1.07 1.10 1.01 0.94 

Table 1.5. Comparative historical excess return portfolio statistics, 2005–2014 
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In our example, the MSRP is indeed a concentrated portfolio, containing mostly 
Tsies supplemented with HY and only 7% equities, see Table 1.6. Tsies dominate 
because of their low volatility and negative correlation with HY. The smaller than 
unity beta of Tsies reveals that Tsies are included as a diversifier; the larger than 
unity betas of HY and equities show that these assets are included because of their 
high average return. Slight changes in risk premia will change the composition of 
the MSRP markedly. Note that the implied risk premia are different from the 
historical risk premia as shown in Table 1.1. After all, the implied risk premia are 
calculated from the derived risk aversion parameter * 8.0=λ  and the historical 
portfolio variance (and hence are proportional to betas). 

  Eq Tsies IG HY sum 

Weight 7% 74% 0% 19% 100% 

Beta 1.90 0.75 1.41 1.67   

% Risk contribution 13% 55% 0% 31% 100% 

Implied risk premium 1.93 0.76 1.43 1.69 1.01 

Implied Sharpe ratio 0.13 0.18 0.24 0.16 0.28 

Table 1.6. Risk attribution with respect to MSRP,  
and implied risk premia (%) and Sharpe ratios 

1.4. 1/N or equal-weighting 

Recipe: In equally weighted portfolios, each of the N assets is assigned a weight 
of 1/N. In our example, each asset class gets a weight of 25% in the portfolio, with 
monthly rebalancing [DEM 09]. 

Characteristics: (1) 1/N avoids concentrated positions – in terms of money 
allocation. (2) Within equities, 1/N implies an exposure to the small-cap anomaly. 
The market cap portfolio is tilted toward large cap stocks. The 1/N portfolio is tilted 
toward small cap stocks and hence will capture a size premium. (3) Furthermore, 
1/N implies a disciplined and periodical rebalancing of positions. By definition, the 
market cap portfolio is a buy-and-hold portfolio. The 1/N portfolio, in contrast, 
implies a “volatility pumping” effect: in order to maintain the 1/N allocation, we 
have to buy (sell) out- (under-) performing assets. This is effectively a “buy low, sell 
high” strategy, which profits from reversals4. Depending on the frequency, the 
rebalancing process implies portfolio turnover with the associated transaction cost 
and exposure to potential illiquidity (since even the smallest market cap assets get a 
weight of 1/N). (4) In Bayesian terms, the 1/N portfolio is the “uninformed prior”: 

                         
4 For the effects of rebalancing on portfolio returns, see [HAL 14]. 
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the naively diversified portfolio that is optimal when we have no information to 
discriminate between the attractiveness of assets. (5) It can be shown that when all 
assets have the same volatility and when all pairwise correlations are the same, then 
the 1/N portfolio is the MVP. In this case, the MVP also coincides with the ERCP, 
see below. (6) From Tables 1.1 and 1.5, we see that the 1/N portfolio has a lower 
risk than the market cap portfolio and a higher historical SR. This arises from 
underweighting equities (with a lower SR) and overweighting IG and HY (with a 
higher SR). 

Evaluation: (1) Table 1.7 shows the 1/N portfolio statistics. It clearly shows that 
equal money weights are very different from equal risk weights. Notably, Tsies act 
as a strong diversifier (negatively correlated with equities and HY) and show 
(virtually) zero risk contribution. Still, equity risk dominates in the 1/N portfolio, 
accounting for about half of the portfolio volatility. (2) For equities, the implied risk 
premium is 7.17% p.a. (which given historical volatility implies a SR of 0.47). 
When we believe that the ex ante equity risk premium is below 7.17%, the weight of 
equities should be lowered in order to improve the risk-adjusted portfolio 
performance. Likewise, when we believe that the ex ante bond risk premium is 
above –3 bps p.a., the weight of Tsies should be increased. Equivalent reasoning 
applies to IG and HY. 

  Eq Tsies IG HY EqWtd 

Weight 25% 25% 25% 25% 100% 

Beta 1.95 –0.01 0.65 1.41   

% Risk contribution 49% 0% 16% 35% 100% 

Implied risk premium 7.17 –0.03 2.39 5.16 3.67 

Implied Sharpe ratio 0.47 –0.01 0.40 0.49 0.54 

Table 1.7. Risk attribution with respect to 1/N portfolio,  
and implied risk premia (%) and Sharpe ratios 

1.5. Minimum variance portfolio (MVP) 

Haugen and Baker [HAU 91] show that market cap weighted portfolios are 
inefficient (suboptimal) when there are market frictions and highlight the high-
relative performance of low volatility portfolios. Clarke et al. [CLA 06] extend 
Haugen and Baker’s empirical research. Blitz and van Vliet [BLI 07] revive the 
interest in the low volatility anomaly and provide possible explanations (behavioral 
biases, leverage restrictions, and delegated portfolio management and 
benchmarking).  
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Recipe: Choose the portfolio weights to minimize the portfolio variance: 

2

{ }
max p i j i j ij

i jw
w w=∑∑σ σ σ ρ  [1.4] 

The optimal portfolio is characterized by equal marginal contributions to 
portfolio risk:  

p p

i jw w
∂ ∂

=
∂ ∂
σ σ

 [1.5] 

Characteristics: (1) Note that marginal risk contributions are given by
/ / ,p i ip p ip pwσ σ σ β σ∂ ∂ = = ⋅  so all asset betas with respect to the MVP are 

identical (and hence equal to unity). (2) Since an asset’s risk contribution equals 
/i p i iw w w⋅ ∂ ∂ ∝σ , the risk contribution is proportional to the portfolio weight, so 

risk allocation equals money allocation. (3) When all assets have the same volatility 
and when all pairwise (imperfect) correlations are the same, then the MVP is the 1/N 
portfolio: it pays to diversify over the assets but in the portfolio context, all assets 
are perfect substitutes. (4) The MVP is the MSRP when all assets have the same risk 
premium, ir r=  (implying that all SRs iSR  are proportional to 1/ iσ ). After all, in 

this case, we have (see equation [1.2]): 

1 1p p

i jr w r w
∂ ∂

=
∂ ∂
σ σ

 [1.6] 

Evaluation: (1) The MVP favors low volatility assets and low beta assets and 
hence benefits from the low volatility anomaly. The MSCI Minimum Variance 
Index and the S&P Low Volatility Index are examples of low-risk portfolios that are 
designed to benefit from this anomaly. For more information on the low volatility 
anomaly, see [BLI 07]. (2) Several studies have documented that MVPs also pick up 
other priced anomalies. Clarke et al. [CLA 06] find that, in general, the MVP has a 
substantially higher value (B/P) exposure than the market (since value stocks tend to 
have low volatilities), which explains at least part of its higher average realized 
return. Scherer [SCH 11] shows that the MVP not only loads significantly on the 
Fama-French factors (large size and high value) but also finds that MVPs have a 
negative beta bias (favor low beta assets) and favor assets with low residual 
volatility. The latter effects crowd out the Fama-French factors in the sense that low 
beta and low residual volatility alone can explain more of the variation in the MVP’s 
excess returns than the Fama-French factors. This leads Scherer to conclude that low 
beta and low residual volatility is a more efficient and effective way to capture the 
low volatility anomaly than minimum variance. (3) When time passes and the MVP 
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is reoptimized, we will need to apply constraints on turn-over in order to mitigate 
transaction costs. However, turnover constraints make the MVP a path-dependent 
strategy. (4) The MVP is a concentrated portfolio. Assets with low volatility and/or 
low correlations with other assets will carry a large weight. Conversely, assets with 
high volatility and/or high correlations with other assets will carry a small or even 
negative weight; when excluding short positions, these assets will not appear in the 
MVP. This is illustrated in Table 1.8: IG is not included in the long-only MVP. 
Table 1.8 confirms that when the assets comprised in the MVP have identical risk 
premia, then the MVP is the MSRP. Note again that this only applies to assets that 
are comprised in the MVP in the first place. 

  Eq Tsies IG HY MVP 

Weight 5% 82% 0% 13% 100% 

Beta 1.00 1.00 1.35 1.00   

% Risk contribution 5% 82% 0% 13% 100% 

Implied risk premium 0.94 0.94 1.27 0.94 0.94 

Implied Sharpe ratio 0.06 0.23 0.21 0.09 0.27 

Table 1.8. Risk attribution with respect to MVP, and  
implied risk premia (%) and Sharpe ratios 

(5) Table 1.8 also confirms that marginal risk contributions of MVP constituents 
are identical (all betas equal unity) so the money allocation equals the risk allocation 
in an MVP. (6) Table 1.5 shows that the MVP has the lowest historical risk premium 
as well as the lowest volatility (by construction), yielding a SR slightly lower than 
the MSRP and MDP. This lower volatility is achieved by overweighting Tsies at 
82%, supplemented by positions in equities and HY which are negatively correlated 
with Tsies. (7) Last but not least, the quadratic optimization underlying the MVP has 
the property of being “error maximizing”, see [MIC 89]. This means that the 
composition of the MVP is very sensitive to slight differences in variances and 
covariances. When (part of) these differences are not real but due to sampling error, 
this will propagate into portfolio composition. Again, note that we use the full 
historical sample to calculate the weights of the MVP.  

1.6. Maximum diversification portfolio (MDP) 

The MDP is proposed by Choueifaty and Coignard [CHO 08]. 
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Recipe: The weights of the MDP are obtained by maximizing the “diversification 
ratio”, which is defined as the ratio of weighted volatilities and portfolio volatility: 

{ }
max

i ii

p
w

w∑ σ
σ

 [1.7] 

For obtaining an insight into this ratio, note that the portfolio volatility can be 
written as the weighted sum of the product of each asset’s individual volatility and 
its correlation with the portfolio (see equation [1.18] in section 1.11). Hence, we can 
rewrite the diversification ratio as: 

{ }
max

i ii

i i ipi
w

w
w

∑
∑

σ
σ ρ

 [1.8] 

This expression reveals that the diversification ratio compares (1) the portfolio 
volatility when ignoring correlations in the numerator, with (2) the actual portfolio 
volatility when taking into account correlations (and hence diversification) in the 
denominator. Imperfect (<1) correlations increase the diversification ratio above 
unity. 

Characteristics: (1) It can be shown that for the MDP it holds that (see  
[CHO 08]): 

1 1p p

i i j jw w
∂ ∂

=
∂ ∂
σ σ

σ σ
 [1.9] 

By definition, within the global MVP, all assets’ marginal risk contributions 
/p iw∂ ∂σ are equal, see equation [1.5]. It follows that for equal volatilities, i j=σ σ , 

the MPD coincides with the global MVP. (2) From equation [1.9], it also follows 
that when risk premia { }ir  are proportional to volatilities { }iσ , thus implying that 

all assets have the same SR, then the MDP is the MSRP. After all, in this case, 
equation [1.9] is equivalent to equation [1.2]. (3) Finally, Choueifaty and Coignard 
[CHO 08] also show that all constituent assets have the same correlation with the 
MDP. 

Evaluation: (1) Why should we want to maximize this specific diversification 
ratio? After all, there are many definitions of “diversified”. (2) The diversification 
ratio is a differential diversification measure. It applies with respect to the specific 
portfolio at hand. It is not an absolute diversification measure from which we can 
read the degree of diversification; we cannot compare the diversification ratios of 
two different portfolios to infer which portfolio is more diversified than the other. 
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(3) The MDP is not unique and may be very concentrated in weights (money 
allocation) or in risk and loss contributions (risk allocations). Indeed, in  
our example, IG carries zero weight in the MDP, see Table 1.9. Tsies have the 
highest weight in the MDP; the money allocation of 74% here implies that Tsies 
account for almost 50% of the portfolio risk. This can hardly be termed a 
“diversified portfolio”. 

  Eq Tsies IG HY MDP 

Weight 14% 74% 0% 13% 100% 

Beta 2.34 0.64 1.29 1.63   

% Risk contribution 32% 47% 0% 21% 100% 

Implied risk premium 2.55 0.70 1.40 1.78 1.09 

Implied Sharpe ratio 0.17 0.17 0.23 0.17 0.30 

Table 1.9. Risk attribution with respect to MDP, and  
implied risk premia (%) and Sharpe ratios 

(4) Table 1.9 also shows that the implied SRs of the three portfolio components 
equal 0.17. This confirms that when SRs of the portfolio constituents are the same, 
then the MDP is the MSRP. Note that this only applies to assets comprised in the 
MDP; by construction, the composition of the MDP does not depend on risk premia 
or SRs. 

Table 1.5 shows that, for the historical inputs, the MDP beats all portfolios 
except the MSRP in risk-adjusted performance. This is due to the large overweight 
of Tsies which over the past decade showed the highest SR. Since we use the full 
historical sample to calculate the weights of the MDP (and other portfolios), these 
are in-sample results. In practice, we would sequentially derive the ex ante MDP 
from trailing data windows.  

1.7. Equal risk contribution portfolio (ERCP): full risk parity 

[QIA 05] is the seminal paper on risk parity. Qian [QIA 06] discusses the linear 
decomposition of volatility. Hallerbach [HAL 03] extends risk decomposition to 
VaR and shows how to decompose risk in parametric and non-parametric 
(simulation) settings. Maillard et al. [MAI 10] discuss the theoretical properties of 
risk parity portfolios and provide a comparison with other risk control techniques. 
Roncalli [RON 14] provides a good discussion of risk control techniques and Lee 
[LEE 11] critically evaluates risk parity (see also section 1.10). Asness et al.  
[ASN 12] document the empirical outperformance of a risk parity strategy over a 
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market cap weighted portfolio and refer to the leverage aversion effect to explain 
this outperformance. Anderson et al. [AND 12] critically review and refute the 
empirical evidence provided by Asness et al. [ASN 12]. 

Recipe: The ERCP rests on the premise that no asset should dominate the 
portfolio risk profile. Consequently, all assets’ contributions to portfolio risk are 
equalized. The contribution of an asset to portfolio risk equals its investment weight 
multiplied with its marginal contribution to portfolio risk. An asset’s marginal 
contribution to portfolio risk is proportional to its beta with respect to the portfolio. 
Hence, the weights of the ERCP satisfy: 

p p
i j i ip j jp

i j

w w w w
w w

∂ ∂
= ⇔ =

∂ ∂
σ σ

β β  [1.10] 

Consequently, the weights in the ERCP are proportional to the inverse of the 
corresponding betas:  

1 /ERC
i ipw ∝ β  [1.11] 

For algorithms to calculate the composition of the ERCP, we refer to [RON 14]. 

Characteristics: (1) The ERCP is the 1/N portfolio when all assets have the same 
volatility σ  and when all pairwise correlations are uniform at ρ . After all, in this 

case, equation [1.10] implies that i jw w=σ ρ σ ρ , which is satisfied for 

1 /i jw w N= = . (2) The ERCP is the MDP when all correlations are uniform: 

ip jp=ρ ρ . (3) The ERCP is the MVP when correlations are uniform (pairwise equal) 

and at their theoretically lowest level of 1/ ( 1)N= − −ρ , see [MAI 10]. (4) The 

ERCP is the MSRP when all correlations are uniform and all assets have the same 
SR, see [MAI 10]. (5) With only two assets, their correlation is not relevant and the 
ERCP equals the IVP (see section 1.8). 

Evaluation: (1) “Risk” is usually equated with standard deviation of return 
(volatility), but in principle any other risk measure can be chosen as long as the risk 
measure is linearly homogeneous in the portfolio weights. This means that when 
multiplying all portfolio weights with a constant c, the risk measure is also 
multiplied by the same constant c. Portfolio loss, VaR and conditional VaR (or 
expected tail loss) satisfy this property (see, for example, [HAL 03]). (2) Since we 
can rewrite beta as the product of (i) the correlation with the portfolio and (ii) the 
quotient of the asset and portfolio volatility, so /ip ip i p=β ρ σ σ , equation [1.11] 
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implies that ERCPs favor assets with low levels of volatility and low correlations 
with other assets (hence, “portfolio diversifiers”).  

(3) The ERCP is perfectly diversified in terms of risk (loss) contributions. (4) 
The ERCP is less concentrated than the MVP and the MDP, and it contains all N 
assets. (5) The ERCP is more robust, i.e. less error maximizing, than the MVP. The 
intuitive reason is that the MVP is found by means of optimization, i.e. by equating 
marginal risk contributions, whereas the ERCP is found by a restriction on the 
product of weights and marginal risk contributions. (6) Maillard et al. [MAI 10] 
show that 1/MVP ERC N≤ ≤σ σ σ , where the MVP is error maximizing and the 1/N 

portfolio focuses on money allocation, and not on risk allocation. Hence, the ex ante 
volatility of the ERCP is between the lowest level (from the MVP) and the volatility 
of the naively diversified 1/N portfolio. (7) Calculating the ERCP is a daunting task 
when the number of assets is very large. A solution would be to resort to a 
hierarchical procedure in which risk parity is first applied within groups (e.g. sectors 
and countries) and next across groups. However, pregrouping directly influences the 
ERCP, see below under point (9). 

Panel A: ERC (4) Eq Tsies IG HY ERCP 

Weight 11% 55% 20% 14% 100% 

Beta 2.19 0.45 1.28 1.77   

% Risk contribution 25% 25% 25% 25% 100% 

Implied risk premium 3.07 0.64 1.79 2.48 1.40 

Implied Sharpe ratio 0.20 0.15 0.30 0.24 0.33 

Panel B: ERC (3) Eq Tsies IG+HY   

Weight 15% 60% 25% 100% 

Beta 2.21 0.56 1.34   

% Risk contribution 33% 33% 33% 100% 

Implied risk premium 2.86 0.72 1.74 1.30 

Implied Sharpe ratio 0.19 0.17 0.27 0.32 

Table 1.10. Risk attribution with respect to ERCP,  
and implied risk premia (%) and Sharpe ratios 

(8) Table 1.10, Panel A, shows the composition of the ERCP. Note the large 
55% weight of Tsies, this is due to both their low volatility and negative correlation 
with equities and HY. The high volatility of equities implies a lower than 25% 
weight. The implied risk premia and SRs can be interpreted as before. (9) The 
composition of the ERCP depends on choosing the number of assets N and hence on 
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any pregrouping of assets (see [LEE 11]). ERCP(4) is on the basis of the four 
original assets. When aggregating IG and HY into a single credits subportfolio, 
ERCP(3), the risk allocations shift from 25 to 33%; see Table 1.10, Panel B. (10) 
Leverage is needed to boost the low risk and return of ERCP in order to match any 
risk budgets or return targets. 

(11) Turning to historical portfolio statistics, Table 1.5 shows that the ERCP had 
about half the risk of the market cap portfolio paired with a quarter lower average 
return, yielding a 50% higher SR. This is due to overweighting Tsies and 
underweighting equities (see Table 1.10). The substantial tail wind of bonds over the 
past decades seriously biases backtests of ERCPs. 

In their empirical study, Asness et al. [ASN 12] illustrate the historical 
outperformance of ERCPs (or IVP since they consider only two asset classes, US 
equity and bonds) over a market cap weighted portfolio over the period 1926–2010. 
As an explanation, they raise leverage aversion as the driving force behind the 
performance of ERCPs. This mechanism works as follows. (Some) investors are 
averse (or restricted) to applying leverage and they bid up the prices of high 
risk/high beta assets in order to fill their risk budget. As a result, the risk premium 
offered on high-risk assets is reduced, implying that low beta (risk) assets offer 
higher risk-adjusted returns and high beta (risk) assets offer lower risk-adjusted 
returns. A less than average leverage-averse (or constrained) investor can benefit 
from overweighting low beta (low risk) assets and underweighting high beta (high 
risk) assets. Leverage is applied to fill the risk budget or to attain a targeted risk 
level. In addition to leverage aversion, the “lottery ticket effect” may be at work, in 
which investors with a propensity to “gamble” overbid for high-risk assets, thus 
reducing their risk premium. Finally, delegated portfolio management, centered 
around benchmarked portfolios, implies that low (high) risk stocks have a large 
(small) tracking error. As argued by Blitz and van Vliet [BLI 07], this introduces the 
low volatility anomaly, implying a flat or negative risk-return trade-off. Since low 
volatility assets outperform and ERCPs overweight low-risk assets, this may explain 
their outperformance. 

Anderson et al. [AND 12] raise some serious backtest issues in the research by 
Asness et al. [ASN 12]. They note that the outperformance of the ERCP is not 
uniform over subperiods and they show that market frictions (borrowing costs and 
turnover-induced trading costs) eat into performance. In addition, they argue that 
Asness et al.’s [ASN 12] risk parity strategy is not an investable strategy since it 
uses unconditional leverage: they use a constant scale factor, computed from the full 
1926–2010 period, to match the volatilities of the levered risk parity strategy and the 
market cap portfolio. Hence, their empirical setup suffers from a look-ahead bias. 
Implementing conditional leverage (where at each rebalancing date the volatility 
scale factor is derived from past 3 year trailing windows), Anderson et al. [AND 12] 
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show that this halves the cumulative total return of the risk parity strategy as 
reported by Asness et al. [ASN 12]. Realistic borrowing costs and trading costs 
further reduce the cumulative total return of the risk parity strategy. In all, these 
realistic adjustments made the performance difference between the risk parity 
strategy and the market cap portfolio disappear. 

1.8. Inverse volatility portfolio (IVP): naive risk parity 

Maillard et al. [MAI 10] discuss the IVP next to the ERCP, although volatility 
weighting (or “normalization”) has been applied for long by practitioners to improve 
cross-asset comparability and to reduce portfolio or strategy risk (this may be 
inspired by statistics, where inverse variance weighting is used to minimize the 
variance of the sum of two or more random variables). 

Recipe: Set each weight proportional to the stand-alone volatility of the 
corresponding asset and next normalize so that the weights sum to unity. This 
volatility-weighting in the cross-section yields: 

1

1i
j

i

j

w =
∑

σ

σ
 [1.12] 

The IVP is equivalent to the ERCP when there are only two assets (in the two-
asset case, the correlation is irrelevant.) In all other cases, neglecting correlation 
information makes IVP a “naive” risk parity strategy. 

Characteristics: (1) When correlations are uniform (or zero), the IVP is the 
ECRP. (In this case, all comments made for ERCPs also apply for IVPs). When 
everything else is equal, then compared to the IVP, the ERCP will be tilted toward 
low correlated assets. (2) When volatilities are uniform, the IVP is the 1/N portfolio.  

The S&P Low Volatility Index is composed of the 100 stocks from the S&P 500 
index with the lowest (252 days past) volatility, where each stock is weighted with 
its IVP. The MSCI Risk Weighted Indices use inverse variance (and not volatility) 
to weight constituents. (3) Inverse variance weighting yields the MVP when all 
correlations are uniform (or zero). 

Evaluation: Except for the impact of (markedly different) correlations, IVPs are 
quite similar to ERCPs. As shown in Table 1.11, the IVP assigns more weight to IG 
(was 20%) and less weight to Tsies (was 55%). The latter can be explained because 
the IVP ignores the negative correlation with equities and HY. This shift in weights 
translates into less balanced risk contributions. 



Advances  in Portfolio Risk Control     19 

  Eq Tsies IG HY IVP 

Weight 12% 42% 29% 17% 100% 

Beta 2.12 0.29 1.15 1.76   

% Risk contribution 25% 12% 33% 29% 100% 

Implied risk premium 3.80 0.52 2.06 3.16 1.79 

Implied Sharpe ratio 0.25 0.13 0.34 0.30 0.38 

Table 1.11. Risk attribution with respect to IVP,  
and implied risk premia (%) and Sharpe ratios 

On a historical basis, Table 1.5 shows that the IVP had a higher volatility and a 
somewhat higher average return than the ERCP. This combined effect is due to the 
lower weight of Tsies (which have the lowest average return, the lowest volatility, 
and negative correlations with equities and HY). 

1.9. Volatility weighting over time 

The risk control strategies as discussed before focus on risk in the cross-section, 
i.e. over portfolio constituents. Risk control at each point in time will also affect the 
portfolio’s risk level (or more generally, its return distribution) over time. Volatility 
weighting over time, and specifically volatility targeting, is designed to explicitly 
control the portfolio risk level over time. Typically, when weighting or targeting a 
portfolio’s risk level over time, the composition of a portfolio’s risky part is not 
changed, only the weights of the risky and the risk-free part are adjusted. 

Fleming, Kirby and Ostdiek [FLE 01] document the empirical finding that 
volatility weighting improves the SR. Hallerbach [HAL 12] provides a formal proof 
that, under mild assumptions, volatility weighting over time indeed increases the SR 
or information ratio.  

Recipe: (1) Set the risky portfolio’s target volatility level V. (2) At the start of 
each period t, take a position tw in the risky portfolio and (1 )tw−  in the risk-free 

asset with return ftr . Since ptr%  is the risky portfolio’s excess return, this yields: 

t pt ftw r r⋅ +%  [1.13] 
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(3) Estimate the volatility ˆtσ of the risky portfolio for period t, for example by 

using an adaptive exponentially weighted moving average (EWMA) volatility 
process. (4) Rescale the exposure to the risky portfolio to the target volatility level V 
by setting ˆ/t tw V= σ . According to equation [1.13], this implies adding a cash 

position or borrowing (when allowed) at the suitable borrowing rate, subject to a 
leverage constraint. (5) Apply the leverage constraint. When the volatility target V is 
high or when the forecasted volatility is low, cap the implied borrowing by setting 

tw L≤ , where the maximum leverage ratio satisfies 1L ≥ . When 1L = , no 

borrowing is allowed.  

Characteristics: (1) Volatility weighting and volatility targeting accomplish 
volatility smoothing over time. Volatility smoothing mitigates the volatility of the 
portfolio volatility over time. It can be shown that the lower the fluctuations of the 
temporal (“instantaneous”) portfolio volatility within some time period, the lower 
the aggregate volatility over the whole time period (this is a convexity effect, see 
[HAL 12]). (2) Note that volatility smoothing is different from return smoothing. 
Return smoothing aims at achieving a lower aggregate level of return volatility (and 
not a lower volatility of the volatility over time). Return smoothing thus implies less 
“variance slippage” in compounded returns. This variance slippage refers to the 
difference between the arithmetic mean and the geometric mean return. As an 
approximation, we have geometric mean ≈ arithmetic mean – ½ variance. Lowering 
the return variance by return smoothing thus increases the geometric mean of 
returns, cet. par. (3) Naive risk parity or the IVP, i.e. volatility weighting in cross-
section, already establishes some volatility weighting in time-series. (4) Risk 
targeting or risk control indices have been introduced by S&P Dow Jones, MSCI, 
FTSE, and EURO STOXX. 

Evaluation – or: why would volatility targeting work? (1) First, depending on the 
quality of our volatility forecasts, we should be able to target a portfolio’s volatility 
to some degree over time. (2) In addition, it can be shown that this volatility 
smoothing increases the SR or information ratio of the portfolio, cet. par. [HAL 12]. 
(3) Furthermore, the (risk-adjusted) return of a volatility-targeted portfolio benefits 
from an additional timing effect, due to the so-called asymmetric volatility 
phenomenon. The asymmetric volatility phenomenon is a stylized fact that is 
observed for most financial markets. Returns tend to be negatively correlated with 
volatility and especially surges in financial market volatility are mostly associated 
with negative returns. The volatility feedback mechanism is that higher expected 
volatility translates into a higher risk premium and consequently negative realized 
returns. Hence, under asymmetric volatility, there is a timing effect (in addition to 
the convexity effect of smoothing of volatility) that will boost performance. After  
 
 



Advances  in Portfolio Risk Control     21 

all, a volatility-weighting strategy takes large positions when volatility is low (and 
returns are high) and small positions when volatility is high (and returns are low); 
see also [ZAK 14]. (4) As a cautionary (and perhaps superfluous) note, we stress 
that implementing a volatility-weighted strategy calls for a strict risk-budgeting and 
risk-monitoring process. In particular, we may want to set limits to the maximum 
position size in order to mitigate the risk of blow-ups when the contemporaneous 
volatility is relatively low. 

1.10. Evaluation 

Conventional 60/40 portfolios or MSRPs are concentrated in risks and fail to 
offer diversification against losses. For this reason, the use of risk control techniques 
(and especially risk parity) as full-fledged investment criteria is sometimes coined 
the “new paradigm” in investing [INK 11, LEE 11, LEO 12, GOL 13, RON 14]. 
Indeed, risk control strategies, and risk parity in particular, can produce balanced 
portfolios and can offer various degrees of diversification. From a risk perspective, 
these techniques are indeed expected to deliver what they promise. The true value of 
risk control strategies is in analyzing and specifying a preferred risk contribution 
profile within the portfolio. This should be a part of any risk-budgeting process. 
Relevant questions are: what are the risk contributions of the portfolio components? 
Is the portfolio properly diversified or are there any hot spots? How much 
confidence do we have in risk premia views in order to shift risk contributions 
within the portfolio? Do we fully understand the sources and contributions of risk 
and return of the portfolio? And last but not least, risk is a multidimensional 
concept, so risk analyses should not only focus on volatility (standard deviation) but 
also take downside risk and event risk in consideration.  

The catch is that risk control portfolios appear to have historically outperformed 
market cap weighted or mean-variance optimized portfolios. So, while ignoring risk 
premia information, risk control strategies seem to offer a better risk-return trade-
off. Some critical comments are in place, however. First, several studies tune down 
the apparent outperformance of risk-based strategies by criticizing backtests, see 
section 1.7 and [GOL 13]. Second, when the underlying mechanism of 
outperformance is an implicit exposure to anomalies or factor premia such as value, 
size, low beta or low (residual) volatility (as shown by [SCH 11], [LEO 12]  
and [JUR 15]), then it makes much more sense to consider these factor  
exposures explicitly when forming portfolios. Factor investing [ANG 14]  
provides much more efficient and effective ways to tailor factor exposures on the 
portfolio level than applying risk control techniques. In the former case, factor 
exposures are taken intentionally and top-down, whereas in the latter case it is not  
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clear what factor exposures will percolate bottom-up and reveal themselves in the 
portfolio. 

However, aside from their obvious value in a risk-budgeting context, risk control 
strategies can provide a sensible heuristic or starting point in the portfolio formation 
process if there is considerable uncertainty about the required asset attributes, viz. 
the risk premia and (co-) variance inputs. When the available information on an 
attribute allows for meaningfully differentiating between assets, then the portfolio 
formation process is steered by this attribute. Alternatively, when the required 
information on an attribute is lacking (or surrounded by substantial estimation error) 
then this attribute does not have discriminating power between assets. Consequently, 
it then makes sense to treat the assets as substitutes regarding this attribute. Indeed, 
we know that mean-variance optimized portfolios are error-maximizing [MIC 89] in 
the sense that their composition is very sensitive to especially risk premia inputs. So, 
the presence of estimation risk can justify the use of risk control techniques: when 
we do not have information to meaningfully differentiate between the assets’ risk 
premia (or SRs), the recipe is to treat all assets as risk premia “substitutes” and focus 
only on their risk attributes. 

To further illustrate this point, we introduce our portfolio decision pyramid, see 
Figure 1.1. This pyramid illustrates the increasing requirements that apply to 
portfolio optimization inputs when moving from a naively diversified portfolio to 
the MSRP. (1) Starting at the bottom of this inverted pyramid, we cannot indicate 
any meaningful differences among risk premia, standard deviations and correlations. 
The best we can do is to naively diversify and equate money weights within the 
portfolio, yielding the 1/N portfolio. (2) Having reliable trust in differences among 
standard deviations allows for shifting from naive money weight diversification to 
naive risk weight diversification by applying volatility-weighting. This yields the 
IVP. (3) On the third level, we have full risk information (reliable estimates of both 
volatilities and correlations, the full covariance matrix is available), so the MVP, 
MDP or ERCP (full risk parity portfolios) can be constructed. Of course, we have to 
take into account the relative shortcomings of these portfolios as noted in sections 
1.5–1.7. Finally, at the top level, we are able to indicate meaningful differences 
between all relevant inputs, i.e. the ex ante covariance matrix and risk premia. In this 
case, we can perform a full-fledged mean-variance optimization and obtain the 
MSRP. 

Of course, estimation risk does not necessarily dictate to ignore risk premia 
inputs altogether and to stop at a risk control portfolio. As outlined in sections 1.2 
and 1.11, estimation risk surrounding risk premia can be tackled by the Black and 
Litterman [BLA 92] approach. We start from a risk control reference portfolio, 
calculate the implied risk premia and next use our views and the confidence we 
place in these views to (slightly) adjust the optimization inputs (for a detailed 
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exposition, see [HAE 14]). Depending on our convictions regarding risk premia, the 
resulting portfolio is situated between the risk control portfolio and MSRP. 

 4. full information on risk premia, 

    standard deviations and correlations 

3. full information on standard deviations 

    and correlations 

2. full information on standard deviations 

1. no meaningful differences among risk premia 

 and risk inputs 

Figure 1.1. The portfolio decision pyramid: the link between  
portfolio rules and the information burden placed on the  

investor when adopting that rule 

1.11. Appendix 

1.11.1. Asset and portfolio (excess) returns 

We start with an opportunity set of N securities with excess returns over the risk-
free rate denoted by itr% . Tildes indicate random variables. For notational simplicity, 

we henceforth ignore the time index t. We consider a portfolio p defined by the 

investment weights { }i i pw
∈

, satisfying full investment 
1

1
N

ii
w

=
=∑  and no short 

positions: 0,iw i p≥ ∀ ∈ . The portfolio excess return is given by: 

p i ii
r w r=∑% %  [1.14] 

1.11.2. Marginal and component contributions to portfolio (excess) 
return 

It follows from equation [1.14] that the marginal contribution of asset i to 
portfolio excess return is given by ir% . This is the increase in portfolio excess return 

when the weight of asset i is increased marginally. The component (i.e. full) 
contribution of asset i to portfolio excess return is i iw r% . The sum of component 

contributions to excess return equals the portfolio’s excess return, see equation 
[1.14].  

max Sharpe Ratio 

min variance,  
max diversification, 

risk parity 

inverse  
volatility  

1/N 
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1.11.3. Portfolio risk premium 

The average portfolio return over the risk-free rate, the portfolio risk premium, 
follows as: 

p i ii p
r w r

∈
= ∑  [1.15] 

The marginal and component contributions of asset i to the portfolio risk 
premium are ir  and i iw r , respectively. 

1.11.4. Portfolio variance 

The variance of portfolio excess returns is defined by the double sum: 

2
p i j iji j

w w=∑ ∑σ σ  [1.16] 

By definition of the correlation ijρ , the covariance ijσ can be expressed as 

ij ij i j=σ ρ σ σ . 

Since (1) the variance of a variable is the covariance of that variable with itself 
and (2) the covariance is a linear operator (the covariance of a weighted sum is the 
weighted sum of covariances), we can write the variance of the portfolio excess 
return as: 

( ) ( ) ( )var cov , cov ,p p p i i pi
r r r w r r≡ = ∑% % % % % ( )cov ,i i p i ipi i

w r r w= =∑ ∑% % σ ,  [1.17] 

where ipσ is the covariance between the excess returns on asset i and the portfolio p. 

So, although the portfolio variance is the quadratic sum of weights and covariances, 
we can express the portfolio variance as the weighted sum of the covariances of each 
asset with the portfolio: 2

p i ipi
w=∑σ σ .  

1.11.5. Decomposing portfolio volatility 

Dividing the previous expression by the portfolio volatility, we get: 

ip
p i i p ipi i

p

w w= =∑ ∑
σ

σ σ ρ
σ

 [1.18] 
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Indeed, it is not the decomposition of portfolio variance we are looking for, but 
the decomposition of portfolio volatility, as defined by equation [1.18]. To see why 
this is true, note that the portfolio volatility is linearly homogeneous in the portfolio 
weights: multiplying portfolio weights with a constant k multiplies the portfolio 
volatility with the same constant k. Euler’s theorem then implies that 

/p i p ii
w w= ∂ ∂∑σ σ , where it can be checked from [1.17] that 

/ /p i ip pw∂ ∂ =σ σ σ . The term /p iw∂ ∂σ  is the marginal contribution of asset i to 

portfolio volatility. The term /i ip pw σ σ  is the component contribution of asset i to 

portfolio volatility. The sum of all component contributions to volatility equals total 
portfolio volatility, see equation [1.18]. The portfolio volatility is the cake and each 
component contribution is a separate piece of that cake. Dividing [1.18] by pσ  

yields the relative risk contributions of the assets, summing to 100%:  

2
1 ip

ii
p

w=∑
σ
σ

 [1.19] 

To gain further insight into this decomposition, consider the Ordinary Least 
Squares (OLS) time-series regression of asset i’s excess returns on the portfolio 
excess returns: 

i i ip p ir r= + + %% %α β ε . [1.20] 

In this regression, the expected (or average) value of the disturbances is zero and 
the disturbances and the portfolio excess return are uncorrelated, hence 

( ) ( ) 0i p iE E r= =% %%ε ε . The regression slope or beta is defined as: 

2

ip i
ip ip

pp

= =
σ σβ ρ

σσ
 [1.21] 

Substituting the expression for beta in [1.19] gives: 

1 i ipi
w=∑ β  [1.22] 

So, ipβ  is the relative marginal contribution of asset i to portfolio volatility (or 

the relative marginal risk contribution):  

/p p
ip

iw
∂

=
∂

σ σ
β  [1.23] 
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and i ipw β  is the asset’s relative component contribution to portfolio volatility. So, 

given the assets’ betas, the decomposition of portfolio volatility is a piece of cake. 
When i ipw β  is comparatively large, this identifies a “hot spot” in the portfolio, or a 

pocket of risk concentration, indicating that asset’s i contribution to portfolio risk is 
large. Hence, this position is likely to contribute heavily to any loss that may be 
realized on the portfolio. In short, { }iw  defines money allocation and { }i iw ⋅ β  

defines risk allocation. To go from money allocation to risk allocation, each 
investment weight is multiplied with the corresponding beta (note that the average 
value of beta is unity). 

1.11.6. Portfolio optimality: maximize the Sharpe ratio 

From equation [1.20], it follows that the expected excess return or risk premium 
of asset i is related to the portfolio’s risk premium as: 

i i ip pr r= +α β  [1.24] 

Now, consider the mean-variance optimal portfolio, this is the portfolio that 
maximizes the SR: 

{ }
max

i i p

p
pw

p

r
SR

∈

=
σ

 [1.25] 

The first-order conditions for optimality imply the following relation between 
risk premia and betas: 

i ip pr r= β  [1.26] 

In other words, for the MSRP, the risk premia of all constituents are proportional 
to their betas. Considering equation [1.24], this implies that for all assets included in 
the MSRP p*, the alpha iα  equals zero, 0 *i i p= ∀ ∈α . To provide some 

intuition, note that for each asset comprised in an MSRP the relative marginal 
contribution to excess return must equal the relative marginal contribution to risk, 
or: 

i
ip

p

r
r

= β  [1.27] 
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This can be rephrased as requiring equal ratios of marginal return and risk 
contributions5: 

ji
p

ip jp

rr
r= =

β β
 [1.28] 

If this does not hold, the SR of the portfolio can be improved by increasing the 
weight of the assets with higher contributions to return (or lower contributions to 
risk) and decreasing the weight of assets with lower contributions to return (or 
higher contributions to risk).  

In other words, referring to equation [1.24], when an asset’s alpha is positive, 
0i >α , this asset shows outperformance against the portfolio and the SR of the 

portfolio can be increased by increasing the weight of this asset. Conversely, when 
an asset’s alpha is negative, 0i <α , this asset shows underperformance and the 

portfolio’s SR can be increased by decreasing the weight of this asset.  

Two additional comments are in order. First, in equation [1.26], we recognize the 
infamous “Security Market Line” of the capital asset pricing model (CAPM). 
However, the above results apply to any MSRP, whereas the CAPM applies to the 
equally infamous market portfolio (the overall global market cap weighted portfolio 
containing all assets) under the heroic equilibrium assumption that this portfolio is 
mean-variance efficient. Hence, the results presented above are completely general. 

Second, using the second definition of beta in equation [1.21] allows us to 
rewrite [1.26] as / /i i ip p pr r=σ ρ σ . Using the definition of the SR, this boils down 

to: 

i ip pSR SR= ρ  [1.29] 

In other words, for any MSRP, any constituent’s stand-alone SR equals the 
product of (1) its correlation with this portfolio and (2) the SR of the portfolio. 
Because of diversification contribution, a weakly correlated asset can have a lower 
SR. Conversely, the SR of a perfectly correlated asset should match the portfolio’s 
SR. When an asset’s SR is larger (smaller) than given by [1.29], this implies that the 
asset’s alpha is positive (negative). This also applies to assets not comprised in the 
portfolio. If 0i >α , or equivalently i ip pSR SR> ρ , then the SR of the portfolio is 

increased by adding that asset to the portfolio (and vice versa). 

                         
5 Note that /i ipr β  is the Treynor’s [TRE 66] ratio of risk-adjusted performance.  
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1.11.7. Reverse optimization: implied risk premia 

In conventional mean-variance portfolio optimization, the asset’s risk premia and 
their covariance matrix are used to calculate the weights of the MSRP. In reverse 
portfolio optimization, it is assumed that the portfolio at hand actually is the MSRP. 
Together with the covariance matrix of excess returns, this allows us to derive the 
“imputed” risk premia [SHA 74]. Using these implied risk premia together with the 
asset’s standard deviations, we can then compute the implied SRs. Hence, given a 
particular portfolio, these implied risk premia (or implied SRs) would make this 
portfolio the MSRP.  

How do we derive these implied risk premia? We start from the historical risk 
premium of the market cap portfolio. Assuming that this portfolio *p is mean-

variance efficient, we can calculate the implied coefficient of relative risk aversion 
*λ  from 2

* ** /p pr=λ σ  [SHA 74]. Using the historical average excess return and 

volatility of the market cap portfolio in Table 1.1, this yields * 8.0=λ . Switching to 
an alternative portfolio p with historical volatility pσ , then assuming that this 

portfolio is mean-variance efficient implies that its corresponding risk premium is 
2* * .p pr λ σ= ⋅  Given this implied portfolio risk premium, we finally use the first-

order condition for the MSRP in equation [1.26] together with the asset betas to 
compute the implied risk premium *ir  as the product of the beta and the implied 

portfolio risk premium: 

* *i ip pr r= ⋅β  [1.30] 

The implied SR then readily follows as * * /i i iSR r= σ . 
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2

Smart Beta: Managing Diversification of
Minimum Variance Portfolios

In this chapter, we consider a new framework for understanding risk-based portfolios (global

minimum variance (GMV), equally weighted (EW), equal risk contribution (ERC) and most

diversified portfolio (MDP)). This framework is similar to the constrained minimum variance

model of Jurczenko et al. [JUR 15], but with another definition of the diversification constraint.

The corresponding optimization problem can then be solved using the cyclical coordinate

descent (CCD) algorithm. This allows us to extend the results of Cazalet et al. [CAZ 14] and to

better understand the trade-off relationships between volatility reduction, tracking error and risk

diversification. In particular, we show that the smart beta portfolios differ because they implicitly

target different levels of volatility reduction. We also develop new smart beta strategies by

managing the level of volatility reduction and show that they present appealing properties

compared to the traditional risk-based portfolios.

2.1. Introduction

The capital asset pricing model (CAPM) of Sharpe [SHA 64] and the empirical
study of Jensen [JEN 69] have been the backbone of passive management based on
capitalization-weighted (CW) portfolios. In this approach, there is a single market
risk premium, measured by the beta, and this risk premium compensates investors for
holding non-diversifiable risk. In the CAPM theory, an investor can capture the
market risk premium by holding the market portfolio. Applied to the universe of
stocks, this justifies the strong development of CW equity indices. But, since CAPM
was introduced, academic research has put forward convincing evidence that CW
portfolios are poorly diversified (criticism 1) and there are systematic sources of

Chapter written by Jean-Charles RICHARD and Thierry RONCALLI∗.
∗Lyxor Asset Management



32 Risk-Based and Factor Investing

return in the equity markets other than simply the market beta (criticism 2). This
justifies the strong development of smart beta in recent years. In fact, the term “smart
beta” refers to two different approaches. First, it includes alternative-weighted
portfolios, whose purpose is to be more diversified than CW portfolios. This smart
beta approach corresponds to criticism 1 and it is also known as risk-based investing.
Second, it refers to portfolios that are designed intentionally to capture alternative
risk premia other than the market risk premium, such as value, size, momentum, low
beta and quality. This second approach corresponds to criticism 2 and it is also
known as factor-based investing.

In this chapter, we focus on risk-based portfolios1. The main objective of this
smart beta approach is to manage the risk more effectively than a CW index, and
achieve a better performance. At first sight, risk-based portfolios seem to be
heterogeneous because there are several notions of risk and each method considers
one specific aspect of diversification. However, we can show that both approaches
aim to reduce the volatility compared to the CW portfolio. This means that they are
the solution to a minimum variance optimization problem, but with a different weight
constraint. Our chapter highlights, therefore, the central role of the minimum
variance portfolio. Nevertheless, it is impossible to define a unique minimum
variance portfolio. In fact, there are as many minimum variance portfolios as there
are smart beta products. In this situation, it is essential to have some metrics in order
to understand their differences. Using a global optimization program, we can
measure the different trade-off relationships between volatility reduction, tracking
error, weight diversification and risk concentration. In particular, we can show that
these minimum variance portfolios behave differently because they do not target the
same volatility reduction. Some of them are very aggressive, whereas others are
closer to the CW portfolio. But, once we impose the same level of volatility
reduction, the differences between smart beta portfolios vanish even if they consider
different weight constraints.

In risk-based investing, the key variable is then the level of volatility reduction.
Because the objective of the investor is (almost) always to obtain a better
performance, the choice of this parameter is crucial. This is why we also investigate
how the performance of the portfolio is related to the volatility reduction. We show
that this relationship depends strongly on the level of the market risk premium. Using
this result, we can then build minimum variance strategies by targeting a
time-varying volatility reduction, which depends on the market conditions.

The chapter is divided as follows. In section 2.2, we show how the different
risk-based portfolios can be cast in a minimum variance problem. In section 2.3, we
propose a unique optimization program in order to compare the diversification profile

1 Even if the boundary between risk-based investing and factor-based investing is blurred in
practice.
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of smart beta strategies. Section 2.4 then analyzes their behavior and proposes new
smart beta strategies by dynamically managing the objective of volatility reduction.
Section 2.5 offers some concluding remarks.

2.2. Risk-based investing and variance minimization

Risk-based investing is generally associated with the concept of diversification.
Because diversification cannot be measured by a single number, practitioners
consider different approaches. The most popular are the equally weighted (EW)
portfolio, the equal risk contribution (ERC) portfolio and the most diversified
portfolio (MDP). Each of these portfolios maximizes a diversification measure. For
instance, the MDP uses the diversification ratio. The EW portfolio minimizes the
concentration in terms of weights, whereas the ERC portfolio minimizes the
concentration in terms of risk contributions.

Besides these three risk-based approaches, practitioners also consider the
minimum variance (MV) portfolio2. In this case, the goal is to explicitly manage the
volatility rather than the diversification of the portfolio. But, as shown by Maillard
et al. [MAI 10], the EW and ERC portfolios can also be interpreted as constrained
MV portfolios. Jurczenko et al. [JUR 13] proposed a similar approach, which also
encompasses the MDP. In particular, they consider the following optimization
problem:

x� (δ, γ) = argmin
1

2
x�Σx [2.1]

u.c.

{∑n
i=1 σ

δ
i

(
x1−γ
i − 1

)
≥ c

1�x = 1

where Σ is the covariance matrix of asset returns and σi is the volatility of asset i. In
this optimization program, δ ≥ 0 and γ ≥ 0 are two given parameters and c is a scalar
to be determined. They obtain the following correspondence between the parameters
(δ, γ) and the risk-based portfolios x� (δ, γ):

Portfolio GMV EW ERC MDP
δ 0 0 0 1
γ 0 ∞ 1 0

In what follows, we consider an extension of the original optimization problem of
Maillard et al. [MAI 10]. Our model is related to the approach of Cazalet
et al. [CAZ 14] and helps us to understand that risk-based portfolios are in fact

2 We note GMV the long-only global (or unconstrained) MV portfolio. This portfolio plays a
special role in limit cases of portfolio optimization.
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minimum variance portfolios with a diversification constraint. The goal of risk-based
portfolios is then to reach a lower volatility than the volatility of the
capitalized-weighted portfolio. However, because each approach considers a specific
definition of the diversification, there is a trade-off between these different measures
of diversification.

2.2.1. MV portfolio

Global minimum variance (GMV) portfolios are never used by practitioners
because they correspond to mathematical corner solutions that are concentrated in a
few number of assets. This is why minimum variance portfolios are always
implemented by considering a constrained optimization problem:

x� = argmin
1

2
x�Σx [2.2]

u.c.

⎧⎨
⎩

x ∈ C
1�x = 1
x ≥ 0

x ≥ 0 and 1� x = 1 imply that the portfolio is long-only. The
management of the weight concentration is specified by the constraint x ∈ C. There
are of course different ways to specify C. One of the popular approaches consists of
using the Herfindahl index defined by:

H (x) =
n∑

i=1

x2
i

H (x) takes the value 1 if the portfolio is perfectly concentrated in one asset.
Conversely, H (x) takes the value 1/n if the portfolio is EW. We can, therefore,
define the weight diversification as:

Dw (x) =
H−1 (x)

n
=

1

n
∑n

i=1 x
2
i

[2.3]

x� (c) = argmin
1

2
x�Σx [2.4]

u.c.

⎧⎨
⎩

Dw (x) ≥ c
1�x = 1
x ≥ 0

The constraints

Using this diversification definition, the previous optimization problem becomes:
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with c ∈ [1/n, 1]. We have x� (1/n) = xgmv and x� (1) = xew. Because σ (x� (c)) is
an increasing function of the parameter c, we deduce that:

σ (xgmv) ≤ σ (x� (c)) ≤ σ (xew)

REMARK 2.1.– We notice that the optimization program [2.4] is equivalent to solving
this Lagrange problem:

y� (λ) =
1

2
y�Σy + λy�y [2.5]

u.c.
{
1�y = 1
y ≥ 0

with λ ≥ 0. In this case, the optimal solution x� (c) is equal to y� (λ) with the
following relationship:

c =
1

n
∑n

i=1 y
�
i (λ)

2

If c ≤ cgmv =
(
nx�

gmvxgmv

)−1, x� (c) = xgmv.

2.2.2. ERC portfolio

Let σ (x) =
√
x�Σx be the portfolio volatility. The risk contribution of asset i is

defined by:

RCi = xi · ∂ σ (x)

∂ xi

risk contributions is exactly equal to the portfolio volatility:

n∑
i=1

RCi = σ (x)

RCi = RCj

These risk contributions are a key when performing risk allocation because the sum of

In the ERC portfolio, the risk contributions are the same for all assets:
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Maillard et al. [MAI 10] show that the ERC portfolio can be found by using the
following optimization program:

y� (c′) = argmin
1

2
y�Σy

u.c.
{∑n

i=1 ln yi ≥ c′

y ≥ 0

where c′ is a scalar. The ERC portfolio is then equal to the normalized portfolio y� (c′):

xerc =
y� (c′)

1�y� (c′)

Let us now consider this second optimization program:

x� (c) = argmin
1

2
x�Σx [2.6]

u.c.

⎧⎨
⎩

∑n
i=1 lnxi ≥ c

1�x = 1
x ≥ 0

where c ∈ ]−∞, n lnn]. Maillard et al. [MAI 10] demonstrated that there exists a
value of c such that the optimized portfolio is the ERC portfolio. In this case, we have
the following relationship:

cerc = c′ − n ln
n∑

i=1

y�i (c
′)

Roncalli [RON 13] also deduces that the optimized portfolio y� (c′) is a leveraged
version of the ERC portfolio:

y� (c′) = exp

(
c′ − cerc

n

)
· xerc

σ (x� (c)) is an increasing function of the parameter c, we obtain the same
inequality as in the case of constrained minimum variance portfolios:

σ (xgmv) ≤ σ (x� (c)) ≤ σ (xew)

σ (xgmv) ≤ σ (xerc) ≤ σ (xew)

Because

We deduce that:
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REMARK 2.2.– The Lagrange formulation of the optimization problem [2.6] is:

y� (λ) =
1

2
y�Σy − λ

n∑
i=1

ln yi [2.7]

u.c.
{
1�y = 1
y ≥ 0

with λ ≥ 0. In this case, the optimal solution x� (c) corresponds to the portfolio y� (λ)
with:

c =

n∑
i=1

ln y�i (λ)

According to this framework, a natural way to measure the diversification is to
consider the Herfindahl index applied to risk contributions:

Drc (x) =
1

n
∑n

i=1 RC2
i (x)

[2.8]

3 Drc (x) ∈
[1/n, 1] and we have Drc (xerc) = 1. This means that the ERC portfolio is then the
one that maximizes the risk diversification.

2.2.3. Most diversified portfolio

Choueifaty and Coignard [CHO 08] introduce the concept of diversification ratio,
which corresponds to the following expression:

DR (x) =
x�σ√
x�Σx

DR (x) is equal to 1 if the portfolio is fully invested in one asset or
if the correlations ρi,j are all equal to 1. In the other cases, we have Dσ (x) > 1. The
MDP is then the portfolio which maximizes the diversification ratio:

xmdp = argmaxDR (x) [2.9]

u.c.
{
1�x = 1
x ≥ 0

3 It is always the case if the cross-correlations ρi,j are positive.

Let us consider portfolios with positive risk contributions . It follows that

By construction,
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2.2.3.1. A first route toward variance minimization

Let ρ be the correlation matrix deduced from Σ. We note xgmv (ρ) the long-only
minimum variance portfolio based only on the correlation matrix. The MDP is then a
rescaled version of the GMV portfolio:

xmdp,i ∝ xgmv,i (ρ)

σi

2.2.3.2. A second route

Let us consider the following optimization problem:

y� (c′) = argmin
1

2
y�Σy [2.10]

u.c.
{∑n

i=1 yiσi ≥ c′

y ≥ 0

with c′ > 0. We can demonstrate that the MDP corresponds to the normalized
portfolio4:

xmdp =
y� (c′)

1�y� (c′)

specific value of c:

x� (c) = argmin
1

2
x�Σx [2.11]

u.c.

⎧⎨
⎩

∑n
i=1 xiσi ≥ c

1�x = 1
x ≥ 0

where c ∈ [0,maxi σi]. Indeed, we have:

cmdp =
c′∑n

i=1 y
�
i (c

′)

4 Because we have the following property:

y� (c′)
c′

=
y� (c′′)
c′′

It follows that the MDP is the solution of the following optimization program for a
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σ (xgmv) ≤ σ (xmdp) ≤ max
i

σi

REMARK 2.3.– The Lagrange formulation of the optimization problem [2.11] is:

y� (λ) =
1

2
y�Σy − λy�σ [2.12]

u.c.
{
1�y = 1
y ≥ 0

with λ ≥ 0. In this case, the optimal solution x� (c) corresponds to the portfolio y� (λ)
with:

c =
n∑

i=1

y�i (λ)σi

1�y = 1, we obtain the solution y� (c′) given by the
optimization program [2.10]. Let us consider the restricted universe of invested assets,
that is the assets i such that xmdp,i > 0. It follows that the MDP weights of this
restricted universe are:

x̃mdp =
Σ̃−1σ̃

1�Σ̃−1σ̃

where Σ̃ is the covariance matrix of the invested assets.

2.2.4. Comparing the trade-off relationships

Following Cazalet et al. [CAZ 14], we compare the different optimization
programs [2.4], [2.6] and [2.11] by changing the value of c. We consider the
Eurostoxx 50 index and the 1-year empirical covariance matrix estimated in February
2013. The results are reported in Figures 2.1, 2.2 and 2.3. In each figure, the first
panel represents the tracking error volatility σ (x | xcw) with respect to the volatility
reduction VR (x | xcw) defined by:

VR (x | xcw) =
σ (xcw)− σ (x)

σ (xcw)

It follows that:

If we delete the constraint
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Figure 2.1. Trade-off relationships of problem [2.4] (MV). For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

Figure 2.2. Trade-off relationships of problem [2.6] (ERC). For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

In the second panel, we consider the beta β (x | xcw) of the portfolio with respect to
the CW portfolio. The three panels at the bottom show the impact of the volatility
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reduction on the diversification measures5. These results show that investors have to
puzzle out the trade-off between volatility, tracking error and diversification. However,
we notice that the trade-off relationships are very similar when comparing MV and
ERC portfolios (Figures 2.1 and 2.2), which is not the case when considering MDP
(Figure 2.3).

2.3. Managing the diversification

2.3.1. Mixing the constraints

When we consider Figure 2.3, we observe that solutions are not very interesting
because we cannot manage the diversification in terms of weights or risk contributions.
This is why we can introduce these constraints into problem [2.11]. For instance, the
MDP optimization problem with the weight diversification becomes:

x� (c1, c2) = argmin
1

2
x�Σx [2.13]

u.c.

⎧⎪⎪⎨
⎪⎪⎩

∑n
i=1 xiσi ≥ c1

Dw (x) ≥ c2
1�x = 1
x ≥ 0

In this case, we can build smart beta portfolios between the MDP (c1 = cmdp and
c2 = 0) and the EW portfolio (c1 = cmdp and c2 = 1). An example is given in
Figure 2.4 by setting c1 = cmdp. If we prefer to consider the risk diversification, we
obtain:

x� (c1, c2) = argmin
1

2
x�Σx [2.14]

u.c.

⎧⎪⎪⎨
⎪⎪⎩

∑n
i=1 xiσi ≥ c1∑n
i=1 lnxi ≥ c2

1�x = 1
x ≥ 0

5 The two measures Dw (x) and Drc (x) correspond to the weight and risk diversifications
defined in equations [2.3] and [2.8]. The diversification measure Dρ (x) is the ratio between
the diversification ratio DR (x) of the portfolio and the diversification ratio DR (xmdp) of the
MDP.
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Figure 2.3. Trade-off relationships of problem [2.11] (MDP). For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

Figure 2.4. Trade-off relationships of problem [2.13] with c1 = cmdp. For

a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip
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2.3.2. A unified optimization framework

In fact, we can combine these different constraints in a unique variance
minimization problem with the following set of constraints:

⎧⎪⎪⎨
⎪⎪⎩

1�x = 1∑n
i=1 x

2
i ≤ c1∑n

i=1 lnxi ≥ c2∑n
i=1 xiσi ≥ c3

be obtained. The second and third constraints manage the diversification in terms of
weights (using the Herfindahl index) and risk contributions. Therefore, we can write
the constrained problem using Lagrange multipliers:

x� = argmin
1

2
x�Σx− [2.15]

λgmv

(
n∑

i=1

xi

)
+ λh

(
n∑

i=1

x2
i

)
−

λerc

(
n∑

i=1

lnxi

)
− λmdp

(
n∑

i=1

xiσi

)

u.c. x ≥ 0

with λh ≥ 0 and λerc ≥ 0. From a technical point of view, there are no restrictions on
λgmv and λmdp even if some cases are more relevant (λgmv ≥ 0 and λmdp ≥ 0).

REMARK 2.4.– The previous framework can be extended by replacing the variance
minimization problem by the tracking error minimization problem. In section 2.6.1,
we show that it is equivalent to introducing a constraint in the form x�Σxcw ≥ c4. In
this case, problem [2.15] must include a new penalty function which is equal to:

−λte

(
n∑

i=1

xi (Σxcw)i

)

The benefits of using the formulation [2.15] are twofold. First, this optimization
problem is very easy to solve using the cyclical coordinate descent (CCD) algorithm.
This numerical method was used by Griveau-Billion et al. [GRI 13] to find the solution
of the ERC portfolio. In section 2.6.2, we extend this analysis to the general problem
[2.15]. The second interest lies in the explicit trade-off relationships contained in the
optimization problem. If the aim is to emphasize one specific diversification measure,
we have to use a larger value for the corresponding Lagrange coefficient, but it is not

Thefirst and fourth constraints allow the GMV portfolio and the MDP,respectively, to
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possible to match all the different diversification constraints. This means that even
if there is no restriction between the Lagrange multipliers, only a subset of them is
interesting from a financial point of view. This is equivalent to imposing a structure
between the different constraints. Let us consider this specific problem, for instance:

x� = argmin
1

2
x�Σx [2.16]

u.c.

⎧⎨
⎩

D (x; γ) ≥ c1
B (x; δ) = c2
x ≥ 0

where D (x; γ) = γ
∑n

i=1 lnxi − (1− γ)
∑n

i=1 x
2
i is a diversification constraint and

B (x; δ) = δ
∑n

i=1 xi + (1− δ)
∑n

i=1 xiσi is a budget constraint. The parameter
γ ∈ [0, 1] controls the trade-off between weighs and risk diversification, whereas the
parameter δ ∈ [0, 1] controls the budget allocation. We can then restrict (c1, c2) by
considering this optimization problem:

x� (λ, γ, δ) = argmin
1

2
x�Σx− λD (x; γ) + (λ− 1)B (x; δ) [2.17]

u.c. x ≥ 0

where λ ≥ 0 controls the impact on the diversification. Problem [2.17] is a special
case of problem [2.15], but it is wide enough to include most of the solutions6.

REMARK 2.5.– If we include a tracking error constraint, the budget constraint
becomes B (x; δ, κ) =

∑n
i=1 xi (δ + κ (Σxcw)i + (1− δ − κ)σi) with

0 ≤ κ+ γ ≤ 1.

Parameters GMV EW ERC MDP RP BP CW
λ 0 +∞ 1 0 +∞ +∞ 0
γ 0/1 1 1 1 1
δ 1 1 0 1 0
κ 0 0 0 0 1 1

Table 2.1. Limits of the smart beta portfolio x� (λ, γ, δ, κ)

In Table 2.1, we indicate the parameters that give the different smart beta
portfolios7. For instance, (λ, γ, δ, κ) = (1, 1, 0, 0) gives the ERC portfolio, while
(λ, γ, δ, κ) = (0, 1, 1, 0) gives the GMV portfolio.

6 It is equivalent to impose that λgmv − λh + λerc + λmdp = 1 and λerc = λh + λ.
7 The risk parity (RP) and beta parity (BP) portfolios are defined in section 2.6.2.3. They
correspond to inverse-volatility and inverse-beta weighting schemes.
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With problem [2.17], we can explore new risk-based portfolios by mixing different
constraints. We consider the following set of parameters:

Set
Achievable

λ γ δ κPortfolios
(1) RP-ERC-MDP ∈ R+ 1 0 0
(2) CW-ERC-MDP 0 1 0 ∈ [0, 1]
(3) CW-ERC ∈ R+ 1 0 1
(4) CW-GMV 0 0 1− κ ∈ [0, 1]
(5) EW-MDP ∈ R+ 1 1− e−λ 0

For each set, we indicate the achievable portfolios. For instance, if κ = 1 (and δ = 0),
we obtain the CW portfolio. Depending on the values of λ and γ, we can then build
risk-based portfolios between CW and another smart beta portfolio. For instance, if
λ ∈ R+ and γ = 1, we obtain solutions between the CW portfolio and the ERC
portfolio. In Figure 2.5, we have reported the paths of the different parameter sets.

Figure 2.5. Trade-off relationships of problem [2.17]. For a color version

of the figure, see www.iste.co.uk/jurczenko/risk.zip

2.3.3. Diversification profile of risk-based portfolios

Radar charts of the different objectives are reported in Figure 2.6. Each hexagonal
chart (represented by dashed lines) corresponds to an improvement of the measure by
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15%. In order to compare the different profiles, we use a benchmark profile which
has the GMV volatility reduction, a zero tracking error, a beta equal to 1, the
diversification ratio of the MDP, and the weight and risk diversifications of the EW
and ERC portfolios. The GMV portfolio focuses on minimizing the volatility but
presents a poor diversification in terms of weights and risk contributions. It is also the
portfolio with the highest beta risk and tracking error risk. The EW portfolio
performs well to maximize the beta and minimize the tracking error while
diversifying the weights. But, this is done with no volatility reduction. The ERC
portfolio has a similar profile but pays more attention to volatility reduction. Finally,
the MDP profile is similar to the GMV profile, but has a lower beta risk and tracking
error risk.

Figure 2.6. Diversification profile of smart beta portfolios. For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

Figure 2.7 illustrates the role of the parameter λ. κ is equal to zero and we fix the
other parameters in a balanced manner: γ = δ = 0.5. We observe that the volatility
reduction is done at the expense of the diversification. Moreover, the weight
diversification decreases more quickly than the risk diversification. Indeed, the
volatility of the ERC portfolio is always lower than the volatility of the EW portfolio.
This means that the impact of the volatility reduction on the diversification is weaker
for the ERC.

In Figure 2.8, we have reported the diversification profile when we specifically
target a volatility reduction (5, 10, 20 and 30%). In this example, we confirm that the
weight diversification decreases more quickly than the risk diversification. The
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diversification ratio is the less impacted measure by the change in the volatility
reduction.

Figure 2.7. Diversification profile and weight diversification. For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

Figure 2.8. Diversification profile and volatility reduction. For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip
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2.4. Understanding the behavior of smart beta portfolios

We consider here real-life applications with four different stock universes: the
Eurostoxx 50 index (SX5E), the Topix 100 index (TPX100), the S&P 500 index
(SPX) and the MSCI EM index (MXEF). We have chosen these stock indices
because they correspond to different regions and different sizes of the universe. For
each universe, we compute smart beta portfolios by using the 1-year empirical
covariance matrix of stock returns. The allocation is rebalanced at a monthly
frequency. We conduct backtests from January 2001 to December 20148. Empirical
results confirm that there are some trade-off principles. In particular, we obtain a first
rule of smart beta indexing:

RULE 2.1.– There is no free lunch in smart beta. In particular, it is not possible to
target high volatility reduction, to be highly diversified and to take low beta risk.

In Figure 2.9, we have reported the relationship between the volatility reduction
and the beta for the four universes and the four smart beta portfolios (EW, GMV, ERC
and MDP). Each point corresponds to a rebalancing date. By reducing the volatility,
the smart beta portfolios increase the beta risk. We observe similar results for the
other risk measures: tracking error, weight diversification, risk diversification and
diversification ratio.

Figure 2.9. Relationship between the volatility reduction and the

beta. For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

8 For the MSCI EM index, the starting date is February 2005.



Smart Beta: Managing Diversification of Minimum Variance Portfolios 49

Figure 2.10. Boxplot of the volatility reduction (in %). For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

Figure 2.11. Boxplot of the tracking error (in %). For a color version of

the figure, see www.iste.co.uk/jurczenko/risk.zip
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2.4.1. Volatility reduction

RULE 2.2.– The smart beta portfolios have a time-varying objective of volatility
reduction and tracking error.

This rule shows that the behavior of traditional smart beta portfolios (EW, GMV,
ERC and MDP) is not homogeneous across time in terms of volatility reduction and
tracking error. We have reported the boxplots in Figures 2.10 and 2.11. The bottom
and top of the box indicate the first and third quartiles of the statistics, the line inside
the box corresponds to the median, whereas the ends of whiskers are the minimum
and the maximum. We notice that the volatility reduction depends on the underlying
index. However, we do not observe a strong relationship with the size of the universe,
except for the GMV portfolio. For instance, the EW portfolio has a higher volatility,
on average, than the CW portfolio in the case of the S&P 500 index, but the volatility
reduction is maximal for the MSCI EM index. If we consider the tracking error, the
behavior is even more complex with respect to the underlying index. For instance, the
Topix 100 universe presents the highest tracking error in the case of ERC and GMV
portfolios.

A statistical analysis shows that the level of the volatility reduction and the tracking
error, as well as their variations, cannot be explained by the level or the variation of
the volatility of the CW index. We can, therefore, obtain all the possible existing
configurations:

σ (xcw) High Low
VR (x | xcw) or σ (x | xcw) High/Low High/Low

Δtσ (xcw) + −
ΔtVR (x | xcw) or Δtσ (x | xcw) +/− +/−

Even if there is no obvious relationship between the volatility of the CW portfolio
and the volatility or the tracking error of the smart beta portfolios, there is some
similar behavior between the smart beta portfolios themselves. For instance, we
report the correlation between the variations during two consecutive rebalancing
dates of the volatility reduction in Table 2.2. We compute the statistic
ρΔtVR
i,j = ρ

(
ΔtVR

(
x(i) | xcw

)
,ΔtVR

(
x(j) | xcw

))
for all pairs (i, j) of smart

beta portfolios. We notice that the cross-correlations are high except for the EW
portfolio in the case of the S&P 500 universe. Results for the tracking error
correlation ρΔtTE

i,j = ρ
(
Δtσ

(
x(i) | xcw

)
,Δtσ

(
x(j) | xcw

))
are also reported in

Table 2.2. Like the volatility reduction, the tracking error cross-correlations are high
especially for the pairs (GMV,MDP) and (ERC,MDP).

If we consider the other risk statistics, we obtain similar results for the beta9 and
diversification ratio, but not for the weight and risk diversifications. For these last two

9 We have ρΔtβ
i,j � ρΔtVR

i,j .
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statistics, the average correlation is close to zero. We report the results for ρΔtDrc
i,j and

ρ
ΔtDρ

i,j in Table 2.3. We notice that the cross-correlation Dρ is extremely high10.

Volatility reduction Tracking error
(i, j) SX5E TPX100 SPX MXEF SX5E TPX100 SPX MXEF

(EW,GMV) 16.7 44.1 −0.5 37.1 25.0 44.4 44.7 76.3
(EW,ERC) 66.4 70.2 33.1 79.8 26.6 33.1 11.5 76.0
(EW,MDP) 26.9 44.3 5.6 37.9 38.1 37.6 42.0 75.5

(GMV,ERC) 69.2 77.7 49.2 64.5 62.8 41.1 48.1 87.4
(GMV,MDP) 74.7 79.9 45.6 80.3 76.3 90.7 75.5 98.2
(ERC,MDP) 71.9 79.2 66.0 64.8 82.4 53.0 63.0 90.2

Table 2.2. Empirical correlations ρΔtVR
i,j and ρΔtTE

i,j (in %)

Risk diversification Diversification ratio
(i, j) SX5E TPX100 SPX MXEF SX5E TPX100 SPX MXEF

(EW,GMV) 2.1 −35.4 −2.4 −20.8 73.7 77.1 54.9 87.5
(EW,ERC) −6.7 8.7 −8.2 −15.5 93.2 93.6 84.8 96.1
(EW,MDP) 0.5 −38.1 −22.5 −29.2 79.2 85.8 81.0 91.1

(GMV,ERC) 34.5 −14.2 −17.9 −7.4 75.5 85.4 65.7 92.4
(GMV,MDP) 25.6 12.9 14.1 42.6 75.3 86.2 74.0 96.2
(ERC,MDP) 23.0 −3.2 15.9 23.5 92.8 92.9 89.7 96.5

Table 2.3. Empirical correlations ρΔtDrc
i,j and ρ

ΔtDρ

i,j (in %)

2.4.2. Normalizing the smart beta portfolios

In Table 2.4, we report the average correlation between the three smart beta
portfolios (GMV, ERC and MDP) for the different statistics11. We notice that the
average correlation between returns is less than 90%, implying that the behavior of
these smart beta portfolios may be very different in some specific periods.

Index VR TE β Dw Drc Dρ Rt

SX5E 67.4 81.9 73.0 39.2 26.5 95.8 89.6
TPX100 88.2 81.1 87.6 28.9 27.7 93.6 92.8
SX5E 79.9 80.2 82.9 21.3 32.6 97.3 83.2
MXEF 89.3 93.2 93.1 2.4 34.5 97.8 88.5

Average 81.2 84.1 84.1 23.0 30.3 96.1 88.5

Table 2.4. Average correlation between GMV,

ERC and MDP portfolios (in %)

10 It is equal to 84% on average.
11 For the risk statistics (VR, TE, β, Dw, Drc and Dρ), we consider the monthly series. The
correlation between returns Rt is computed using the daily series of the 1-year performance.
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We can ask if these differences come from the implied intrinsic constraint of each
model, or from the level of volatility reduction targeted by each model. This is why we
investigate the behavior of smart beta portfolios when we normalize them by targeting
the same level of volatility reduction. Therefore, we calibrate the set of parameters
(λgmv,λh, λerc, λmdp, λte) such that:

VR (x� (λgmv,λh, λerc, λmdp, λte) | xcw) = η�

where η� is the targeted volatility reduction. For each smart beta portfolio, the
calibration is done with one parameter (it is underlined), whereas the other
parameters are fixed:

GMV λgmv = 1, λh ∈ [0,+∞), λerc = 0, λmdp = 0 and λte = 0;

ERC λgmv = −∞, λh = 0, λerc ∈ (0,+∞), λmdp = 0 and λte = 0;

MDP λgmv = 0, λh = 0, λerc = 1, λmdp ∈ (−∞,+∞) and λte = 0;

For instance, the calibration is done using the Herfindahl parameter λh in the case of
the GMV portfolio. Results are reported in Table 2.5. We notice that the average
correlation between the three smart beta methods has highly increased. This is
particularly true for the 1-year performance, for which the average correlation is
close to 100%. We conclude that the differences between the smart beta methods
(GMV, ERC and MDP) are mainly explained by the different levels of targeted
volatility reduction, which is a consequence of their intrinsic constraints. These
results are also valid when we target a level of tracking error. Therefore, we obtain a
third rule of smart beta indexing:

Index η� VR TE β Dw Drc Dρ Rt

5% 100.0 99.2 100.0 99.3 99.5 99.8 100.0
SX5E 10% 100.0 92.1 99.5 86.7 71.6 98.9 99.8

15% 100.0 91.5 97.4 88.6 76.4 97.2 99.2

5% 100.0 99.8 100.0 99.7 99.8 99.9 100.0
TPX100 10% 100.0 88.3 98.9 89.1 65.0 98.2 100.0

15% 100.0 91.5 97.6 92.7 78.4 97.5 99.9

5% 100.0 96.8 99.8 86.4 63.6 98.2 99.8
SPX 10% 100.0 86.9 97.1 88.4 69.7 93.4 99.0

15% 100.0 85.6 90.8 88.9 77.6 88.4 97.6

5% 100.0 100.0 100.0 99.9 100.0 100.0 100.0
MXEF 10% 100.0 100.0 100.0 98.2 99.5 99.8 100.0

15% 100.0 99.9 100.0 96.1 95.0 99.5 100.0

Average 100.0 94.3 98.4 92.8 83.0 97.6 99.6

Table 2.5. Average correlation between GMV,

ERC and MDP portfolios (in %)
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RULE 2.3.– When we impose an objective of volatility reduction or tracking error, the
smart beta portfolios become comparable.

2.4.3. Performance of the smart beta portfolios

RULE 2.4.– The performance of smart beta portfolios depends on the market risk
premium. When this is high, it is better to consider an objective of low volatility
reduction (or tracking error volatility). Conversely, it is preferable to target a high
volatility reduction when the market risk premium is weak or negative.

Figure 2.12. Relationship between volatility reduction and excess

return (2001–2014). For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

This rule is very logical and easy to understand. Indeed, when the performance
of stocks is high, it is better to invest in a more diversified portfolio than the CW
portfolio, but with a limited tracking error in order to fully benefit from the bull market.
Conversely, in a bear market, a concentrated portfolio of low volatility stocks will do a
better job. In Figures 2.12, 2.13 and 2.14, we have reported the relationship12 between
the volatility reduction (in %) of smart beta portfolios and their excess return (in %)
measured as the difference between the annualized return and the risk-free rate. The
excess return for the CW index corresponds to the horizontal dashed line. Results for

12 Because of the third rule, we know that the calibration method to target a given volatility
reduction has little impact, particularly on the performance. This is why we only report the
results with the GMV approach when the calibration is done by estimating λh. We obtain the
same results if we consider other calibration schemes.
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the entire study period (January 2001 – December 2014) are given in Figure 2.12.
We notice that the rule is satisfied except for the MSCI EM index. If we consider
the financial crisis (July 2007 – February 2009), we observe a positive relationship
between volatility reduction and excess return (Figure 2.13). For this period, it is,
therefore, better to target a high volatility reduction. The opposite is true if we consider
the recent recovery period (March 2009 – December 2013).

Figure 2.13. Relationship between volatility reduction and excess

return (July 2007–February 2009). For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

Figure 2.14. Relationship between volatility reduction and excess

return (March 2009–December 2013). For a color version of the figure,

see www.iste.co.uk/jurczenko/risk.zip
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2.4.4. Dynamic smart beta strategies

The previous rule can be used to build dynamic smart beta strategies. The idea
is to fix the level of volatility reduction with respect to market conditions. If the risk
sentiment is high, we would like to have an aggressive portfolio or to target a high
level of volatility reduction. If the risk sentiment is low, it is better to have a more
diversified portfolio with low tracking error with respect to the CW index.

We consider the optimization problem [2.17] with λ ∈ [0, 1], γ = 1 and δ = 1. In
this case, we obtain smart beta portfolios between the GMV portfolio (λ = 0) and the
ERC portfolio (λ = 1). At each date t, we estimate the market sentiment by computing
the cross-sectional volatility σcsv

t of stocks which belong to the CW index13. We then
consider the following rule to fix λ:

λ = 1− φ
σcsv
t − σ−

t

σ+
t − σ−

t

where σ−
t and σ+

t are the minimum and maximum values of σcsv
t observed for the

window period [t− h; t] and φ is a scalar between 0 and 1. We consider two
strategies. D#1 corresponds to the case φ = 1 and λ ∈ [0, 1]. For the second strategy
D#2, φ is equal to 0.85 meaning that λ ∈ [0.15, 1]. Backtests14 for the study period
2001–2014 are reported in Table 2.6. For each strategy, we calculate the annualized
return μ (x), the annual volatility σ (x), the corresponding Sharpe ratio SR (x), the
maximum drawdown DD (x) and the turnover τ (x) of the allocation. We notice that
the dynamic smart beta strategies D#1 and D#2 improve the performance of the
GMV and ERC portfolios for three indices (Eurostoxx 50, S&P 500 and MSCI EM).
In particular, the second strategy D#2 is a considerable improvement on the ERC
strategy with a higher return, a lower volatility, a reduced drawdown and a limited
turnover15. Even this application is a toy model as it gives some indications about the
benefit of dynamically managing the volatility reduction with respect to the market
sentiment.

2.5. Conclusion

Smart beta indexing is becoming increasingly popular with institutional investors
and pension funds. It is perceived as a method of reducing risk and increasing
performance with respect to CW indexing. However, there are many ways to build a

13 In order to reduce the noise, we also apply an exponentially weighted moving average with
a smoothing coefficient of 0.98 to the cross-sectional volatility.
14 The lag window h is equal to 1 year.
15 On average, its turnover is twice the turnover of the ERC portfolio, but half that of the GMV
portfolio.
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smart beta portfolio. One interesting property is that these different
alternative-weighted portfolios belong to the same optimization problem family.
They are minimum variance portfolios and differ because of the implied constraint
they consider. In this chapter, we develop a unified analytical framework based on the
CCD algorithm in order to show the trade-off between the volatility reduction and the
risks of such alternative-weighted solutions. Using this approach, we can illustrate
and understand the behavioral differences of smart beta portfolios. We can also
develop new smart beta strategies by explicitly targeting a level of volatility reduction
or by dynamically linking this level to the market sentiment.

CW GMV ERC D#1 D#2 CW GMV ERC D#1 D#2

SX5E TPX100
μ (x) 0.6 3.8 3.4 5.1 4.7 0.4 6.3 3.3 3.6 3.2
σ (x) 24.5 19.1 23.1 21.3 22.4 24.4 16.3 21.3 18.9 19.8
SR (x) −0.1 0.1 0.1 0.1 0.1 0.0 0.4 0.1 0.2 0.1
DD (x) −59.6 −52.4 −54.4 −50.7 −51.5 −62.8 −49.4 −57.4 −51.1 −54.2
τ (x) 0.2 3.4 0.8 3.0 1.9 0.3 3.8 1.0 2.9 1.8

SPX MXEF
μ (x) 5.0 8.3 9.9 11.5 10.5 8.0 12.0 10.8 14.3 12.6
σ (x) 20.1 12.2 19.2 16.2 18.2 21.6 9.4 16.3 13.0 14.3
SR (x) 0.2 0.5 0.4 0.6 0.5 0.3 1.1 0.6 1.0 0.8
DD (x) −55.3 −33.3 −55.9 −44.7 −52.5 −65.1 −29.9 −53.8 −34.9 −44.9
τ (x) 0.1 5.9 1.0 3.5 1.6 0.5 5.6 1.6 4.2 2.8

Table 2.6. Comparing GMV, ERC and dynamic

smart beta strategies (2001–2014)

2.6. Appendix

2.6.1. Managing the tracking error volatility

Let xcw be the CW portfolio. The tracking error variance of the portfolio x is:

σ2 (x | xcw) = (x− xcw)
�
Σ(x− xcw)

= x�Σx− 2x�Σxcw + x�
cwΣxcw

x�cw Σxcw is constant, the optimization problem becomes:

x� (c1, c2) = argmin
1

2
x�Σx− x�Σxcw [2.18]

μ are
equal to Σxcw. We notice that these expected returns are exactly the implied expected

Because

We recognize a Markowitz’s optimization problem where the expected returns
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returns in the Black–Litterman model16. Following Roncalli [RON 13], we can
transform the optimization problem [2.18] into a μ-problem:

x� (c) = argmin
1

2
x�Σx [2.19]

u.c.

⎧⎪⎪⎨
⎪⎪⎩

x ∈ C∑n
i=1 xi (Σxcw)i ≥ c

1�x = 1
x ≥ 0

with c ∈ [0, c+] with c+ = x�
cwΣxcw. This problem is precisely the formulation [2.2]

used in this chapter by adding the constraint
∑n

i=1 xi (Σxcw)i ≥ c. The limit cases
are x� (0) = xgmv and x� (c+) = xcw.

We can use this framework to introduce the tracking error constraint in the
different optimization problems considered in this study. For instance, we can mix
this constraint with the ERC constraint. In this case, we will obtain optimized
portfolios with a trade-off between the tracking error volatility and the diversification
in terms of risk contributions.

2.6.2. Solving the general optimization problem using the CCD algorithm

We consider the following optimization problem:

x� (λgmv,λh, λerc, λmdp, λte) = argmin
1

2
x�Σx− [2.20]

λgmv

(
n∑

i=1

xi

)
+ λh

(
n∑

i=1

x2
i

)
−

λerc

(
n∑

i=1

lnxi

)
− λmdp

(
n∑

i=1

xiσi

)
−

λte

(
n∑

i=1

xi (Σxcw)i

)

u.c. x ≥ 0

16 See [RON 13] on page 23.
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chapter. We notice that problem [2.20] is of the form:

x� (λ) = argmin
1

2
x�Σx+ λP (x)

u.c. x ≥ 0

where P (x) is a penalty function combining different norms. This penalized
optimization is frequent in machine learning and is generally solved using the
cyclical coordinate descent algorithm.

2.6.2.1. CCD algorithm

The main idea behind the CCD algorithm is to minimize a function f (x1, . . . , xn)
by minimizing only one direction at each step, whereas classical descent algorithms
consider all the directions at the same time. In this case, we find the value of xi which
minimizes the objective function by considering the values taken by xj for j �= i
as fixed. The procedure is repeated for each direction until the global minimum is
reached. This method uses the same principles as Gauss–Seidel or Jacobi algorithms
for solving linear systems. The main objective is then to find the update rule.

Convergence of coordinate descent methods requires that f (x) is strictly convex
and differentiable. However, Tseng [TSE 01] has extended the convergence properties
to a non-differentiable class of functions:

f (x1, ..., xn) = f0 (x1, ..., xn) +

m∑
k=1

fk (x1, ..., xn)

where f0 is strictly convex and differentiable and the functions fk are
non-differentiable.

Some properties make this algorithm very attractive. First, it is very simple to
understand and implement. Second, the method is efficient for solving large-scale
problems. This is why it is used in machine learning theory for computing constrained
regressions or supporting vector machine problems [FRI 10]. A further advantage is
that the method does not need stepsize descent tuning as opposed to gradient-based
methods.

2.6.2.2. Application to the smart beta problem

In problem [2.20], f0(x) = 1
2x

�Σx is strictly convex and the functions fk are
non-differentiable, meaning that we can apply the CCD algorithm. Let L (x) be the
Lagrange function [2.20]. We have:

∂ L (x)

∂ xi
= (Σx)i − λgmv + 2λhxi − λerc

xi
− λmdpσi − λte (Σxcw)i

This formulation encompasses the different optimization problems presented in this
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λ >erc 0. At the optimum, we have ∂xi L (x) = 0 or:

xi (Σx)i − λgmvxi + 2λhx
2
i − λerc − λmdpxiσi − λtexi (Σxcw)i = 0 [2.21]

x2
i

(
σ2
i + 2λh

)
+ xi

⎛
⎝σi

∑
j �=i

xjρi,jσj − λgmv − λmdpσi − λte (Σxcw)i

⎞
⎠

− λerc = 0

we notice that the polynomial function is convex because we have σ2
i +2λh > 0. Since

the product of the roots is negative17, we always have two solutions with opposite
signs. We deduce that the solution is the positive root of the second-degree equation:

x�
i =

λgmv + λmdpσi + λte (Σxcw)i − σi

∑
j �=i xjρi,jσj

2 (σ2
i + 2λh)

+

√(
σi

∑
j �=i xjρi,jσj − λgmv − λmdpσi − λte (Σxcw)i

)2

+ 4 (σ2
i + 2λh)λerc

2 (σ2
i + 2λh)

[2.22]

(x , . . . , x1 n) are strictly positive, it follows that x�i is strictly positive.
The positivity of the solution is then achieved after each iteration if the starting
values are positive. The coordinate-wise descent algorithm consists of iterating
equation [2.22] until convergence and normalizing the solution at the final step.

REMARK 2.6.– When the correlation of the assets is equal to zero, we obtain a closed-
form expression:

x�
i =

λgmv + λmdpσi + λtexcw,iσ
2
i

2 (σ2
i + 2λh)

+

√
(λgmv + λmdpσi + λtexcw,iσ2

i )
2
+ 4 (σ2

i + 2λh)λerc

2 (σ2
i + 2λh)

17 We have − (
σ2
i + 2λh

)
λerc < 0.

Let us assume that

It follows that:

If the values of



60 Risk-Based and Factor Investing

REMARK 2.7.– We can deduce the risk contributions of risk-based portfolios from
equation [2.21]:

RCi ∝ λgmvxi − λhx
2
i + λerc + λmdpσixi + λtexi (Σxcw)i

equal for the ERC portfolio, correspond to the weights for the GMV portfolio and are
proportional to xiσi for the MDP, etc.

2.6.2.3. Special cases

In this section, we derive limit cases of problem [2.20] by using the CCD
formulation of the solution.

2.6.2.3.1. EW portfolio

If we assume that λmdp = λte = λh = 0 and λerc > 0, the solution is reduced to:

x�
i = −σi

∑
j �=i xjρi,jσj − λgmv

2σ2
i

+

√(
σi

∑
j �=i xjρi,jσj − λgmv

)2

+ 4σ2
i λerc

2σ2
i

σi
∑

j �=i xjρi,jσj − λgmv ≈ |λgmv| when λgmv = −∞. Using a first-order
Taylor expansion in the neighborhood of zero, we obtain:

lim
λgmv→−∞

x�
i = lim

λgmv→−∞

− |λgmv|+ |λgmv|
√
1 +

4σ2
i
λerc

|λgmv|2

2σ2
i

≈ lim
λgmv→−∞

− |λgmv|+ |λgmv|
(
1 +

2σ2
i λerc

|λgmv|2
)

2σ2
i

=
λerc

|λgmv|

portfolio:

lim
λgmv→−∞

x� = xew =
1

n

We retrieve the different well-known results. For instance, the risk contributions are

We have

This means that all the weights are constant and equal. We finally obtain the EW
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that λmdp = λte = λgmv = 0 and λerc > 0, the solution is reduced to:

x�
i = −σi

∑
j �=i xjρi,jσj

2 (σ2
i + 2λh)

+

√(
σi

∑
j �=i xjρi,jσj

)2

+ 4 (σ2
i + 2λh)λerc

2 (σ2
i + 2λh)

λh 
 +∞, we obtain:

x�
i ≈

√
λerc√
2λh

2.6.2.3.2. RP portfolio

If we assume that λgmv = λte = λh = 0 and λerc > 0, we have
σi

∑
j �=i xjρi,jσj − λmdpσi ≈ |λmdp|σi when λmdp = −∞ and:

lim
λmdp→−∞

x�
i =

λerc

|λmdp|σi

obtain the RP portfolio:

lim
λmdp→−∞

x� = xrp =
σ−1

1�σ−1

2.6.2.3.3. BP portfolio

If we assume that λgmv = λmdp = λh = 0 and λerc > 0, we have18

σi

∑
j �=i xjρi,jσj − λte (Σxcw)i ≈ |λte| (Σxcw)i when λte = −∞ and:

lim
λte→−∞

x�
i =

λerc

|λte| (Σxcw)i

βi (xcw ) of the asset i with respect to the CW portfolio xcw is:

βi (xcw) =
(Σxcw)i
x�
cwΣxcw

18 We must also have (Σxcw)i ≥ 0.

There is another way to find the EW portfolio due to the Herfindahl index.If we assume

When

Again, all the weights are constant and we obtain the EW portfolio.

This means that the weight is inversely proportional to the asset volatility. We then

The beta
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the BP portfolio:

lim
λte→−∞

x� = xbp =
β−1 (xcw)∑n
j=1 β

−1
j (xcw)

2.6.2.3.4. Summary

Finally, the different limit cases are reported in Table 2.7 where λ ≥ 0 is an
arbitrary constant.

Parameters GMV EW ERC MDP RP BP CW
λgmv +∞ −∞ 0 0 0 0 0 0
λh 0 0 +∞ 0 0 0 0 0
λerc λ +∞ λ λ λ +∞ +∞ λ
λmdp 0 0 0 0 +∞ −∞ 0 0
λte 0 0 0 0 0 0 −∞ +∞

Table 2.7. Limits of the smart beta portfolio x� (λgmv, λh, λerc, λmdp, λte)
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3 

Trend-Following, Risk-Parity  
and the Influence of Correlations  

Trend-following1 strategies take long positions in assets with positive past returns and short 
positions in assets with negative past returns. They are typically constructed using futures 
contracts across all asset classes, with weights that are inversely proportional to volatility, and 
have historically exhibited great diversification features, especially during dramatic market 
downturns. However, following an impressive performance in 2008, the trend-following strategy 
has failed to generate strong returns in the post-crisis period (2009–2013). This period has been 
characterized by a large degree of co-movement even across asset classes, with the investable 
universe being roughly split into the so-called risk-on and risk-off subclasses. We examine 
whether the inverse-volatility weighting scheme, which effectively ignores pairwise correlations, 
can turn out to be suboptimal in an environment of increasing correlations. By extending the 
conventionally long-only risk-parity (equal risk contribution) allocation, we construct a long-short 
trend-following strategy that makes the use of risk-parity principles. Not only do we significantly 
enhance the performance of the strategy, but we also show that this enhancement is mainly 
driven by the performance of the more sophisticated weighting scheme in extreme average 
correlation regimes.  

3.1. Introduction 

Trend-following is a simple trading strategy that consists of long positions for 
upward trending assets and short positions for falling assets. This strategy profits when 

                         
Chapter written by Nick BALTAS*. 
*UBS Investment Bank and Imperial College Business School and Queen Mary University of 
London 
1 The opinions and statements expressed in this chapter are those of the author and are not 
necessarily the opinions of any other person, including UBS AG and its affiliates. UBS AG 
and its affiliates accept no liability whatsoever for any statements or opinions contained in 
this book, or for the consequences which may result from any person relying on such opinions 
or statements. 
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assets continue performing in-line with their most recent performance. In other  
words, this strategy aims to take advantage of return autocorrelation empirical 
patterns2. 

Trend-following strategies are largely employed by systematic funds, such as 
commodity trading advisor (CTA) and managed futures funds3 (see [COV 09] for a 
broad overview), and are typically constructed using futures contracts across all asset 
classes4 in an effort to increase diversification. The benefit from using futures contracts is 
twofold: first, taking long and short positions using futures contracts is equally 
straightforward (in contrast, for instance, to using cash equity instruments), and  
second, the use of futures contracts allows the inclusion of non-equity contracts in the 
portfolio (e.g. trading commodities for investment purposes is typically done using 
futures). 

The construction of a trend-following portfolio involves an important challenge, 
which is the choice of the weighting scheme that should be employed, given that 
contracts from different asset classes have very different risk-return profiles  
(a typical commodity or equity index contract is much more volatile than a 
government bond contract). An equal-weight allocation would result in a portfolio 
that would be dominated in terms of risk by the higher volatility assets, i.e. equities 
and commodities. Instead, the weighting scheme should make use of the relative 
riskiness of the contracts in order to allocate risk as evenly as possible across all 
constituents.  

                         
2 Trend-following (also known as time-series momentum) is structurally different from the 
conventional cross-sectional winners-minus-losers momentum strategy of Jegadeesh and 
Titman [JEG 93, JEG 01]. The former is a strategy that takes a position in every asset of the 
investable universe, is not cash-neutral and, at the extreme, can be in a long-only or short-only 
state (if all assets have a positive or negative past return, respectively); hence, it is a clear bet 
on the serial correlation of returns. Instead, the latter invests only in the extremes of the cross-
section (e.g. top vs. bottom decile), it is – in theory – cash-neutral and its profitability can be 
either attributed to cross-sectional return dispersion premia or time-series return correlation 
(the recent paper by Asness, Moskowitz and Pedersen [ASN 13] documents cross-sectional 
momentum patterns “everywhere”). For an analysis of the relationship between the two 
momentum strategies, see [MOS 12] and [CLA 14a]. 
3 Baltas and Kosowski [BAL 13b] show that futures-based trend-following strategies can 
explain large part of the return variation of CTA benchmark indices. 
4 Szakmary, Shen and Sharma [SZA 10] study trend-following strategies in commodity 
markets, Burnside, Eichenbaum and Rebelo [BUR 11] study carry and trend-following 
strategies in currency markets and finally in two recent papers Clare, Seaton, Smith and 
Thomas [CLA 14a, CLA 14b] study both cross-sectional momentum and trend-following 
strategies in commodity markets and across broad market indices of different asset classes 
(equities, bonds, commodities and real estate) from a global asset allocation point of view. 
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The typical choice is to employ inverse-volatility weights, so that all assets enter 
the portfolio with the same ex ante volatility. For obvious reasons, this scheme is 
known as the volatility-parity scheme. This approach has been followed by the large 
majority of academic research papers focusing on the topic [MOS 12, HUR 12, 
HUR 13, BAL 13b, BAL 15]. Most importantly as long as all pairwise correlations 
are equal, this weighting scheme splits the total portfolio volatility equally across all 
portfolio constituents.  

Using a broad dataset of 35 futures contracts from all asset classes (energy, 
commodities, fixed income, foreign exchange and equities), we construct a 
volatility-parity trend-following strategy and document its superior performance 
relative to a long-only equivalent over a long history of more than 25 years (1988–
2013). By employing long and short positions, the trend-following strategy benefits 
from (either upward or downward) trending markets and achieves in neutralizing (at 
least unconditionally) the exposure to standard benchmark indices such as the MSCI 
World Index or the S&P GSCI Index. The strategy benefits from the combination of 
different asset classes and delivers a Sharpe ratio of 1.31 compared to one of  
0.70 for the long-only equivalent over the entire sample period.  

Contrary to its historical superior performance, and following an impressive 
performance in 2008, the trend-following strategy has consistently delivered very 
poor performance in the post-crisis period (see also [HUR 12] and [BAL 13b]). 
Between January 2009 and December 2013, a volatility-parity trend-following 
strategy delivered a Sharpe ratio of 0.31 against a Sharpe ratio of 0.59 for the long-
only counterparty. What could have possibly gone wrong?   

Following the introduction of the Commodity Futures Modernization Act (CFMA) 
in 2000, commodities have started becoming more correlated to each other as futures 
markets became accessible to investors as a way to hedge commodity price risk in 
what is often referred to as the “financialization of commodities5”. More generally and 
more aggressively, following the recent financial crisis in 2008, assets from different 
asset classes (and not just commodities) have started exhibiting stronger co-movement 
patterns, with the diversification benefits being dramatically diminished.  

In an environment of increased asset co-movement, the volatility-parity 
weighting scheme can be deemed a suboptimal choice. By ignoring the covariation 
between assets, volatility-parity fails to allocate equal amount of risk to each 
portfolio constituent. This is the reason why volatility-parity is also often referred to 

                         
5 The financialization of commodities has recently been a very active research field. 
Indicatively, see the recent papers by Falkowski [FAL 11], Irwin and Sanders [IRW 11], Tang 
and Xiong [TAN 12], Basak and Pavlova [BAS 14], Boons, deRoon and Szymanowska  
[BOO 14], Cheng and Xiong [CHE 14] and Henderson, Pearson and Wang [HEN 15] as well 
as references therein.  
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as naive risk-parity [BHA 12]. Following these observations, one possible reason for 
the recent lacklustre performance of trend-following can be the suboptimal 
weighting scheme that ignores pairwise correlations (see, for example, [BAL 15]). 
Our aim is to address this particular feature of the strategy and construct a portfolio 
that formally accounts for pairwise correlations. 

At this stage, it is important to stress that the profitability of a trend-following 
strategy depends on two factors: (1) the existence of serial-correlation in the return 
series and (2) the efficient combination of assets from various asset classes. It is 
obvious that the first factor is of utmost importance for the profitability of the 
strategy; non-existence of persistent price trends cannot be alleviated by a more 
robust weighting scheme. By amending the volatility-parity scheme in a way that 
accounts for pairwise correlations, we can only address any inefficiency in the risk 
allocation between portfolio constituents. However, it is reasonable to argue that a 
different portfolio allocation technique can only do so much. 

In principle, an optimal allocation to risk that would also account for correlations 
would optimally overweight assets, which correlate less with the rest of the universe 
and underweight assets that correlate more with the rest of the universe in an effort 
to improve the overall portfolio diversification. This is the principle of the  
risk-parity portfolio construction methodology (also known as the equal risk 
contribution scheme), that is, to equate the contribution to risk from each portfolio 
constituent, after accounting for any pairwise correlation dynamics. Risk-parity has 
been a very popular portfolio construction technique during the last decades due to 
its remarkable performance (see, for example, [AND 12] and [ASN 12]6) and has, 
therefore, been a topic of extensive research7. 

Applying the risk-parity methodology directly to a trend-following strategy is 
not admissible because risk-parity is defined as a long-only allocation framework8. 
Inspired by Jessop et al. [JES 13], we contribute to the literature by extending the 
conventional long-only risk-parity framework, in a way that also allows for short 
positions. To achieve this extension, we first generalize the conventional long-only 

                         
6 Both papers by Anderson et al. [AND 12] and Asness et al. [ASN 12] employ inverse-
volatility weights (volatility-parity), which they call “risk-parity” weights, for a stocks and 
bonds portfolio (2-asset portfolio). To avoid confusion, a risk-parity allocation for two assets 
degenerates mathematically into a volatility-parity allocation. Along these lines, their claim 
for “risk-parity” is valid as a special 2-asset case.  
7 The long list of papers includes [MAI 12, BHA 11, INK 11, LEE 11, CHA 11,  
CHA 12, BHA 12, LEO 12, LOH 12, BER 13, LOH 14, FIS 15, JUR 15]. 
8 It is worth highlighting that two recent papers by Clare, Seaton, Smith and Thomas  
[CLA 14a, CLA 14b] claim to combine risk-parity with trend-following strategies, but in 
practice, they only employ conventional volatility-parity schemes that they call “risk-parity”. 
Similarly, Fisher et al. [FIS 15] identify “risk-parity” portfolios which are effectively volatility-
parity portfolios and reserve the term “equal risk contribution” for what we call “risk-parity”. 
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risk-parity scheme into a risk-budgeting scheme, which, in turn, allows for the 
introduction of long and short positions in the overall portfolio.  

The empirical question is whether this more sophisticated scheme can overcome 
the limitations of volatility-parity and consequently hedge against drawdowns 
experienced in high-pairwise-correlation states. Our findings show that the trend-
following portfolio that employs risk-parity principles constitutes a genuine 
improvement to the traditional volatility-parity variant of the strategy. The Sharpe 
ratio of the strategy increases from 1.31 to 1.48 over the entire sample period (April 
1988–December 2013), but most importantly it more than doubles over the  
post-crisis period (January 2009–December 2013), from 0.31 to 0.78. The 
improvement is both economically and statistically significant. A correlation event 
study shows that the improvement is mainly driven by the superior performance of 
the risk-parity variant of the strategy in extreme average correlation conditions.  

This chapter is divided as follows. Section 3.2 describes the construction of a 
typical trend-following portfolio using a volatility-parity weighting scheme. Section 
3.3 presents the futures dataset that is used for the empirical analysis and section 3.4 
presents a thorough empirical evaluation of trend-following strategies, while 
highlighting their recent lacklustre performance. Section 3.5 provides the theoretical 
framework under which a long-only risk-parity framework can be extended into a 
long-short allocation and section 3.6 reports the empirical benefits when this allocation 
is used for the trend-following strategy. Finally, section 3.7 concludes the Chapter. 

3.2. Methodology 

This section describes the steps for constructing a typical trend-following 
portfolio that employs a volatility-parity weighting scheme. 

3.2.1 Constructing a trend-following strategy 

Let ௧ܰ denote the number of available assets at time ݐ. A trend-following (ܶܨ, 
henceforth) strategy involves taking a long or short position on each asset ݅, based on 
the sign of the past excess return over a prescribed lookback period that is typically 
equal to 12 months9. Let ݓ௧,ீ௦௦ denote the gross (absolute) weight invested in asset ݅ 
at time ݐ. Trivially, ∑ ௧,ீ௦௦ேୀଵݓ ൌ 100% and the return of the strategy is given by: ݎ௧,௧ାଵ்ி ൌ ∑ ௧ିଵଶ,௧ݎ൫݊݃݅ݏ ൯ ∙ ௧,ீ௦௦ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ௪,ಿݓ ∙ேୀଵ ௧,௧ାଵݎ  [3.1] 

                         
9 In unreported results, we find that a 12-month horizon generates the largest Sharpe ratio for 
trend-following strategies across each asset class in line with Moskowitz et al. [MOS 12] and 
Baltas and Kosowski [BAL 13b]. See also [BAL 13a]. 
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The net weights, denoted by ݓ௧,ே௧, do not in practice add up to 100%, since they 
can take either positive or negative values.  

Trend-following strategies are typically implemented using a constant-volatility10 
 This .்ீ்ߪ overlay by targeting ex ante a prescribed level of volatility (henceforth ,ܸܥ)
requires employing dynamic leverage that is equal to the ratio between the running 
realized volatility of the unlevered trend-following strategy of equation [3.1], denoted 
by ߪ௧் ி, and the target level, ்ீ்ߪ. The generalized formulation of a constant-volatility 
trend-following (ܨܸܶܥ) strategy is, therefore, given by:  ݎ௧,௧ାଵ்ி ൌ ఙಸఙಷ ∙ ∑ ௧,ே௧ݓ ∙ேୀଵ ௧,௧ାଵݎ  [3.2] 

The dynamic leverage equals the ratio ߪ/்ீ்ߪ௧் ி. As an example, if ்ீ்ߪ ൌ 10% 
and at the end of some month the running volatility of the unlevered strategy is 5%, 
then all positions for the forthcoming month should be doubled (a 2x leverage ratio). 

The final step is to define the functional form of the portfolio weights in  
equation [3.2].  

3.2.2. Volatility-parity scheme 

Given that trend-following strategies are formed across multiple asset classes, 
whose assets have very different risk profiles (as presented later in Figure 3.2), it is 
critical to determine a weighting scheme that assigns a weight to every asset that is a 
function of its underlying riskiness, in an effort to construct a strategy with a fairly 
balanced distribution of risk across assets and asset classes.  

The obvious and simplest choice is to employ inverse-volatility weights, so that 
all assets enter the portfolio with the same ex ante volatility. For this reason, this 
weighting scheme is also called volatility-parity (ܸܲ, henceforth):  

௧,ீ௦௦,ݓ ൌ ଵ ఙ൘∑ ଵ ఙೕ൘ೀసభ ,			∀݅ [3.3] 

This weighting scheme has been used extensively in every academic study that 
focuses on trend-following strategies; see [MOS 12, HUR 12, HUR 13, BAL 13b, 
BAL 15]. It can be shown that ܸܲ can split the portfolio volatility equally across all 
portfolio constituents as long as all pairwise correlations are equal. In practice, as we 

                         
10 A similar technique has been employed by Barroso and Santa-Clara [BAR 14] and Daniel 
and Moskowitz [DAN 14], who focus on cross-sectional winners-minus-losers momentum 
strategies. See also [HAL 12, HAL 14]. 
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discuss in a later section of the chapter, the pairwise correlations between assets and 
asset classes are neither equal nor constant over time. Under such conditions, the 
distribution of risk of a ܸܲ scheme is not uniform and for this reason the scheme is 
also called naive risk-parity [BHA 12]. 

Going back to the construction of our benchmark trend-following strategy, 
substituting the ܸܲ weights back into equation [3.2] yields the return series of the 
volatility-parity trend-following (ܸܲܶܨ) strategy: 

௧,௧ାଵ்ிݎ ൌ ఙಸఙಷ ∑ ௧ିଵଶ,௧ݎ൫݊݃݅ݏ ൯ ∙ ቀఙቁషభ∑ ቀఙೕቁషభೀసభ ∙ேୀଵ ௧,௧ାଵݎ  [3.4] 

For comparison purposes, we also construct a long-only (ܸܱܲܮ, henceforth) 
strategy benchmark as the inverse-volatility weighted portfolio of the assets, 
targeted again at the desired level of overall portfolio volatility: 

௧,௧ାଵைݎ ൌ ఙಸఙಽೀ ∑ ሺ1ሻ ⋅ ቀఙቁషభ∑ ൫ఙ൯షభಿసభ ∙ேୀଵ ௧,௧ାଵݎ  [3.5] 

3.3. Data description 

In order to construct trend-following strategies, we use Bloomberg daily closing 
futures prices for 35 contracts across all asset classes: six energy contracts, ten 
commodity contracts, six government bond contracts, six FX contracts and seven 
equity index contracts. The choice of the cross-section of contracts is presented in 
Table 3.1 and is considered to be fairly dispersed both across asset classes and 
global regions.  

We restrict the sample period to start from January 1987, when all asset classes have 
at least one contract traded and the cross-section is relatively diverse with 20 contracts 
being traded in total. Figure 3.1 presents the evolution in the number of contracts for 
each asset class over time until the end of the sample period in December 2013. 

It is important to note that futures contracts have, by their nature, two 
idiosyncratic features, which do not characterise spot cash equity instruments. First, 
futures contracts have finite life and are only traded for a short period of time before 
expiration. Second, futures contracts are zero-cost investments and, in theory, no 
capital is required to initiate a (long or short) position. In practice, entering into a 
new futures position implies posting collateral in form of an initial margin payment 
that is typically a small fraction of the prevailing futures price and a function of the 
contemporaneous riskiness (measured by volatility or VaR) of the underlying entity. 
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Energy Commodities Fixed  income FX  Equities 

Brent crude
July-

1988
Cocoa

January-

1987

German 

Bobl 5 Yr

November-

1991
AUD

February-

1987
Dax

December-

1990

Gas oil
August-

1989
Copper

January-

1989

German 

Bund 10 Yr

December-

1990
CAD

January-

1987
EuroStoxx 50

July-

1998

Gasoline
November-

2005
Corn

January-

1987
JGB 10 Yr

January-

1987
CHF

January-

1987
FTSE 100

March-

1988

Heating oil #2
January-

1987
Cotton #2

January-

1987

US T-Notes 

5 Yr

June-

1988
EUR

June-

1998
Kospi 200

June-

1996

Light crude
January-

1987
Gold 

January-

1987

US T-Notes 

10 Yr

January-

1987
GBP

January-

1987
Nasdaq 

May-

1996

Natural gas
May-

1990
Live cattle

January-

1987

US T-Notes 

30 Yr

January-

1987
JPY

January-

1987
Nikkei

October-

1988

Silver
January-

1987
S&P 500

January-

1987

Soybeans
January-

1987

Sugar #11
January-

1987

  
Wheat

January-

1987      

Table 3.1. The futures contracts that we use including the first  
month that each series is available. The dataset is retrieved from  

Bloomberg and the sample period ends in December 2013 

 

Figure 3.1. The number of available futures contracts per asset class over  
time. The dataset is retrieved from Bloomberg and the sample period  
is January 1987–December 2013. For a color version of the figure,  

see www.iste.co.uk/jurczenko/risk.zip 
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These specific features of futures contracts complicate the back-testing of 
futures-based trading strategies as continuous price-series have to be constructed and 
specific assumptions have to be put in place for the calculation of holding period 
returns as illustrated in [BAL 13a] and [BAL 15]. We address these issues by using 
the generic continuous-price series provided by Bloomberg, which are constructed 
in such a way so that we always trade the most liquid contract (typically the “front” 
contract), and calculate for each futures contract fully collateralized monthly returns 
in excess of the prevailing risk-free rate using the formula11: ݎ௧,௧ାଵ ൌ ிశభିிி  [3.6] 

where ܨ௧ and ܨ௧ାଵ denote the futures prices at the end of months ݐ and ݐ  1. 

Figure 3.2 presents annualized volatilities of all the assets in our dataset. What 
easily stands out is the large cross-sectional dispersion in volatilities, with fixed 
income contracts exhibiting traditionally the lowest volatilities. At the other end of 
the distribution, energy contracts are the most volatile contracts in the cross-section.  

 

Figure 3.2. The unconditional volatility for each asset of the dataset.  
The coloring scheme separates the five asset classes (energy,  

commodities, fixed income, FX rates and equities). The  
legend states the starting month for each asset. For a color  
version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

                         
11 This approach in estimating returns of futures contracts is fairly standard in the academic 
literature. Indicatively, see [DER 00, MOS 12] and [BAL 13, BAL 15]. 
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3.4. Performance evaluation of trend-following  

We start our empirical analysis by evaluating the performance of the trend-
following strategy over the entire sample period and then focus on the most recent 
post-crisis period (2009–2013). The portfolio is rebalanced every month, when new 
trend-following signals are generated using the past 12-month performance of the 
assets. The weighting scheme (volatility-parity) is estimated using a window of the 
most recent 90 days until the end of each month. Finally, the strategy targets a 10% 
level of volatility; this requires an estimate of the running volatility of the unlevered 
strategy, which is estimated using the most recent 60 daily returns. The initial 
training period of the strategy is 12 months (for the signal generation) and another 
60 business days for the calculation of the initial leverage ratio. Overall, this 
amounts to 15 months and therefore our sample period starts in April 1988.  

Figure 3.3 presents the cumulative returns of a ܸܲ trend-following strategy and 
its long-only variant across the two periods. Full-sample performance statistics as 
well as correlations with major benchmark indices of asset classes are reported in 
Table 3.2. 

 

Figure 3.3. The cumulative returns of a long-only strategy and a trend-following 
strategy that employ a volatility-parity weighting scheme estimated using the past 90 
days. The sample period is from April 1988 to December 2013 in Panel A and from 
January 2009 to December 2013 in Panel B. For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

Over the entire sample period, the outperformance of the trend-following 
strategy is largely pronounced. The strategy exhibits a Sharpe ratio that is twice as 
big as that of the long-only strategy (1.31 vs. 0.70). In unreported results, we find 
that trend-following strategies within each asset class deliver Sharpe ratios between 
0.58 and 0.71 over the same sample period, which means that the combination of 
different asset classes leads to a substantial improvement in the performance of the 
strategy. A detailed examination of trend-following patterns across various asset 
classes is presented in [MOS 12] and [BAL 13a]. 
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Performance statistics ܸܱܲܮ ܨܸܶܲ Correlations ܸܲܨܸܶܲ ܱܮ 

Ann. geometric mean (%) 7.63 14.67 Commodity benchmark:   

t-statistic (Newey–West) 3.25 6.71 – S&P GSCI Commodity Index 0.58 0.11 

Ann. volatility (%) 11.54 10.96 Fixed income benchmark:   

Skewness -0.12 0.38 – JPM Global Bond Index 0.69 0.31 

Kurtosis 3.09 3.27 FX benchmarks:   

Maximum drawdown (%) 35.70 14.20 – Trade-Weighted USD Index -0.54 -0.14 

Sharpe ratio (annualized) 0.70 1.31 – USD/JPY -0.45 -0.18 

Sortino ratio (annualized) 1.13 2.81 Equity benchmarks:   

Calmar ratio 0.21 1.03 – MSCI World (DM) 0.52 -0.01 

Monthly turnover (%) 11.51 31.69 – MSCI Emerging Markets 0.37 -0.05 

Table 3.2. Performance statistics and correlations with various benchmark indices 
(retrieved from Bloomberg) using monthly returns for the volatility-parity long-only 
strategy (VPLO) and for the volatility-parity trend-following strategy (VPTF) across all 
contracts. The t-statistic of the mean return is calculated using Newey and West 
[NEW 87] standard errors. The Sortino ratio is defined as the annualized arithmetic 
mean return over the annualized downside volatility. The Calmar ratio is defined as 
the annualized geometric mean return over the maximum drawdown. The sample 
period is from April 1988 to December 2013 

Most importantly, the trend-following strategy exhibits very low correlations 
with the various benchmark indices12, whereas the long-only strategy bears, by 
construction, strong directional bets and therefore large correlations with these 
indices. This piece of evidence justifies the use of trend-following strategies as 
diversification vehicles. 

Contrary to the above evidence, when we shift our attention to the most recent 
post-crisis period, between January 2009 and December 2013, we find that the 
trend-following strategy has dramatically underperformed (see Figure 3.3, Panel B).  
 

                         
12 It is worth commenting that the trend-following strategy exhibits an almost zero 
unconditional correlation with the MSCI World Index (point estimate is –0.01). In unreported 
results, we find that this seemingly uncorrelated pair bears interesting nonlinear (higher order) 
correlation dynamics and, in particular, the trend-following strategy exhibits strong positive 
returns in large positive or negative states of the market in line with Moskowitz et al.  
[MOS 12].  
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The Sharpe ratio in the aftermath of the global financial crisis has been 0.31, 
compared to 0.59 of the long-only strategy. This recent lacklustre performance for a 
strategy that has historically delivered very strong returns across (both up and down) 
markets over several decades has been largely highlighted both in academic studies 
(e.g. [BAL 13b]) as well as in the press. What could have possibly gone wrong?  

One of the most prevalent claims for this recent lacklustre performance of trend-
following has been the post-crisis increased level of pairwise correlations (see, for 
example, [BAL 15]). In an environment of increased correlations, diversification 
benefits diminish and assets are clustered into “Risk-On” and “Risk-Off” subsets. 
Figure 3.4 presents a 90-day rolling estimate of the average pairwise correlation 
across all futures contracts of our dataset. It is obvious that the level of pairwise 
correlations has significantly shifted during the last decade of the sample period, 
exhibiting one of the most prevalent increases in record during 2008.  

 

Figure 3.4. Monthly average pairwise correlation across  
all contracts using a 90-day rolling estimation window.  

The sample period is from April 1988 to December 2013 

In order to comprehend these dramatic shifts in asset pairwise correlations, 
Figure 3.5 presents the average correlation between assets of the same asset class 
(intra-asset class correlations) and the average correlation between assets of one 
asset class with the assets of all other asset classes (inter-asset class correlations). 
The evidence shows that the recent dramatic shift in average pairwise correlation is 
largely driven by the fact that all inter-asset class correlations have significantly 
increased during the most recent decade. The only exception is the correlation of 
fixed income assets with the rest of the asset classes. These plots clearly illustrate 
the risk-off (fixed income) and risk-on (remaining asset classes) regrouping of assets 
after the recent financial crisis. 
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Figure 3.5. 90-day average pairwise correlation at  
the inter-class and intra-asset class level 

3.4.1. Volatility-parity ignores pairwise correlations 

Following the documentation of the correlation patterns, we return to the 
performance of the trend-following strategy. The weighting scheme that has been 
employed so far for the analysis is the volatility-parity scheme, which, as already 



78     Risk-Based and Factor Investing 

highlighted, completely ignores the correlation of the assets. We, therefore, 
hypothesize that under an increased correlation environment, such as the post-crisis 
era, volatility-parity is not an optimal risk allocation methodology.  

Before evaluating this hypothesis, we should first illustrate how volatility-parity 
has allocated weights and risk across the five asset classes over time. The gross 
weight per asset class is simply calculated by summing up the individual gross 
weights of the constituents of each asset class at the end of each month, i.e. ∑ หݓ௧ห , 
where the summation is performed only across the assets within each asset class. 

In order to calculate the percentage risk allocation per asset class, we should first 
define the so-called marginal contribution to risk (ܴܥܯ, henceforth) for each asset. 
This is defined as the partial derivative of portfolio volatility at any point in time, ߪ௧, with respect to the contemporaneous weight of each asset, ݓ௧, or in other words 
the change in portfolio volatility for a small (hence, marginal) change in the asset 
weight: ܴܥܯ௧ ൌ డఙುడ௪ [3.7] 

It is easy to show that the MCRs satisfy the following identity13: ∑ ௧ݓ ⋅ ௧ேୀଵܴܥܯ ൌ  ௧ [3.8]ߪ

Given this definition, the percentage contribution to risk from each asset class at 
the end of each month is calculated by summing the weighted ܴܥܯ of each asset in 
the asset class, normalized by the total portfolio volatility, i.e. ∑ ௧ݓ ⋅ ௧ܴܥܯ  ,௧ߪ/
where the summation is performed only across the assets within the same asset class. 
It is critical to note that if all pairwise correlations are equal, then the percentage 
contribution of each asset is simply 1/ ௧ܰ and therefore the percentage contribution 
of each asset class would be proportional to the asset class size. Given that we have 
fairly balanced asset classes (six energy contracts, ten commodity contracts, six 
government bond contracts, six FX contracts and seven equity index contracts), this 
would result in almost equal asset class contributions to portfolio risk.  

Figure 3.6 presents the time evolution of the weight and risk allocation across the 
five asset classes. The former is fairly stable over time, due to the large persistence 
of volatility measures; the strategy allocates on average 33% in fixed income, 27% 
in FX, 21% in commodities, 12% in equities and 7% in energy. However, when 

                         
13 Contrast this with the fact that the weighted sum of volatilities typically exceeds the 

overall portfolio volatility due to the diversification benefit: ∑ ௧ݓ ⋅ ௧ேୀଵߪ   .௧ߪ
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translated into risk terms, this allocation is nowhere near an equal distribution across 
constituents. The risk allocation per asset class is largely unstable over time and, 
more importantly, there are times during which some asset classes (with the given ܸܲ weights) have negative risk contribution (i.e. diversify risk away), like for fixed 
income during 2007. At such times, it would be reasonable to increase the allocation 
to these asset classes, as this would lower portfolio risk. 

 

Figure 3.6. The sum of gross weights (Panel A) and the percentage constitution to 
risk (Panel B) for each asset class over time when a volatility-parity weighting 
scheme is employed for a trend-following strategy. The sample period is from April 
1988 to December 2013. For a color version of the figure, see www.iste.co.uk/ 
jurczenko/risk.zip 

Evidently, the ܸܲ allocation does not equate the risk contribution from each 
asset class and this is solely due to the time-varying nature of the correlations 
between assets and asset classes as documented in Figure 3.5. 

Going back to the hypothesis that the recent poor performance of trend-following 
could be potentially related to the suboptimal allocation of risk from the ܸܲ scheme, 
we next conduct a correlation event study that is presented in Figure 3.7. In 
particular, we first calculate the average pairwise correlation of the universe of all 
assets for each calendar month in our sample, using only the daily returns of the 
assets within each particular month. Next, we group all months of the dataset in four 
correlation regimes: low (less than 5%), medium (5–10%), high (10–20%) and 
extreme (more than 20%). For each correlation regime, we estimate the Sharpe ratio 
of the trend-following strategy. The evidence is overwhelming. The performance of 
the ܸܲ trend-following strategy drops dramatically when the level of average 
pairwise correlation deviates significantly away from zero and into the positive 
territory and the drop is most dramatic as we move from a high correlation regime 
(Sharpe ratio of 1.28) to an extreme one (Sharpe ratio of 0.27).  
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This performance drop can be attributed to two possible reasons: (1) the absence 
of strong price trends in high correlation regimes and/or (2) the suboptimal 
distribution of risk to portfolio constituents by the volatility-parity weighting 
scheme. The objective of this chapter is to focus solely on the portfolio construction 
implications for trend-following strategies and therefore address the extent to which 
a more sophisticated portfolio construction methodology that accounts for the time-
varying nature of correlations can improve the diversification of the portfolio in 
higher correlation regimes and therefore improve its risk-adjusted performance. 

 

Figure 3.7. The annualized Sharpe ratio of a volatility-parity trend-following strategy 
for four different regimes of average pairwise correlation: low (less than 5%; 49 

months), medium (5–10%; 109 months), high (10–20%; 92 months) and extreme 
(above 20%; 59 months). The sample period is from April 1988 to December 2013 

3.5. Risk-parity principles 

This section outlines the steps to extend the risk-parity principles to a long-short 
allocation. This involves an intermediate step of defining a long-only and, 
subsequently, a long-short risk-budgeting framework. 

3.5.1. Risk-parity 

Risk-parity (ܴܲ, henceforth) constitutes the extension to the volatility-parity 
weighting scheme and its objective is to distribute the total portfolio risk (volatility) 
equally across the portfolio constituents, after accounting for pairwise correlations. 
Using the property of equation [3.8], this objective is equivalent to equating the 
weighted marginal contribution to risk of each constituent: ݓ௧,ோ ∙ ௧ܴܥܯ ൌ  [3.9] ݅∀			,ݐ݊ܽݐݏ݊ܿ
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where ܴܥܯ is defined as in equation [3.7]. The constant in the above equation can 

be trivially shown to be equal to the 
ଵேth of the portfolio volatility.   

The solution to the ܴܲ objective does not come in closed-form (unless all 
pairwise correlations are equal, in which case the solution boils down to ܸܲ), but 
instead through an optimization. Following [JES 13], this can be attained by 
maximizing the sum of logarithmic weights, subject to a risk constraint of target 
volatility ்ீ்ߪ for the whole portfolio14: 

Long-Only Risk-Parity: 

Maximize: ∑ ௧൯ேୀଵݓ൫݈݃  [3.10] 

Subject to: ඥ࢝௧ᇱ ∙ ௧ ∙ ௧࢝   ்ீ்ߪ

where ࢝ denotes the vector of weights and  denotes the variance-covariance matrix 
of the universe, both evaluated at time ݐ. It is easy to show (see the appendix in section 
3.8) that the Lagrangian of the optimization results in the risk-parity objective of 
equation [3.9]. This optimization is solved in practice, using a nonlinear optimizer 
with the initial guess for the weight vector being the ܸܲ solution, because this is 
exactly the point of convergence of ܴܲ weights when all correlations are equal: 

௧,ோ,௧ݓ ൌ ௧,ݓ ൌ ଵ ఙ൘∑ ଵ ఙೕ൘ೀసభ ,			∀݅ [3.11] 

The final point that should be made is that the risk-parity portfolio weights that 
come out of the optimization do not typically add up to 100%. Rescaling the 
resulting weights post-optimization is admissible, because volatility, as a measure of 
risk, exhibits positive homogeneity (see the appendix in section 3.8). 

Risk-parity constitutes one of the most popular risk-based portfolio construction 
methodologies, however, it has only been defined for a long-only allocation; the 
objective function in the optimization does not allow for negative weights (due to 
the logarithm) and, in fact, the optimization sets a natural bound at zero for all 
weights. The risk-parity portfolio will always have strictly positive weights for all 
the assets.  

 

                         
14 Logarithmic weights for the formulation of risk-parity portfolios are also used by Kaya 
[KAY 12a], Kaya and Lee [KAY 12b] and Roncalli [RON 14]. 
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For our purpose, which is the application of risk-parity principles to a trend-
following strategy, the above formulation cannot be used. Using ܸܲ weights, it is 
straightforward to calculate gross weights that are inversely proportional to the asset 
volatilities and then invert the weights for these assets that we require a short 
position. However, solving a long-only risk-parity framework and subsequently 
inverting these weights is not admissible. The correlation structure of a long-only 
universe is very different from the correlation structure of a long-short universe. A 
short position on a particular asset means that all correlations of this asset with the 
rest of the universe switch sign. It is, therefore, signed correlations that should be 
used for the determination of a risk-parity long-short portfolio. Simply inverting the 
long-only solution for the assets with a short position is completely incorrect. We 
need a proper long-short framework. In order to introduce this, we first present the 
concept of long-only risk-budgeting.  

3.5.2. Risk-budgeting 

The long-only risk-parity paradigm can be generalized to a long-only  
risk-budgeting (ܴܤ) framework, under which each portfolio constituent contributes 
an amount to the overall portfolio volatility that is proportional to a certain positive 
asset-specific score, denoted by ݏ௧; these scores can be, for instance, the ranks from 
a customized screen of the universe. As an example, if ݏ௧ ൌ  that is twice as big as that ܴܥܯ ௧ for two assets ݅ and ݆, then the objective is for asset ݅ to have a weightedݏ2
of asset ݆. Hence, the ܴܤ objective is: ݓ௧,ோ ∙ ௧ܴܥܯ ∝  ∀݅ [3.12]			௧,ݏ

This objective can be attained by solving a modified version of the optimization 
[3.10] as also shown in [KAY 12b]: 

Long-Only Risk-Budgeting:  

Maximize: ∑ ௧ݏ ⋅ ௧൯ேୀଵݓ൫݈݃  [3.13] 

Subject to: ඥ࢝௧ᇱ ∙ ௧ ∙ ௧࢝    ்ீ்ߪ

Indeed, the Lagrangian of this optimization coincides with equation [3.12]. The 
key difference to the original RP framework is the introduction of the asset-specific 
score in the objective function. Solving this optimization is again fairly  
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straightforward, using an initial guess that is a score-adjusted variant of the ܸܲ 
weights:  

௧,ோ,௧ݓ ൌ ௦ ఙ൘
∑ ௦ೕ ఙೕ൙ೀసభ ,			∀݅ [3.14] 

The long-only risk-budgeting framework is the intermediate step that we need in 
order to introduce the long-short risk-parity portfolio construction methodology. 

3.5.3. Long-short risk-budgeting 

The interesting question is whether we can allow the risk-specific scores to be 
negative. Motivated by the arguments of Jessop et al. [JES 13], if the scores are 
estimates or views of expected returns of the assets, then these should be allowed to 
be negative. In other words, a negative view for a certain asset can be used as a 
signal for a short position. Based on this, we extend the risk-budgeting framework to 
a long-short risk-budgeting framework by allowing the asset-specific scores to take 
negative values and therefore instruct short positions. Along these lines: ݊݃݅ݏ൫ݓ௧,ே௧,ோ൯ ൌ  ∀݅ [3.15]			௧൯,ݏ൫݊݃݅ݏ

Given that the calculation of ܴܥܯ encompasses the sign of the weight (a long 
position with a positive ܴܥܯ implies that a negative position of the same size will 
have a negative ܴܥܯ), the objective of the long-short risk-budgeting becomes: ݓ௧,ே௧,ோ ∙ ௧ܴܥܯ ∝ หݏ௧ห,			∀݅ [3.16] 

The only obvious difference to equation [3.12] is the introduction of an absolute 
value to the scores. However, there exist more fundamental, yet subtle, differences. 
Both the asset weight and the ܴܥܯ are now signed, i.e. contain information about 
the type of position that is prescribed for the asset by the sign of the score. 

In order to solve for this objective, we reformulate the optimization as follows: 

Long-Short Risk-Budgeting:  

Maximize: ∑ หݏ௧ห ⋅ ௧ห൯ேୀଵݓ൫ห݈݃   

Subject to: ඥ࢝௧ᇱ ∙ ௧ ∙ ௧࢝   [3.17] ்ீ்ߪ
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As before, the Lagrangian of this optimization coincides with equation [3.16]. In 
this formulation, both the score and the weight that feed into the objective function 
bear an absolute value. The absolute value of the weight is necessary so that the 
logarithm is also defined for short positions. The most important point is that the 
asset-specific score and the respective weight always agree in their signs. Along 
these lines, the objective function pushes the positive weights away from zero 
toward the positive territory, with the relative effects being more aggressive for 
assets with larger (positive) scores and equivalently pushes the negative weights 
away from zero toward the negative territory, with the effects being more aggressive 
for assets with larger (in absolute value, yet negative) scores.  

In order for the above methodology to operate as explained, the initial weights 
for each position must match the sign of the respective scores. As long as this is the 
case, then the signs of the weights will not flip during the optimization; instead,  
the signs of the weights are preserved due to the mathematical formulation of the 
optimization and the use of the logarithm. The role of optimization is only to scale 
the weights, following risk-budgeting principles, while preserving their signs.  
The initial net weights can be deduced from the long-only ܴܤ approach after 
incorporating an absolute value in the denominator, so that the gross weights sum up 
to 100%: 

௧,ே௧,ோ,௧ݓ ൌ ௦ ఙ൘
∑ ቚ௦ೕቚ ఙೕ൙ೀసభ ,			∀݅ [3.18] 

As required, these initial weights will be positive for assets with positive scores 
and negative for assets with negative scores. 

3.5.4. Trend-following meets risk-parity 

The long-short risk-budgeting framework is exactly what we need to introduce 
risk-parity principles to a trend-following strategy. Given that the sign of the asset-
specific score instructs the type of position (long or short), we can set it equal to the 
trend-following signal, which is the sign of the past 12-month return of the asset at 
the end of each month: ݏ௧ ൌ ௧ିଵଶ,௧ݎ൫݊݃݅ݏ	 ൯,			∀݅ [3.19] 

This choice achieves two goals at the same time. Not only does it formally 
incorporate the trend-following signals in the portfolio optimization, but it also  
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achieves the transition from the risk-budgeting framework back to risk-parity (i.e. 
equal risk contributions). This is because หݏ௧ห ൌ ห݊݃݅ݏ൫ݎ௧ିଵଶ,௧ ൯ห ൌ 1 and therefore 
the long-short risk-budgeting objective of equation [3.16] boils down to the 
conventional risk-parity objective: 

௧,ே௧,ோݓ ∙ ௧ܴܥܯ ∝ 1 ⇒ ௧,ே௧,ோݓ ∙ ௧ܴܥܯ ൌ  [3.20] ݅∀			,ݐ݊ܽݐݏ݊ܿ

The difference to the original formulation is that now the optimization allows for 
both long and short positions. In particular, the optimization problem [3.17] 
simplifies into: 

Long-Short Risk-Parity:  

Maximize: ∑ ௧ห൯ேୀଵݓ൫ห݈݃   

Subject to: ඥ࢝௧ᇱ ∙ ௧ ∙ ௧࢝   [3.21] ்ீ்ߪ

and the initial guess for the solution, which follows naturally from equation [3.18] 
coincides with the net long-short ܸܲ scheme that we have used so far for trend-
following strategy of equation [3.4]: 

௧,ே௧,ோ,௧ݓ ൌ ௧,ே௧,ݓ ൌ ݅ݐ,െ12ݐݎ൫݊݃݅ݏ ൯ ⋅ ଵ ఙ൘∑ ଵ ఙೕ൘ೀసభ ,			∀݅ [3.22] 

Using the net weights that come out of the risk-parity trend-following optimizer, 
we finally get the risk-parity trend-following (ܴܲܶܨ) strategy:  ݎ௧,௧ାଵோ்ி ൌ ఙಸఙಷ ∙ ∑ ௧,ே௧,ோݓ ∙ேୀଵ ௧,௧ାଵݎ  [3.23] 

3.6. Performance evaluation of risk-parity trend-following 

Figure 3.8 presents the cumulative returns of a trend-following strategy that uses 
either a ܸܲ scheme or the just introduced ܴܲ long-short scheme. Both weighting 
schemes are dynamically estimated using a window of 90 business days up until the 
end of each month and both strategies employ a 10% target level of volatility.  
Full-sample performance statistics as well as correlations with major benchmark 
indices are reported in Table 3.3. 
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Visually, these two variants of trend-following exhibit a large degree of  
co-movement, and a full-sample correlation of 0.82, given that they employ the 
same set of long and short positions at the end of each month. They only differ in the 
weighting scheme. Importantly enough, up until 2003, the two lines are one and the 
same. This period has been characterized by relatively low and insignificant 
correlations between the asset classes (as shown in Figure 3.4), and therefore 
volatility-parity and risk-parity solutions are expected to be statistically and 
numerically indistinguishable.  

However, post-2004, when correlations between different asset classes increase 
almost uniformly, the ܴܲ allocation system underweights in relative terms the assets 
that are more correlated on average with the universe and accordingly overweights 
the assets that have low average correlation with the universe and therefore exhibit 
larger diversification properties. This differentiation in the weight allocation appears 
to be driving the outperformance of the risk-parity solution over the most recent 
decade and, most importantly, during the post-crisis period.  

 

Figure 3.8. The cumulative returns of a volatility-parity trend-following strategy and a 
risk-parity trend-following strategy. The weighting schemes are estimated using the 
past 90 days. Both strategies target a volatility of 10%. The scale is logarithmic. The 
sample period is between April 1988 and December 2013. For a color version of the 
figure, see www.iste.co.uk/jurczenko/risk.zip 
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Performance statistics ܸܲܶܨ ܨܴܶܲ Correlations ܸܲܶܨܴܶܲ ܨ 

Annualized geometric mean (%) 14.67 16.61 Commodity benchmark:   

t-statistic (Newey–West) 6.71 8.05 – S&P GSCI Commodity Index 0.11 0.07 

Annualized volatility (%) 10.96 10.86 Fixed income benchmark:   

Skewness 0.38 0.57 – JPM Global Bond Index 0.31 0.21 

Kurtosis 3.27 3.83 FX benchmarks:   

Maximum drawdown (%) 14.20 10.67 – Trade-Weighted USD Index -0.14 -0.09 

Sharpe ratio (annualized) 1.31 1.48 – USD/JPY -0.18 -0.13 

Sortino ratio (annualized) 2.81 3.47 Equity benchmarks:   

Calmar ratio 1.03 1.56 – MSCI World (DM) -0.01 0.00 

Monthly turnover (%) 31.69 57.74 – MSCI Emerging Markets -0.05 0.00 

Table 3.3. Various performance statistics and correlations with various benchmark 
indices (retrieved from Bloomberg) using monthly returns for the volatility-parity trend-
following strategy (VPTF) and for the risk-parity trend-following strategy (RPTF). The 
t-statistic of the mean return is calculated using Newey and West [NEW 87] standard 
errors. The Sortino ratio is defined as the annualized arithmetic mean return over the 
annualized downside volatility. The Calmar ratio is defined as the annualized 
geometric mean return over the maximum drawdown. The sample period is from April 
1988 to December 2013 

Over the entire sample period, the ܴܲ allocation improves the performance of 
the trend-following strategy, with the Sharpe ratio increasing from 1.31 to 1.48. The 
performance improvement becomes more pronounced for performance ratios that 
account for downside risk, such as the Sortino ratio (arithmetic mean return over 
annualized downside volatility) and the Calmar ratio (geometric mean return over 
maximum drawdown). Interestingly, the already low correlations with the various 
benchmark indices fall even further in absolute value. 

In order to test whether this improvement in the performance is genuine and 
statistically strong, we calculate two-sided and one-sided p-values for a paired 
signed-rank Wilcoxon [WIL 45] test. The equality in the average return between the 
two variants of the trend-following strategy is rejected with a two-sided p-value of 
6.92% and more strongly with a one-sided p-value (in favor of the risk-parity  
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variant) of 3.46%. In other words, the different weighting scheme results in a 
genuine and statistically strong improvement for the trend-following strategy. 

The outperformance of the ܴܲ trend-following strategy against its ܸܲ variant 
becomes significantly more pronounced when we focus on the post-crisis period, 
2009–2013. Table 3.4 reports performance statistics for the two strategies over this 
5-year period. In short, ܴܲ revives trend-following, achieving a statistically 
significant average return (t-statistic of 1.73 compared to the insignificant t-statistic 
of 0.78 for the ܸܲ variant) and Sharpe ratio of 0.78 compared to just 0.31 for the ܸܲ 
variant15. Focusing on the downside, the benefit is even more pronounced with the 
Calmar ratio (ratio between the geometric mean return and the maximum 
drawdown) almost quadrupling from 0.20 to 0.77. 

 ܨܴܶܲ ܨܸܶܲ

Annualized geometric mean (%) 2.82 7.27 

t-statistic (Newey–West) 0.78 1.73 

Annualized volatility (%) 10.77 9.60 

Skewness 0.12 -0.06 

Kurtosis 3.01 2.48 

Maximum drawdown (%) 14.20 9.49 

Sharpe ratio (annualized) 0.31 0.78 

Sortino ratio (annualized) 0.49 1.35 

Calmar ratio 0.20 0.77 

Table 3.4. Various performance statistics for the  
volatility-parity trend-following strategy (VPTF) and  

the risk-parity trend-following strategy (RPTF) over the  
period between January 2009 and December 2013 

In order to draw parallels against volatility-parity, Figure 3.9 presents the 
absolute weight and risk allocation across the five asset classes for the risk-parity 
strategy. This figure should be studied alongside Figure 3.6.  

                         
15 The two-sided and one-sided p-values of a paired Wilcoxon [WIL 45] signed-rank test on 
the equality between the mean return of the ܴܲ trend-following strategy and the ܸܲ trend-
following strategy during the 2009–2013 period is 5.80 and 2.90%, respectively, showing that 
the return of the ܴܲ strategy is statistically larger. 
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Figure 3.9. The sum of gross weights (Panel A) and the percentage constitution to 
risk (Panel B) for each asset class over time when a risk-parity weighting scheme is 
employed for a trend-following strategy. The sample period is from April 1988 to 
December 2013. For a color version of the figure, see www.iste.co.uk/jurczenko/ 
risk.zip 

Evidently, by taking into account the pairwise correlations, risk-parity succeeds in 
ex ante equating the risk contribution of each asset. The only reason that Panel B of 
Figure 3.9 exhibits (any) risk allocation shifts between asset classes is due to the fact 
that the overall size of the number of available contracts ௧ܰ is not constant over time.  

In order to maintain the equal-risk-contribution objective, the ܴܲ scheme shifts 
radically between asset classes, as shown in Panel A of Figure 3.9, due to the  
fast-changing correlation environment. As an example, the gross allocation in fixed 
income contracts ranges between 10 and 76% over time, contrary to the more stable 
allocation under ܸܲ that ranges between 18 and 48% (from Panel A of Figure 3.6); 
the average allocation over time is very similar in both schemes (32 and 33% for ܴܲ 
and ܸܲ, respectively). This clearly results in larger turnover for the ܴܲ variant of 
trend-following. Table 3.3 reports a full-sample monthly two-way turnover of 58% 
compared to 32% for the ܸܲ scheme. The additional turnover (and therefore 
additional transaction costs) should not subsume the genuine improvement in the 
risk allocation of the trend-following strategy, even though it might indeed reduce 
the after-costs benefit of the strategy.  

Finally, in order to illustrate that the more sophisticated portfolio construction 
methodology can lead to superior performance especially in higher correlation 
environments, we augment the correlation event study of Figure 3.7 with the 
performance of the risk-parity trend-following strategy under the four different 
correlation regimes. Figure 3.10 presents the results. It is evident that if there is any 
significant improvement in the performance of the strategy, this is mainly 
pronounced in extreme correlation environments, with the Sharpe ratio increasing  
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from 0.27 up to 0.86. In such states of the market, the volatility-parity scheme is 
rendered suboptimal in its risk allocation across assets, whereas risk-parity, by 
taking into account the pairwise correlations, succeeds in delivering a more 
diversified allocation and therefore in delivering superior performance. 

Figure 3.10. The annualized Sharpe ratio of a volatility-parity and a risk-parity trend-
following strategy for four different regimes of average pairwise correlation: low (less 
than 5%; 49 months), medium (5–10%; 109 months), high (10–20%; 92 months) and 
extreme (above 20%; 59 months). The sample period is from April 1988 to December 
2013. For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

A recent report by Baltas, Jessop, Jones and Zhang [BAL 14] highlights that the 
added value of risk-parity in higher correlation environments is, in fact, due to larger 
dispersion of pairwise correlations between asset classes.  

As a final point, it should be highlighted that even with the use of a risk-parity 
allocation, Figure 3.10 documents that trend-following suffers in higher correlation 
environments. Evidently, this must be related directly to the non-existence of strong 
price trends in high correlation environments. As it has been shown, a more 
sophisticated weighting scheme can only do so much as far as portfolio 
diversification is concerned. Any further improvement of the strategy should look 
into the reasons why price trends might be less persistent in high correlation 
environments. Future research should address these claims. 

From a different perspective, this performance drop can be rationalized using the 
Grinold and Kahn’s [GRI 00] fundamental law of active management under which the 
information ratio equals the product of the manager’s skill (information coefficient) 
and the square root of the breadth of the investable universe. Assuming a constant 
skill, when asset correlations increase, the breadth of the investable universe falls and 
this should expectedly cause a fall in the attainable information ratio. 
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3.7. Conclusion 

Trend-following strategies have been very profitable historically and have 
constituted great diversification vehicles against market downturns, such as recently 
during the financial crisis of 2008. Their main source of profitability is related to the 
diversification benefit that arises from combining futures contracts across different 
asset classes, which have exhibited historically very low, if not insignificant, cross-
correlations. A simple volatility-parity (inverse-volatility) weighting scheme has been 
historically considered appropriate in order to combine assets from different asset 
classes with very diverse risk profiles. Such a weighting scheme would distribute risk 
equally among constituents, should their correlations were constant over time.  

Following an impressive performance in 2008, trend-following strategies have 
performed poorly over the most recent period (2009–2013), which has been 
characterized by dramatic increases in the correlations between different asset 
classes. We hypothesize that the volatility-parity weighting scheme leads to uneven 
and therefore suboptimal risk allocation under such conditions and this could be one 
of the reasons for the recent underperformance of trend-following.  

A risk-parity weighting scheme can succeed in equating the contribution to the 
total portfolio risk from all portfolio constituents, after also accounting for 
correlations. However, its conventional formulation can only be applied to a long-
only portfolio. Inspired by Jessop et al. [JES 13], we contribute to the literature by 
extending the conventional long-only risk-parity framework, in a way that also 
allows for short positions. This extension is necessary, if such a weighting scheme 
were to be employed in a trend-following portfolio.  

The risk-parity trend-following portfolio constitutes a genuine improvement to 
the traditional volatility-parity variant of the strategy. The Sharpe ratio of the 
strategy increases from 1.31 to 1.48 over the entire sample period (April 1988–
December 2013), and more than doubles over the post-crisis period (January 2009–
December 2013) from 0.31 to 0.78. A correlation event study shows that the 
improvement is mainly driven from the superior performance of the strategy in 
extreme average correlation environments.  

3.8. Appendix: solving for risk parity 

The risk-parity methodology solves for portfolio weights at the end of each 
month, so that every asset is contributing the same amount of risk to the overall 
portfolio, i.e.: ݓ௧ோ, ∙ ௧ܴܥܯ ൌ  [3.24] ݅∀			,ݐ݊ܽݐݏ݊ܿ
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We can solve for this objective using the following nonlinear constrained 
optimization problem: 

– maximize the sum of logarithmic weights: ∑ ௧൯ேୀଵݓ൫݈݃ ; 

– subject to a risk constraint of target volatility ࢝ߪ ≡ ඥ࢝௧ᇱ ∙ ௧ ∙ ௧࢝   .்ீ்ߪ

We first form the Lagrangian (we denote the Lagrange multiplier by ߣሻ: ܮሺ࢚࢝ሻ ൌ ∑ ௧൯ேୀଵݓ൫݈݃ െ ߣ ⋅ ൫࢝ߪ െ  ൯ [3.25]்ீ்ߪ

We then calculate all partial derivatives with respect to each weight ݓ௧: డሺ࢚࢝ሻడ௪ ൌ ଵ௪ െ ߣ ⋅ డఙ࢝డ௪ต≡ெோ ,			∀݅ [3.26] 

Setting the above expression equal to zero leads to equation [3.24]: ݓ௧ ∙ ௧ܴܥܯ ൌ ଵఒ ൌ  [3.27] ݅∀			,ݐ݊ܽݐݏ݊ܿ

Post-optimization, all weights are rescaled so that they sum up to 1. The fact that 
volatility exhibits positive homogeneity (for a scaling constant ߪ,ߢ⋅࢝ ൌ ߢ ⋅  (࢝ߪ
renders the ܴܥܯ scale-invariant as is easily deduced by: 

డఙഉ⋅࢚࢝డ൫௪൯ ൌ డఙ࢝డ௪ ൌ  ∀݅ [3.28]			௧,ܴܥܯ

This means that the rescaled weights satisfy the risk-parity objective of equation 
[3.24], as the normalization constant (the sum of unadjusted weights) is absorbed by 
the constant of equation [3.24]. Hence, delaying the application of the “fully-
invested” constraint until after the optimization helps computationally and does not 
alter the end result in terms of the risk-parity objective. 
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4

Diversifying Risk Parity:
In Today, Out Tomorrow?

Striving for maximum diversification, we follow Meucci [MEU 09] in measuring and managing a

multi-asset class portfolio. Under this paradigm, the maximum diversification portfolio is

equivalent to a risk parity strategy with respect to the uncorrelated risk sources embedded in the

underlying portfolio assets. We characterize the mechanics and properties of this diversified risk

parity strategy. Moreover, we explore the risk and diversification characteristics of traditional

risk-based asset allocation techniques such as 1/N , minimum-variance and risk parity and

demonstrate the diversified risk parity strategy to be quite meaningful when benchmarked

against these alternatives. Finally, we demonstrate the benefits of diversification when

backtesting risk-based investment strategies in a simulated environment of rising interest rates.

Diversification pays. This insight is at the heart of most portfolio construction
paradigms like the seminal one of Markowitz [MAR 52]. Under his mean-variance
optimization, diversifying portfolio weights is key to obtaining efficient portfolios
with an optimal risk and return trade-off. Unfortunately, mean-variance optimization
is typically confounded by estimation risk, especially the one embedded in estimates
of expected returns (see [ZIE 93])1. One way to circumvent this problem is to simply
refrain from estimating expected returns and to resort to risk-based allocation

Chapter written by Harald LOHRE∗, Heiko OPFER∗ and Gábor ORSZÁG∗.
∗Deka Investment GmbH
1 Of course, estimation risk in portfolio management is at the heart of many works, such as
[HER 06, JOR 86, KAN 07, KLE 76, MER 80, MIC 89].
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techniques2. Within the framework of Markowitz [MAR 52], this approach leads to
the well-known minimum-variance portfolio. However, minimum-variance portfolios
are designed to load on low-volatility assets which render them rather concentrated in
a few assets. Thus, minimum-variance portfolios are hardly diversified in terms of a
homogenous weights distribution.

In fact, there are different views on the meaning of portfolio diversification. For
instance, Woerheide et al. [WOH 93] focus on portfolio weights, while Frahm and
Wiechers [FRA 13] focus on portfolio return variance. In striving for well-diversified
portfolios, Meucci [MEU 09] builds on principal component analysis (PCA) of the
portfolio assets to extract the main drivers of the assets’ variability. These principal
components can be interpreted as principal portfolios representing the uncorrelated
risk sources inherent in the portfolio assets. For a portfolio to be well diversified, its
overall risk should, therefore, be evenly distributed across these principal portfolios.
Condensing this risk decomposition into a single diversification metric, Meucci
[MEU 09] opts for the exponential of this risk decomposition’s entropy because of its
intuitive interpretation as the number of uncorrelated bets.

The contribution of this chapter is to apply the framework of Meucci [MEU 09]
in an empirical multi-asset allocation study. Under this paradigm, the maximum
diversification portfolio emerges from a risk parity strategy that is budgeting risk
with respect to the extracted principal portfolios rather than the underlying portfolio
assets. Therefore, we think of this approach as a diversified risk parity (DRP) strategy
which turns out to be a reasonable alternative when it comes to risk-based asset
allocation. Moreover, the framework allows for a litmus test of competing
techniques, such as 1/N , minimum-variance and risk parity. While
minimum-variance is fairly well known for picking up rather concentrated risks, we
find the traditional risk parity strategy to be more balanced. However, benchmarking
risk parity against diversified risk parity we observe a degeneration in its
diversification characteristics over time, rendering the traditional risk parity strategy a
rather concentrated bet in the current environment. Moreover, many of the risk-based
strategies have been profiting from a huge bond exposure in an environment of
constantly falling interest rates. Simulating an increase in interest rates over the next
5 years, we provide evidence that portfolio construction techniques striving for
diversification are highly suitable in such a challenging environment.

The chapter is organized as follows. Section 4.1 reviews the approach of Meucci
[MEU 09] for managing and measuring diversification. Section 4.2 presents the data
and further rationalizes the concept of principal portfolios. Section 4.3 is devoted to

2 This argument has also been elaborated by [FRA 10a], or [FRA 10b], among others.
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contrasting the diversified risk parity strategy to alternative risk-based asset allocation
strategies. Section 4.4 concludes the chapter.

4.1. Managing diversification

According to standard portfolio theory, diversification is geared at eliminating
unsystematic risk. In addition, investors’ and portfolio managers’ common notion of
diversification is the desire to avoid exposure to single shocks or risk factors. In
either case, diversification especially pays when combining low-correlated assets.
Taking this idea to extremes, Meucci [MEU 09] constructs uncorrelated risk sources
by applying a principal component analysis (PCA) to the variance-covariance matrix
of the portfolio assets. In particular, he considers a portfolio consisting of N assets
with return vector R. Given weights w, the resulting portfolio return is Rw = w′R.
According to the spectral decomposition theorem, the covariance matrix Σ can be
expressed as a product:

Σ = EΛE′ [4.1]

where Λ = diag(λ1, ..., λN ) is a diagonal matrix consisting of Σ’s eigenvalues that
are assembled in descending order, λ1 ≥ ... ≥ λN . The columns of matrix E
represent the eigenvectors of Σ. These eigenvectors define a set of N principal
portfolios3 whose returns given by R̃ = E

′
R are uncorrelated and their variances

equal λ1, ..., λN . As a result, a given portfolio can be either expressed in terms of its
weights w in the original assets or in terms of its weights w̃ = E

′
w in the principal

portfolios. Since the principal portfolios are uncorrelated by design, the total
portfolio variance emerges from simply computing a weighted average over the
principal portfolios’ variances λi using weights w̃2

i :

V ar(Rw) =

N∑
i=1

w̃2
i λi [4.2]

Normalizing the principal portfolios’ contributions by the portfolio variance then
yields the diversification distribution:

pi =
w̃2

i λi

V ar(Rw)
, i = 1, ..., N [4.3]

3 Note that [PRA 04] coined the term “principal portfolios”: in their recasting of the efficient
frontier in terms of these principal portfolios.
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Note that the diversification distribution is always positive and that the pis sum to
100%. Building on this concept, Meucci [MEU 09] conceives a portfolio to be well
diversified when the pi are “approximately equal and the diversification distribution
is close to uniform”. This definition of a well-diversified portfolio coincides with
allocating equal risk budgets to the principal portfolios. Therefore, we dub this
approach diversified risk parity. Conversely, portfolios loading on a specific principal
portfolio display a peaked diversification distribution. It is thus straightforward to
apply a dispersion metric to the diversification distribution to obtain a single
diversification metric. Meucci [MEU 09] chooses the exponential of its entropy4:

NEnt = exp

(
−

N∑
i=1

pi ln pi

)
[4.4]

The reason for choosing NEnt relates to its intuitive meaning as the number of
uncorrelated bets. To rationalize this interpretation, consider two extreme cases. For
a completely concentrated portfolio, we have pi = 1 for one i and pj = 0 for i �= j
resulting in an entropy of 0 which implies NEnt = 1. Conversely, NEnt = N holds
for a portfolio that is completely homogenous in terms of uncorrelated risk sources.
In this case, pi = pj = 1/N holds for all i, j implying an entropy equal to ln(N).

Taking the above approach to the extreme, we can especially obtain the maximum
diversification portfolio or the diversified risk parity weights wDRP by solving:

wDRP = argmax
w∈C

NEnt(w) [4.5]

where the weights w may possibly be restricted according to a set of constraints C.

Note that optimization [4.5] does not allow for a unique solution in the absence
of further constraints. Obviously, an inverse volatility portfolio along the principal
portfolios is a solution maximizing objective function [4.5]. However, if we multiply
a given number of eigenvectors by -1, the ensuing matrix will still be orthogonal.
The economic intuition of this result is straight-forward: because all of the principal
portfolios are uncorrelated, buying and selling the same amount of a given principal
portfolio gives rise to the same risk exposure. Acknowledging all possible variations
of the long and short variants of the underlying principal portfolios, we collect 2N

optimal inverse volatility portfolios.

4 The entropy has been used before in portfolio construction, see, for example, [WOH 93], or
more recently [BER 08]. However, these studies consider the entropy of portfolio weights thus
disregarding the dependence structure of portfolio assets.
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The issue of multiple solutions applies to traditional risk parity strategies as well.
Investigating general risk-budgeting strategies, Bruder and Roncalli [BRU 12] and
Roncalli and Weisang [RON 12] show unique risk-budgeting strategies when
imposing positivity constraints with respect to the underlying risk factors. Therefore,
imposing sign constraints with respect to the principal portfolios instead of the
underlying assets is key for obtaining a unique DRP strategy. Thus, the optimal
portfolio weights can be computed analytically given the eigenvector decomposition
of the covariance matrix Σ. However, these weights might not be feasible for a given
set of investment constraints. For instance, we will enforce positive asset weights and
a full investment constraint later on. In this case, we numerically maximize objective
function [4.5] using a sequential quadratic (SQP) algorithm5. For anchoring the
numerical solution, we feed the optimizer with the unconstrained analytic solution as
a starting value.

Note that there are many linear transformations (or torsions) of the original assets
corresponding to many sets of portfolios with uncorrelated returns. Among these
transformations, the principal component decomposition is a natural choice, however,
there may be situations in which we may like to depart from this choice. For instance,
the PCA approach might give rise to principal components that are hard to interpret.
In this regard, Meucci et al. [MEU 13] extend the framework of Meucci [MEU 09]
by choosing the linear transformation that is closest to the original factors (or assets).
Going forward, we will nevertheless stick to the original approach given that our
subsequent analysis establishes a quite close and stable connection between principal
portfolios and the underlying asset classes.

4.2. Rationalizing principal portfolios

4.2.1. Data and descriptive statistics

In building risk-based asset allocation strategies, we focus on five broad asset
classes as represented by the following indices. We use the JPM Global Bond Index
for government bonds, the MSCI World Total Return Index for developed equities,
the MSCI Emerging Markets Total Return Index for emerging equities, the DJ UBS
Commodity Index for commodities and the Barclays U.S. Aggregates Credit Index.
All indices are measured in monthly local currency returns, and we report total return
figures from the perspective of a U.S. investor by employing the 3-month U.S.
Treasury Rate.

Table 4.1 conveys the descriptive statistics of the above asset classes. Over the
whole sample period, from December 1987 to September 2013, we observe an

5 In particular, we build on a variant of Meucci’s [MEU 09] implementation which is available
on his webpage, see http://www.symmys.com/node/199.
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annualized bond return of 6.6% at a volatility of 3.9%, which happens to be the
lowest figure across asset classes. During this period, developed equities have fared
slightly better in terms of return (7.4%), however, their volatility is considerably
higher (14.3%). For emerging equities, return and volatility figures are higher when
compared to developed equities. Conversely, commodities are quite similar to
developed equities in terms of volatility. Most interestingly, credit exhibits the same
return as government bonds. This observation is unexpected given that credit is
significantly more volatile than government bonds. However, it is important to note
that the bulk of credit volatility is related to the credit crunch of 2008 and the
subsequent financial crisis. In terms of risk-adjusted returns, the high-risk asset
classes rather disappoint given the Sharpe ratios of around 0.2. By this metric, credit
ranks second with a figure of 0.69 but is still underperforming compared to bonds
that exhibit an impressive Sharpe ratio of 0.95. Further inspecting the assets’
dependence structure in Table 4.1, we observe bonds to be hardly correlated to
equities. Its correlation to commodities is slightly negative, while the one to credit
amounts to 0.53. All of the remaining correlation coefficients range from -0.18
(government bonds vs. commodities) to 0.74 (developed vs. emerging equities).
Unsurprisingly, credit is more correlated to both equity indices.

Return Vola Sharpe Correlation Matrix
p.a. p.a. Ratio

Bonds Equities Commodities Credit
Dev. Emg.

Bonds 6.6% 3.9% 0.95 1.00
Developed Equities 7.4% 14.3% 0.31 0.00 1.00
Emerging Equities 8.3% 23.7% 0.23 -0.04 0.74 1.00
Commodities 4.8% 15.4% 0.12 -0.18 0.20 0.34 1.00
Credit 6.6% 5.3% 0.69 0.54 0.25 0.21 0.10 1.00

Table 4.1. Descriptive statistics

The table contains descriptive statistics of the multi-asset classes according to
the sample period from December 1987 to September 2013 based on monthly local
currency returns. On the left-hand side, annualized return and volatility figures are
reported and the right-hand side gives the corresponding correlation matrix.

4.2.2. Extracting and interpreting principal portfolios

To foster intuition about the uncorrelated risk sources inherent in our multi-asset
time series, we investigate the PCA over the whole sample period from December
1987 to September 2013. The economic nature of the principal portfolios is best
assessed in terms of the eigenvectors that represent the principal portfolios’ weights
with respect to the original asset classes. Because eigenvectors are normalized so that
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ei
′ei = 1 for all i = 1, ..., N , these weights lie within the [-1,1]-interval by

construction. Given that the correlation of the original assets is generally relatively
low, the interpretation of the principal portfolios, as collected in Panel A of Table 4.2,
is straightforward. The first principal portfolio (PP1) is purely driven by emerging
and developed equities with emerging equity having a fairly high weight of 0.86.
Therefore, PP1 represents genuine equity risk which is accounting for 69.9% of the
overall variance. Conversely, principal portfolio 2 (PP2) reflects the diversification
potential of commodities relative to equities as indicated by a commodities weight of
0.96 and has a much smaller variance contributing 19.6% to the overall variance.
Principal portfolio 3 (PP3) represents the difference between emerging and
developed equities, thus capturing the emerging market spread. Principal portfolio 4
(PP4) mostly loads on credit and government bonds and we interpret it as an interest
rate risk factor. Note that PP3 and PP4 explain most of the remaining variance,
leaving a minuscule fraction of 0.7% for principal portfolio 5 (PP5). Judging by the
weights of PP5, we conceive it to be a mimicking factor of the credit spread. In
addition, Panel B of Table 4.2 gives the principal portfolio weights pertaining to a
PCA over the last 60 months of the sample period, which is from October 2008 to
September 2013. Despite covering the most turbulent of times, these weights prove to
be fairly similar to those obtained for the whole sample period. However, the
variance of PP1 is elevated by a factor of 2 when compared to the results for the
whole sample period.

For estimating the principal portfolios over time, we have to make a choice with
regard to the estimation window. The two most common approaches rely either on an
expanding window or a rolling window for estimation. The proponents of expanding
window estimation appreciate that building on all available data typically gives rise
to a quite robust set of components. However, rolling window estimation is believed
to be more responsive to potential structural breaks. Therefore, our analysis focuses
on the discussion of results arising from rolling window estimation using a 60
months window. In particular, we perform a PCA every month to extract the principal
portfolios embedded in the multi-asset classes. Stacking the corresponding principal
portfolio variances, Figure 4.1 depicts the variation of the principal portfolios’
variances over time.

We observe PP1 to be fairly dominant by accounting for at least 60% of the
underlying time series’ variation at any given point in time. Given that PP2 and PP3
represent some 20% and 10% of the variation, the remaining principal portfolios PP4
and PP5 do only account for a minor fraction. At the end of the sample period, we
find PP1 accounting for 80% of the overall variability which bears testimony of the
contagion effects emanating from the financial crisis of 2008.
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Asset Class PP1 PP2 PP3 PP4 PP5

Equity Commodities EM-Spread Interest Rate Credit Spread

Panel A: December 1987 to September 2013

JPM Global Bond -0.01 -0.05 -0.03 0.53 -0.85

MSCI World 0.43 -0.24 -0.86 -0.11 -0.03

MSCI Emerging Markets 0.86 -0.17 0.47 0.01 -0.01

DJ UBS Commodities 0.26 0.96 -0.13 0.01 -0.05

Barclays U.S. Aggr. Credit 0.05 -0.01 -0.10 0.84 0.53

Variance 7.5% 2.1% 0.7% 0.3% 0.1%

Percent Explained 69.9% 19.6% 6.8% 2.9% 0.7%

Cumulative 69.9% 89.6% 96.4% 99.3% 100.0%

Panel B: October 2008 to September 2013

JPM Global Bond -0.03 -0.13 0.28 0.49 -0.81

MSCI World 0.44 -0.28 -0.75 0.41 0.02

MSCI Emerging Markets 0.74 -0.39 0.37 -0.39 -0.07

DJ UBS Commodities 0.50 0.85 0.04 0.14 -0.05

Barclays U.S. Aggr. Credit 0.08 -0.15 0.47 0.65 0.58

Variance 12.7% 1.1% 0.6% 0.3% 0.1%

Percent Explained 86.3% 7.3% 3.9% 2.0% 0.5%

Cumulative 86.3% 93.6% 97.5% 99.5% 100.0%

Table 4.2. Principal portfolio weights

The table gives the eigenvectors representing the principal portfolio weights with
respect to the underlying asset classes. These eigenvectors either arise from a PCA of
the multi-asset class covariance matrix over the whole sample period from December
1987 to September 2013 (Panel A) or from a PCA over the last 60 months of the
sample period (Panel B). Weights in excess of 0.4 are in bold, weights in excess of
0.2 are in italics. The principal portfolios’ variance is given in absolute terms and
relative to the overall data variation. “Cumulative’, represents the fraction of variance
being explained by a given number of principal portfolios (with the highest variance
contributions).
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Figure 4.1. Variances of the principal portfolios. For a color version of

the figure, see www.iste.co.uk/jurczenko/risk.zip

The figure gives the variance of the principal portfolios in the upper panel and its
relative decomposition over time in the lower panel. Each month, a PCA is performed
using a 60 months window to extract the principal portfolios embedded in the multi-
asset classes and the corresponding principal portfolio variances are stacked in one
bar. The results range from January 1993 to September 2013.
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A common concern associated with the PCA approach is the stability of the
covariance matrix’ eigenvectors, especially those pertaining to the smallest
eigenvalues. To investigate this issue, we collect the principal portfolio weights
throughout time in Figures 4.2 and 4.3. For instance, the left column of Figures 4.2
and 4.3 gives principal portfolio weights when using expanding window estimation.
Unsurprisingly, the corresponding weights prove to be very stable throughout the
sample period mirroring the general interpretation that we have inferred from the
static weights over the whole sample period (see Table 4.2). Obviously, stepping
from expanding to rolling window estimation renders the time series of principal
portfolio weights more volatile. In this regard, the right column of Figures 4.2 and
4.3 gives results when using rolling estimation windows of 60 months. Note that even
though weights are more volatile, there has been no switch in the economic meaning
of PP1 (equity risk), PP4 (interest rate risk) and PP5 (credit spread). Only once do we
observe a switch between PP2 (commodity risk) and PP3 (EM-spread), which takes
place in the middle of the 1990s and lasts for some 3 years.

4.3. Risk-based asset allocation

4.3.1. Risk-based asset allocation schemes

For constructing the diversified risk parity strategy, we first determine the
principal portfolios using rolling window estimation. From section 4.2, we know that
the optimal DRP strategy is an inverse volatility strategy along the principal
portfolios which can be computed analytically given specific sign constraints with
respect to the principal portfolios. We choose these constraints such that the sign of
each principal portfolio equals the sign of its historical risk premium. We measure
the principal portfolios’ historical risk premia using an expanding window starting at
the beginning of the sample period in 1987. Thus, the weights for the optimal DRP
strategy can be computed in principal portfolio space as follows:

w̃i =
1
λi∑N

j=1
1
λj

sign(PPi) [4.6]

The optimal weights in the original assets follow from wOpt
DRP = Ew̃. Intuitively,

the strategy thus aims at capturing long-term risk premia associated with the principal
portfolios. More importantly, the strategy’s positioning will not establish bets that have
not been rewarded historically6.

6 Note that we standardize the portfolio weights of the optimal DRP strategy to sum to 100%
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Figure 4.2. Principal portfolio weights: PP1 to PP3. For a color version

of the figure, see www.iste.co.uk/jurczenko/risk.zip

The figure gives the principal portfolios’ weights over time. The left column gives
results when using an expanding window estimation. The right column gives results
when using rolling estimation windows of 60 months. The estimation period is from
January 1988 to September 2013.
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Figure 4.3. Principal portfolio weights: PP4 and PP5. For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

The figure gives the principal portfolios’ weights over time. The left column gives
results when using an expanding window estimation. The right column gives results
when using rolling estimation windows of 60 months. The estimation period is from
January 1988 to September 2013.

To allow for comparison with alternative risk-based allocation techniques, we
also determine a constrained DRP strategy using optimization [4.5] where we enforce
full investment and positivity constraints. Rebalancing of all strategies occurs at a
monthly frequency. Given that the first PCA estimation consumes 60 months of data,
the strategy performance can be assessed from January 1993 to September 2013.

For benchmarking the diversified risk parity strategy, we consider four alternative
risk-based asset allocation strategies: 1/N , minimum-variance, risk parity and the
most-diversified portfolio of Choueifaty and Coignard [CHO 08]. First, we implement
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the 1/N -strategy that rebalances monthly to an equally weighted allocation scheme,
hence, the portfolio weights w1/N are:

w1/N =
1

N
[4.7]

Second, we compute the minimum-variance (MV) portfolio either building on an
expanding or rolling 60 months window for covariance-matrix estimation. The
corresponding weights wMV derive from:

wMV = argmin
w

w′Σw [4.8]

subject to the full investment and positivity constraints, w′1 = 1 and w ≥ 0.

Third, we construct the original risk parity (RP) strategy by allocating capital such
that the asset classes’ risk budgets contribute equally to overall portfolio risk7. Note
that these risk budgets also depend on either expanding or rolling window estimation.
Since there are no closed-form solutions available, we follow [MAI 10] to obtain wRP

numerically via:

wRP = argmin
w

N∑
i=1

N∑
j=1

(wi(Σw)i − wj(Σw)j)
2 [4.9]

which essentially minimizes the variance of the risk contributions8. Again, the above
full investment and positivity constraints apply.

Fourth, we describe the approach of Coignard [COI 08] for building maximum
diversification portfolios. To this end, the authors define a portfolio diversification
ratio D(w):

D(w) =
w′ · σ√
w′Σw

[4.10]

where σ is the vector of portfolio asset return volatilities. Thus, the most-diversified
portfolio (MDP) simply maximizes the ratio between two distinct definitions of
portfolio volatility, i.e. the ratio between the average portfolio assets’ volatility and

7 Risk parity has been put to the fore by Qian [QIA 06, QIA 11] and Maillard [MAI 10].
8 Because the DRP portfolio is equivalent to a risk parity portfolio in principal portfolio space,
the approach of Maillard [MAI 10] might also be used to determine the optimal DRP portfolio.
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the total portfolio volatility. We obtain MDP’s weights vector wMDP by numerically
computing:

wMDP = argmax
w

D(w) [4.11]

As before, we enforce the full investment and positivity constraints.

The table gives performance and risk statistics of the risk-based asset
allocation strategies from January 1993 to September 2013. Annualized average
return and volatility figures are reported together with the respective annualized
Sharpe Ratio where the risk-free rate is given by the average 3-month U.S. Treasury
Rate. Maximum Drawdown (MDD) is computed over 1 month and over the whole
sample period. Turnover is the portfolios’ mean monthly turnover over the whole
sample period. Gini coefficients are reported using portfolios’ weights (“Gini
Weights”) and risk decomposition with respect to the underlying asset classes (“Gini
Risk”) or with respect to the principal portfolios (“Gini PP Risk”). The # bets is the
exponential of the risk decomposition’s entropy when measured against the
uncorrelated risk sources. D is the diversification ratio.

Statistic Diversified Risk Parity Risk-Based Allocations
Optimal Constrained 1/N MV RP MDP

Return p.a. 6.6% 6.5% 7.4% 6.1% 6.6% 5.7%
Volatility p.a. 4.2% 4.0% 9.3% 3.6% 4.6% 4.2%
Sharpe Ratio 0.86 0.89 0.48 0.88 0.80 0.66
MDD 1M -4.2% -2.7% -15.1% -2.4% -5.9% -4.3%
MDD -6.6% -7.0% -33.5% -5.1% -13.0% -10.7%
Turnover 11.7% 6.6% 0.0% 2.6% 1.5% 3.7%
Gini Weights 0.67 0.68 0.00 0.70 0.34 0.52
Gini Risk 0.60 0.60 0.48 0.70 0.00 0.42
Gini PP Risk 0.00 0.13 0.83 0.38 0.50 0.40
# bets 5.00 4.74 1.56 3.26 3.26 3.64
D 1.59 1.69 1.44 1.62 1.78 1.88

Table 4.3. Performance and risk statistics of

asset allocation strategies

4.3.2. Performance of risk-based asset allocation schemes

Table 4.3 gives the performance and risk statistics of the two DRP strategies as
well as the alternative risk-based asset allocation strategies. The optimal DRP
strategy earns 6.6% at 4.2% volatility which is equivalent to a Sharpe ratio of 0.86.
This high risk-adjusted return is mostly robust with respect to imposing positive asset
weights. The constrained DRP strategy gives 6.5% at 4.0% volatility. Among the
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competing strategies, the highest annualized return materializes for the 1/N -strategy,
but the 7.4% comes at the cost of the highest volatility (9.3%). Moreover, the strategy
exhibits the highest drawdown among all alternatives (33.5%). Conversely, the
minimum-variance strategy provides a lower return of 6.1%. Given that
minimum-variance indeed exhibits the lowest volatility (3.6%), its Sharpe ratio of
0.88 is highly favorable. Also, its drawdown statistics are the least severe amounting
to a maximum loss of 5.1% during the whole sample period. Note that the
constrained DRP strategy’s maximum drawdown is only slightly higher (7.0%).

Paraphrasing [MAI 10], we then find the risk parity strategy to be a
middle-ground portfolio between 1/N and minimum-variance. Its return is 6.6% at a
4.6% volatility thus giving rise to a Sharpe ratio of 0.80. Also, the maximum
drawdown statistics are significantly reduced when compared to the 1/N -strategy.
The maximum drawdown of the MDP is even smaller (10.7%), however, its return is
the lowest among all alternatives (5.7%) which still allows for a fairly adequate
Sharpe ratio of 0.66.

To gauge the strategies’ evolution over time, we plot their cumulative returns in
Figure 4.4. Whereas the 1/N -strategy is pursuing a rather rocky path, the remaining
strategies exhibit a quite steady evolution of performance. In addition, it seems as if
the strategies’ resilience with respect to the financial crisis of 2008 is the main driver
in explaining the strategies’ overall volatility.

Figure 4.4. Performance of risk-based asset allocation. For a color

version of the figure, see www.iste.co.uk/jurczenko/risk.zip

The figure gives the cumulative total return of the risk-based asset allocation
strategies when using rolling window estimation of 60 months over the sample period
starting January 1993 to September 2013.
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While the performance table and figure already give a good grasp of the different
strategies, we additionally provide mutual tracking errors and mutual correlation
coefficients in Table 4.4. In terms of strategy similarity, we find the constrained
diversified risk parity strategy to be very close to the optimal DRP strategy given a
correlation of 0.98 and a tracking error of 0.86%. Concerning the alternative
risk-based strategies, we find the constrained DRP strategy to be highly correlated to
risk parity, or minimum-variance and the MDP. Judging by a tracking error of 1.75%,
it is closest to RP. Unsurprisingly, tracking errors are the highest for the 1/N -strategy
with figures ranging from 5.99% (vs. risk parity) to 8.63% (vs. minimum-variance).

Tracking Error-Correlation-Matrix
DRP

Optimal Constrained 1/N MV RP MDP
DRP Optimal 1.00 0.86% 4.21% 7.99% 2.09% 2.34%
DRP Constrained 0.98 1.00 4.00% 7.65% 1.75% 1.83%
1/N 0.53 0.60 1.00 8.63% 5.99% 6.76%
MV 0.87 0.90 0.39 1.00 2.84% 2.29%
RP 0.81 0.88 0.85 0.79 1.00 1.24%
MDP 0.85 0.90 0.76 0.84 0.97 1.00

Table 4.4. Comparison of risk-based asset allocation strategies

The table compares the risk-based asset allocation strategies by reporting mutual
tracking errors above the diagonal and mutual correlation figures below the diagonal.
All figures refer to a 60-month rolling window estimation over the sample period
(January 1993 to September 2013.)

Note that the high risk-adjusted performance of the diversified risk parity strategy
is to be taken with a grain of salt, since its monthly turnover is slightly higher than the
ones of the other risk-based asset allocation strategies. It amounts to 6.6% on average
which compares to 3.7% for the MDP, 2.6% for minimum-variance and 1.5% for
risk parity9. By construction, the turnover of the 1/N -strategy is 0% – disregarding
potential rebalancing because of price movement.

4.3.3. How diversified are the risk-based asset allocation schemes?

As argued by Lee [LEE 11], evaluating risk-based portfolio strategies by means
of Sharpe ratios is hard to reconcile with the fact that returns are not entering their
respective objective function in the first place. In a vein similar to [LEE 11], we
rather resort to contrasting the risk characteristics of these portfolios. Thus, we turn
to an in-depth discussion of the risk-based strategies’ weights and risk allocation in

9 Note that we measure turnover based on weight changes of successive models which could
understate the actual turnover of the strategies.
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Figures 4.5, 4.6 and 4.7. Risk is being decomposed not only by asset class but also by
principal portfolios. Hence, the former analysis provides the well-known percentage
risk contributions, while the latter analysis performs the very same decomposition
with regard to uncorrelated risk sources.

First, we examine both diversified risk parity strategies in Figure 4.5. Only at the
beginning of the sample period is the optimal DRP strategy characterized by positive
asset weights across all asset classes. In general, the optimal DRP strategy has a large
fraction of government bonds and is rather long in emerging markets and commodities.
The strategy is often short in credit and sometimes short in developed equities as well.
The need to go short is exacerbated in times of crises when correlations spike and the
corresponding PPs are less straightforward to implement in a long-only manner. This
observation is important when it comes to rationalizing the allocation pattern of the
constrained DRP strategy. It allocates two thirds to government bonds and some 20%
to commodities. At the beginning of the sample period, the strategy has a 15% credit
position that is driven out of the portfolio by an increase in government bonds at the
end of the 1990s. Besides, there is a constant exposure to equities with emerging and
developed equities being of equal importance. The increase in the equity exposure at
the end of 2008 comes at the cost of the commodities position which is completely
closed. By construction, the strategy reacts timely to changes in risk structure and thus
maintains a quite homogenous risk decomposition by principal portfolios throughout
time. Even though facing a long-only and full-investment constraint, the objective of
risk parity across principal portfolios is fairly well achieved. Notably, this objective
turns out to be harder to realize at the end of the sample period.

Next, we turn to the benchmark strategies as depicted in Figures 4.6 and 4.7. First
investigating the 1/N -strategy, we find more than 80% of its overall risk to be driven
by equities, with the highly volatile emerging equities attracting the highest share of
the risk budget. Given that commodities consume most of the remaining risk budget,
the other asset classes, namely bonds and credit, are close to being irrelevant.
Decomposing the strategy’s risk by principal portfolios instead reveals the
1/N -strategy to be budgeting risk mostly to PP1, i.e. equity risk. Even more so, as
time progresses the 1/N -strategy more or less emerges as a single-bet strategy as
opposed to an N -bet strategy.

Second, we recover the archetypical weights distribution of minimum-variance
that is heavily concentrated in the two low-risk asset classes bonds and credit. While
equities hardly enter the minimum-variance portfolio, there is always a diversifying
commodities position of some 5–10% in place. This weights decomposition serves as
a blueprint for the minimum-variance strategy’s traditional risk decomposition.
Conversely, the decomposition of risk with respect to the principal portfolios
demonstrates minimum-variance to be heavily exposed to a single risk source, PP4,
representing interest rate risk. Compared to 1/N , the minimum-variance strategy
appears to be less concentrated because it is also exhibiting a quite marked exposure
to PP3 and PP5.
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Figure 4.5. Weights and risk decompositions: DRP optimal

vs. constrained. For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

The figure shows the decomposition of the diversified risk parity strategies in
terms of weights and risk. Risk is being decomposed by asset classes and principal
portfolios, respectively. The left-hand column gives results for the optimal DRP
strategy and the right-hand column gives results for the constrained DRP strategy
when using rolling window estimation of 60 months. The sample period is from
January 1993 to September 2013.
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Figure 4.6. Weights and risk decompositions: minimum-variance and

MDP. For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

The figure gives the decomposition of the risk-based allocation strategies in
terms of weights and risk. Risk is being decomposed by asset classes and principal
portfolios, respectively. The results build on rolling window estimation over 60
months. The left-hand column gives result for the minimum-variance strategy and
the right-hand column gives results for the MDP. The sample period is from January
1993 to September 2013.
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Figure 4.7. Weights and risk decompositions: risk parity and 1/N. For a

color version of the figure, see www.iste.co.uk/jurczenko/risk.zip

The figure gives the decomposition of the risk-based allocation strategies in
terms of weights and risk. Risk is being decomposed by asset classes and principal
portfolios, respectively. The results build on rolling window estimation over 60
months. The left-hand column gives result for the risk parity strategy and the right-
hand column gives results for the 1/N -strategy. The sample period is from January
1993 to September 2013.
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Third, we examine the risk parity strategy. Its weights decomposition reflects a
reasonably smooth allocation over time with global bonds accounting for the highest
portfolio fraction; on average, one-third is being allocated to this asset class. While
the bond share is increasing over time, we realize that this increase is mainly fueled
by a decrease in the credit position. This observation relates to the fact that the rising
credit volatility induces the strategy to limit its credit exposure for maintaining risk
parity. The remaining asset classes, equities and commodities are characterized by
rather constant allocation weights over time that are approximately inversely
proportional to their respective time series volatilities. By construction, the
traditional risk decomposition exhibits equal weights across asset classes10.
Interestingly, the decomposition of the risk parity strategy with respect to the
principal portfolios is significantly less evenly distributed. At the beginning of the
sample period PP1 and PP4, each attracts some quarter of the risk budget, while PP2
and PP3 almost completely absorb its remainder. However, PP2 and PP3 are
constantly losing share giving rise to a 50% risk contribution of PP1 and some 35%
of PP4. Hence, the risk parity strategy is rendered highly concentrated in terms of
uncorrelated risk sources at the end of the sample period.

Fourth, we examine the results for the MDP. Overall, its weights decomposition
over time is in between the one of risk parity and minimum-variance. Nevertheless,
the MDP’s reaction to the 2008 crisis is more pronounced with respect to reducing
the credit position in favor of global bonds. Given that the MDP’s share in
commodities is also slightly higher than the one for the risk parity strategy, its
traditional risk decomposition is slightly dominated by commodities risk. More
interestingly, the risk decomposition with respect to the uncorrelated risk sources is
quite evenly distributed. While we also observe a minor degeneration of the profile
over time, it is less severe when compared to 1/N , minimum-variance or risk parity.
In a recent paper, Choueifaty et al. [CHO 13] show that the MDP is optimal under
certain conditions, among which is the homogeneity of the investment universe. This
condition is hardly met in an asset allocation context where asset classes are typically
characterized by very different risk-return trade-offs. Thus, our results obtained in the
MDP case should be taken with a grain of salt. Still, it is interesting to compare
diversification ratios across strategies (see Table 4.3). Relative to the MDP (1.88), the
traditional risk parity strategy (1.78) and the constrained DRP strategy (1.69) are not
too far off, while 1/N (1.44) and minimum-variance (1.62) exhibit considerably
smaller ratios.

10 At times, risk parity only holds approximately given that the numerical optimization may be
tricky (see [MAI 10])
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For directly comparing the degree to which the risk-based asset allocation
strategies accomplish the goal of diversifying across uncorrelated risk sources, we
plot the number of uncorrelated bets over time in Figure 4.8. Reiterating our above
interpretation of the associated risk contributions over time, we find the 1/N -strategy
to be mostly dominated by the other strategies. Unsurprisingly, the constrained DRP
strategy is maintaining the highest number of bets throughout time which often
reaches the maximum of five bets. However, there was a short episode in 2000/01
when long-only constraints rendered the constrained DRP strategy with less bets than
most of the risk-based alternatives. Intuitively, the latter strategies implement bets
that are not deemed attractive by the principal portfolio constraints effective for the
constrained DRP strategy. Inbetween 1/N and diversified risk parity, we find
minimum-variance and risk parity to represent some three bets over time. MDP is
close to four bets on average, but these three strategies essentially degenerate in their
degree of diversification at the end of the sample period.

Figure 4.8. Number of uncorrelated bets. For a color version of the

figure, see www.iste.co.uk/jurczenko/risk.zip

We plot the number of uncorrelated bets for the risk-based asset allocation
strategies when using rolling window estimation of 60 months for the sample period
January 1993–September 2013.

4.3.4. In today, out tomorrow? Risk-based strategies in a rising interest
rate environment

Most of the risk-based strategies have profited from a high bond exposure in the
presence of falling interest rates. The room for further decreases in interest rates is
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limited; instead, an increase in rates is more likely. To what extent can we expect
risk-based investment strategies to deliver a convincing performance in such an
environment? To investigate this question, we simulate the future market
development over 60 months for the period 2013–2018 based on a stochastic capital
market model. The core of the capital market model forms a series of stochastic
processes to reflect a consistent economy building on the main asset classes, money
market, global government bonds, global equities, emerging market equities,
corporate bonds and commodities. The selection of stochastic processes and their
connection ensures that the ensuing 1,000 capital market paths and the underlying
distributions display empirically observable effects such as fat tails, volatility
clustering, autocorrelation and rising correlations in times of crises11.

In the parameterization of the model, we assume a slow increase in the money
market interest rate to 1.4% p.a. at the end of 2018. The average annualized return on
government bonds over the 60 months is then 0.95%. For global equities, this value
amounts to 6.5% and 8.0% for emerging market equities, respectively. For
commodities, we assume 5% p.a., while corporate bonds are expected to give 2.7%
p.a. The volatility of government bonds is calibrated to 2.5%, 20% for global equities
and 25% for emerging market equities. For corporate bonds, the corresponding figure
is 5.5%, and 16% for commodities. The higher moments of the distribution are
retrieved from the historical time series.

While Table 4.3 shows the historical performance of the five risk-based allocation
techniques in the period from January 1993 to September 2013, Table 4.5 shows the
median performance and risk statistics of the risk-based strategies over the various
simulated market scenarios for the years 2013–2018. The median annualized return
across 1,000 capital market paths for the year 2013–2018 is significantly below the
values of the last two decades for all strategies. Their volatilities hardly change and,
hence, risk-adjusted returns suffer. Still, strategies striving for optimal diversification,
such as DRP and MDP, can provide a relatively convincing performance.

4.4. Conclusion

Within this chapter, we embrace the approach of Meucci [MEU 09] to maximize
a portfolio’s diversification. His paradigm stipulates rearranging the portfolio assets
into uncorrelated risk sources by means of a simple PCA. Maximum diversification is
obtained when equally budgeting risk to each of the uncorrelated risk sources,
prompting us to label the strategy diversified risk parity, whereas risk-based asset

11 Specifically, the capital market model involves a Cox–Ingersoll–Ross short rate model to
span the entire yield curve, autoregressive processes of first order with superimposed jump
processes for the spread development, as well as a regime switching model for stocks and
commodities
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allocation techniques generally yield superior risk-adjusted performance. Judging
these strategies by their returns is at odds with the fact that returns are not part of the
strategies’ underlying objective function. Following [LEE 11], we rather turn to
evaluating their ex ante risk characteristics, especially with respect to the
uncorrelated risk sources. While the diversified risk parity strategy is designed to
balance these risk sources, it is reassuring that it is meeting this objective well, even
when facing long-only constraints. Unfortunately, the competing alternatives tend to
be rather concentrated in a few bets. While the traditional risk parity strategy
appeared to be least affected at the outset, we document a decrease in its degree of
diversification over time. Also, the traditional risk parity strategy’s nature is critically
dependent on the choice of assets for contributing equally to portfolio risk.
Conversely, diversified risk parity has a built-in mechanism for tracking the
prevailing risk structure thus providing a more robust way to achieve maximum
diversification throughout time. All of the risk-based strategies have delivered a
convincing performance across different market regimes in the past. Going forward,
this finding will only continue to hold when striving for a high degree of
diversification. Still, investment performance will be more moderate than in the past.

Statistic Diversified Risk Parity Risk-Based Allocations
Optimal Constrained 1/N MV RP MDP

Return p.a. 4.1% 3.6% 6.1% 1.6% 2.8% 2.4%
Volatility p.a. 10.6% 4.2% 9.9% 2.1% 3.6% 3.1%
Sharpe Ratio 0.40 0.66 0.54 0.38 0.55 0.49
MDD 1M -7.9% -3.2% -8.4% -1.4% -2.9% -2.5%
MDD -13.4% -5.8% -19.4% -3.1% -6.7% -5.9%

Table 4.5. Simulated performance and risk statistics: 2013–2018

The table gives median performance and risk statistics of risk-based asset
allocation strategies obtained over the simulated 1,000 capital market scenarios from
September 2013 to August 2018. Median annualized return and volatility figures are
reported together with the respective annualized Sharpe Ratio where the risk-free rate
is given by the simulated average 3-month U.S. Treasury Rate. Maximum Drawdown
(MDD) is computed over 1 month and over the simulated period.
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5

Robust Portfolio Allocation with Systematic
Risk Contribution Restrictions1

The standard mean-variance approach can imply extreme weights in some assets in the optimal

allocation and a lack of stability of this allocation over time. In order to not only improve the

robustness of the portfolio allocation, but also to better control the portfolio turnover and the

sensitivity of the portfolio to systematic risk, it is proposed in this chapter to introduce additional

constraints on both the total systematic risk contribution of the portfolio and its turnover. Our

chapter extends the existing literature on risk parity in three directions: (1) we consider other risk

criteria than the variance, such as the value-at-risk (VaR), or the expected shortfall; (2) we manage

separately the systematic and idiosyncratic components of the portfolio risk; (3) we introduce a set

of portfolio management approaches which control the degree of market neutrality of the portfolio,

for the strength of the constraint on systematic risk contribution and for the turnover.

5.1. Introduction

The gap between theory and practice is well illustrated by the example of
portfolio management since Markowitz [MAR 52] introduced the mean-variance
framework. The resolution of the allocation problem by a simple quadratic
optimization is the main advantage of the mean-variance approach. However, in
practice, this approach is implemented by replacing the theoretical mean and
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variance by their (unrestricted) historical counterparts, and the associated estimated
mean-variance portfolios have several drawbacks: they are very sensitive to errors in
the estimates of the mean and variance inputs (see e.g. [CHO 93a, CHO 93b]), the
resolution of a large-scale quadratic optimization problem is not straightforward (see
e.g. [KON 91]), and dominant factor in the covariance matrix results in extreme
weights in optimal portfolios (see e.g. [GRE 92]). Finally, the portfolio allocations
are very erratic over time, which implies significant transaction costs or liquidity
risks. These drawbacks are even more pronounced when the portfolio is based on a
large number of assets.

These difficulties are mainly due to the sensitivity of the mean-variance efficient
portfolio allocation to the smallest eigenvalues of the variance matrix and to the poor
accuracy of the inverse variance matrix with the standard estimation methods. The
literature has proposed different ways to get more robust portfolio allocations, as the
potential cost of a loss of efficiency. First, some robust estimation methods have been
introduced, following results known in statistics2. Typical of such approaches are the
shrinkages of the estimated variance matrix, which admit Bayesian interpretation
[GAR 07, GOL 03, LED 04], the l1− or l2− penalizations introduced in the
empirical optimization problem (see e.g. [BRO 08, DEM 09a, FAN 12]), or the
refresh time subsample approach with far more percentage of data used for any given
pair of assets than for all the assets of the portfolio [BAR 08].

Robustness can also be achieved by introducing restrictions in the empirical
optimization problem even if these restrictions are not required by Financial Theory.
These constraints have often simple interpretations. They can be shortselling
restrictions [FRO 88, CHO 93a, JAG 03], gross exposure constraints [FAN 12], at the
limit “fully diversified” portfolios in terms of either budget allocations (see [ELT 77,
DUC 09, DEM 09b, KRI 10, BEL 12]), or contributions to total risk (see e.g.
[MAR 08, CHO 08, MAL 10, BRU 11]).

The idea of imposing additional diversification constraints is now commonly used
in the asset management industry, and more enhanced strategies are grouped under the
risk parity denomination. Risk parity is a general term for all investment techniques
that attempt to take equal risk in the different underlyings of a portfolio. However,
risk parity implementations differ considerably: investment universes, risk definitions,
risk forecasting methods and risk exposures calculation can be different from one
implementation to another implementation. Thus, risk parity is more a conceptual

2 It is well-known that the standard OLS estimator in a regression model y = Xb + u is not
robust. The expression of the OLS estimator: b̂ = (X ′X)−1X ′y includes the inversion of
the design matrix X ′X , and this inversion is not accurate when the explanatory variables are
quasi-colinear. This lack of robustness is solved, either by considering Bayesian estimators, or
by introducing l2- penalizations, or by constraining the parameters.
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approach rather than a specific system, and it is in general difficult to compare the
different approaches.

Many questions are raised by risk parity approaches. First, the total risk of a given
portfolio is uniquely measured by its volatility, and contributions to total risk by the
contribution of each underlying asset to this volatility. However, in a risk parity
allocation, it is more natural to define the total risk as the potential loss at the
portfolio level and the contribution to total risk as the amount of initial wealth
measured in risk unit on each portfolio underlying. These amounts are called risk
budget in the literature (see e.g. [CHO 01, LEE 01]). By defining risk budget through
volatility contributions, Gaussian returns are implicitly assumed (see e.g. [INK 10]).
Once the potential loss of capital for each portfolio underlying has been estimated,
the portfolio can be determined. Second, the optimality of the standard risk parity
portfolio, which imposes equal risk budgets on the underlying, can be discussed. This
risk parity approach does not ensure that the total risk of the portfolio is optimized.
Third, the definition of the investment universe has a significant impact on the risk
parity portfolio. In particular, the risk parity portfolio allocation changes when we
duplicate one asset. Thus it does not satisfy the duplication invariance property in the
terminology of Choueifaty et al. [CHO 13]. Finally, risk parity approaches decrease
portfolio concentration by construction in increasing the small cap weights. Then
they create liquidity issues, since we have to dynamically rebalance an equity
portfolio with a bigger liquidity exposure on small caps.

We develop in this paper a new implementation of the risk parity principle that
circumvents the usual limitations of the current implemented ones. Our contribution
to the literature is threefold. Firstly, we use a more appropriate risk measure than
the variance to account for extreme risks and give a reserve interpretation of the risk
contributions in a general non-Gaussian framework. Secondly, we introduce the risk
contribution restriction on the total contribution of the portfolio to systematic risk and
do not impose equal contributions to the systematic and unsystematic components of
the portfolio risk. Thirdly, we discuss the interest of such a restriction in terms of
portfolio turnover and transaction costs.

This chapter is organized as follows. In section 5.2, we focus on the difference
between the standard optimal portfolios and the associated risk parity portfolios.
Section 5.3 considers asset returns with systematic and idiosyncratic components.
Then we construct and compare different risk parity portfolios, when the parity is
written on both types of components. Section 5.4 derives and compares optimal
portfolios for different risk measures, especially the volatility, the VaR and the
expected shortfall. Section 5.5 presents empirical applications on portfolio of futures
on commodities and section 5.6 concludes. Some extensions and proofs are given in
the appendices.
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5.2. Portfolio allocation with risk contribution restrictions

We review in this section basic results on portfolio and risk allocations to highlight
the difference between the standard optimal portfolios and the portfolios with risk
contribution restrictions. We denote by y1, ..., yn the returns of n risky assets, Y the
corresponding vector of returns, μ the vector of expected returns, Ω the associated
volatility matrix and w the portfolio allocation, satisfying the standardized budget
constraint w′e = 1, with e being an n-dimensional vector of 1. We denote by R(w)
the scalar risk measure associated with allocation w. The risk measure depends on
allocation w through the distribution of the portfolio return w′Y .

5.2.1. Minimum risk portfolios

Let us focus first on the risk minimization problem. We obtain the minimum risk
allocation by solving the program:

w∗ = argmin
w′e=1

R(w).

The optimization problem above is written under the standardized budget
constraint w′e = 1. This possibility to standardize the budget constraint exists if the
risk measure is homogeneous of degree 1, that is, if R(cw) = cR(w), for any
positive scalar 3 c.

5.2.2. Portfolios with risk contribution restrictions

The recent literature on risk measures focuses on the risk contribution of each asset
to the total portfolio risk. In this respect, the risk contributions differ from the weights
in portfolio allocations, since they also account for the effect of each individual asset
on the total risk. Let us consider a global portfolio risk measured by R(w). This total
risk can be assigned to the different assets as:

R(w) =
n∑

i=1

Ri(w), [5.1]

where Ri(w) denotes the risk contribution of asset i to the risk of the whole portfolio.
If the risk measure is homogenous of degree 1, we get the Euler formula:

R(w) =

n∑
i=1

wi
∂R(w)

∂wi
.

3 Indeed, the solution of an optimization problem such as w∗(c) = minw R(w), s.t. w′e =
1/c is equal to w∗(c) = cw∗. Thus, the solution with another budget restriction is deduced
from the solution of the standardized optimization problem by an appropriate scaling.
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The Euler formula has an interpretation in terms of marginal contribution to global
risk w.r.t. a change of scale in the portfolio allocation4.

This explains why it is often proposed in the literature to choose:

Ri(w) = wi
∂R(w)

∂wi
, [5.2]

called the Euler allocation [LIT 96, p.28; GAR 97, footnote 2; QIA 06]. The difference
between the portfolio allocation and the risk contribution is captured by the marginal
risk ∂R(w)/∂wi (see equation [5.2]).

The Euler decomposition can be used to construct portfolios with constraints on
the risk contributions. For instance, equally weighted risk contribution portfolios have
been considered in the literature (see e.g. [SCH 07, MAI 10, ASN 12]), and are gaining
in popularity among practitioners [ASN 10, SUL 10, DOR 11].

This practice can be generalized by imposing the risk contributions to be
proportional to some benchmarks πi, i = 1, ..., n, which are not necessarily equal to:

∂R(w)

∂w
= λ(w) diag(πi) vec(1/w), [5.3]

where diag(πi) is the diagonal matrix with πi, i = 1, . . . , n as diagonal elements. That
is, we consider risk parity portfolios after an appropriate adjustment for the notion of
parity.

5.2.3. Risk contribution restrictions and portfolio turnover

The introduction of restrictions [5.3] can be justified by the effect of trading costs.
Let us assume that the investor’s portfolio allocation at the beginning of the period
is: w0 = (w0,1, ..., w0,n)

′, and that the investor updates his portfolio to get the new
allocation w = (w1, ..., wn)

′. He will account for the risk R(w) of the new allocation
and for the trading costs when reallocating the portfolio from w0 to w. Under no short
sale constraints: w0,i ≥ 0, wi ≥ 0, ∀i, the trading cost (turnover) may be measured
by:

T (w,w0) = c

n∑
i=1

w0,i ln

(
w0,i

wi

)
. [5.4]

4 The Euler formula is obtained by differentiating the homogeneity condition R(cw) = cR(w),
with respect to c and setting c = 1.
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Indeed, when the allocation adjustments are small, we have:

T (w,w0) ≈ −c

[
n∑

i=1

w0,i
wi − w0,i

w0,i
− 1

2

n∑
i=1

w0,i
(wi − w0,i)

2

w2
0,i

]

≈ c

2

n∑
i=1

(wi − w0,i)
2

w0,i
,

since the two portfolios satisfy the budget constraint: e′w = e′w0 = 1.

This approximation has a direct interpretation in terms of transaction costs, in
which the cost for trading asset i is proportional to 1/w0,i. This assumption on trading
costs can find a justification if the initial allocation corresponds to a market portfolio.
Assets with the highest market weights woi are also the most liquid ones, and their
trading is associated with low transaction cost. At the opposite, assets with the lowest
market weights are less liquid and then trading these assets is expensive in terms of
transaction costs. This cost for trading asset i is proportional to (wi − w0,i)

2. Thus,
the implied market impact function for trading asset i is strictly convex.

The investor has to balance risk reduction and trading cost in his portfolio
management. Thus, he/she can minimize a combination of both criteria, and choose:

w = argmin
w

R(w) + λc
n∑

i=1

w0,i ln

(
w0,i

wi

)
, [5.5]

where λ > 0 is a smoothing parameter introduced to control the portfolio turnover.
With λ = 0, the investment objective focuses on risk control. For high λ, the control
is on the portfolio turnover, and the investment objective is to enhance the initial
portfolio allocation in terms of risk control, but with a limited turnover.

The associated first-order condition is:

∂R(w)

∂wi
− λ c

w0,i

wi
= 0 ⇔ wi

∂R(w)

∂wi
= λ c w0,i. [5.6]

The risk contributions are proportional to the initial portfolio allocations:
πi ∝ w0,i. In particular, the benchmark levels of risk contributions πi, i = 1, ..., n
depend on the current investor’s portfolio. This approach is clearly suitable for
advising investors that do not want to enhance their risk management without
generating a high portfolio turnover.
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This solution is especially appealing in a multiperiod framework. Indeed, in a
myopic dynamic portfolio management, the sequence of optimization problems is:

w∗
t = argmin

wt

Rt(wt) + λ ct

n∑
j=1

w∗
t−1,j ln

(
w∗

t−1,j

wt,j

)
, [5.7]

where the conditional risk measure Rt(wt) and the trading cost ct depend on time.
Then the risk contribution restrictions are proportional to w∗

t−1,i and path dependent.
In this dynamic framework, the λ parameter controls the speed of convergence of the
current portfolio toward the time dependent minimum risk portfolio. In a stable risk
environment, that is, if Rt and ct do not depend on time, the optimal dynamic
reallocation approaches the minimum risk portfolio in several steps instead of doing
the reallocation at a single date. This point is especially appealing for big institutional
investors that want to reallocate huge portfolios without destabilizing the markets5.
This multiperiod optimal reallocation approach is also appealing when managing
portfolios of illiquid assets.

5.3. Portfolio allocation with systematic risk contribution restrictions

In this section, we consider portfolio allocations constructed to monitor the
systematic and idiosyncratic components of the portfolio return. This is done by
imposing the risk contribution restrictions on these two components of the total risk.
We consider factor models to discuss the effects of the systematic and idiosyncratic
components of the risk.

5.3.1. Systematic and idiosyncratic risks

Let us assume that the asset returns follow the one-factor model:

yi = βi f + σi ui, i = 1, ..., n, [5.8]

where f is the common (or systematic) factor, βi is the factor loading of asset i w.r.t.
factor f , and ui is the idiosyncratic (or specific) component, independent of the
factor. We assume that the idiosyncratic terms are mutually independent6, with
unconditional zero mean and unit variance. We get the following decomposition of
the return covariance matrix:

Ω = ββ′σ2
f +Σ, [5.9]

5 This is an important criterion for food commodity markets, when the commodity is also traded
for consumption by households, for instance.
6 Any residual dependence might be captured by introducing additional common factors. This
would lead to a multifactor model. We consider the one-factor model for expository purpose.
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where Σ = V u = diag(σ2), σ2
f is the variance of the common factor and β is the

vector of factor loadings. The portfolio return can be decomposed accordingly into a
systematic and an idiosyncratic component as:

w′Y =

(
n∑

i=1

wiβi

)
f +

n∑
i=1

wiσiui. [5.10]

The effects of the systematic and idiosyncratic components can be analyzed for
both risk contributions and portfolio allocations.

5.3.2. Systematic and idiosyncratic risk contributions

The decomposition principle [5.8] can be applied to disentangle the systematic and
idiosyncratic components of the risk as follows:

Ri(w) = Ris(w) +Riu(w), i = 1, . . . , n,

where Ris(w) [respectively Riu(w)] denotes the systematic (respectively
idiosyncratic) risk contribution of asset i to the total systematic (respectively
idiosyncratic) component of the risk. The risk decompositions above can be
aggregated to get a decomposition of the total risk as:

R(w) = Rs(w) +Ru(w),

where Rs(w) =
∑n

i=1 Ris(w) and Ru(w) =
∑n

i=1 Riu(w). These decompositions
are summarized in Table 5.1. This table shows how to pass from the assets i = 1, ..., n
tradable on the market, to the virtual assets f and (u1, ..., un) = u, which are not
directly tradable, that is, how to transform the decomposition of the total risk with
respect to basic assets i = 1, ..., n to a decomposition with respect to virtual assets.
This is done by constructing an appropriate two entries table, and summing up per
column instead of summing up per row (see [GOU 13]).

Assets Systematic factor Idiosyncratic error terms Total
1 R1(w)
...

...

i Ris(w) Riu(w) Ri(w)
...

...

n Rn(w)

Total Rs(w) Ru(w) R(w)

Table 5.1. Decomposition of the global risk measure
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How to derive this thinner risk decomposition in practice, while keeping an
interpretation in terms of Euler decomposition? Let us consider the virtual portfolio
with allocation wi,s in the systematic component and wi,u in the idiosyncratic one.
Thus, the associated portfolio return becomes:

(
n∑

i=1

wi,sβi

)
f +

n∑
i=1

wi,uσiui.

This portfolio invests wi,s in βif , and wi,u in σiui, i = 1, . . . , n. If we denote w̃
the components wi,s, wi,u, the risk measure of this virtual portfolio can be written as:
R̃(ws, wu), where R̃(w,w) = R(w). The extended risk measure R̃ is also
homogenous of degree 1. Thus, we can apply the Euler formula to R̃ and obtain:

R̃(ws, wu) =
n∑

i=1

wi,s
∂R̃

∂wi,s
(ws, wu) +

n∑
i=1

wi,u
∂R̃

∂wi,u
(ws, wu).

Then, for ws = wu = w, we deduce the thinner decomposition:

R̃(w) =
n∑

i=1

wi
∂R̃

∂wi,s
(w,w) +

n∑
i=1

wi
∂R̃

∂wi,u
(w,w),

and can define: Ris(w) = wi
∂R̃

∂wi,s
(w,w), Riu(w) = wi

∂R̃
∂wi,u

(w,w). Finally, the risk
measure R(w) is also function of parameters βi, σi, i = 1, ..., n, involved in the factor
model and we get:

wi
∂R̃

∂wi,s
(w,w) =

∂R

∂βi
(w), wi

∂R̃

∂wi,u
(w,w) =

∂R

∂σi
(w), [5.11]

in which the dependence of R with respect to βi, σi is not explicitely written for
expository purpose. We get a decomposition, which highlights the effects on the total
portfolio risk of shocks either on the factor, or on the idiosyncratic term.

5.3.3. Portfolios with systematic risk contribution restrictions

In the standard portfolios with risk contribution restrictions, the constraints are
written on the basic assets. The approach can be extended by considering risk
contributions written on the systematic and unsystematic components of the
portfolio. Let us consider the following optimization problem:

w(δ, π) = argmin
w′e=1

R2(w) + δ [(1− π)Rs(w)− πRu(w)]
2
, [5.12]
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where δ ∈ (0,∞) is a smoothing parameter. In the limiting case δ = ∞, we get the
optimization with a strict constraint on the contribution to systematic risk7: Rs(w) =
πR(w) . When δ = 0, we get the minimum risk portfolio.

As in section 5.2.3, we can justify the introduction of this risk contribution
restriction by the effect of trading costs, both on individual assets and on the factors,
when derivative instruments allows investors to directly trade on the virtual factor
asset. This is the case for equity investing, where the factor is usually the market
portfolio.

5.4. Illustrations with different risk measures

This section provides the closed form expressions of the minimum risk portfolios
and the risk contributions for three risk measures, that are the volatility, the VaR, and
the distorsion risk measures, including the expected shortfall.

5.4.1. The volatility risk measure

When the risk is measured by the volatility, we get: R(w) = (w′ Ωw)1/2.

5.4.1.1. Minimun variance portfolio

Let us assume that the set of assets does not include the riskfree asset, or
equivalently that the volatility matrix Ω is invertible. For the volatility risk measure,
we get the minimum-variance portfolio (see [MAR 52]), whose optimal allocation
has the closed form expression:

w∗ =
Ω−1e

e′ Ω−1 e
.

5.4.1.2. Risk contributions

We have:

∂R(w)

∂w
=

Ωw

(w′ Ωw)1/2
,

and the risk contributions are:

Ri(w) =
wi

(w′Ωw)1/2

n∑
j=1

Ωi,j wj =
Cov(wiyi, w

′Y )

V (w′Y )
,

7 If the level π belongs to the domain of admissible values of Rs(w)/R(w), when w vary.
Otherwise, we get the portfolio allocation with a systematic risk budget the closest to π.
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where Ωi,j is the generic element of Ω, and Cov(.) and V (.) denote, respectively, the
covariance and the variance. Thus, the contribution Ri(w) is the beta coefficient of the
part of the portfolio invested in asset i with respect to the total portfolio.

5.4.1.3. Systematic and idiosyncratic risk contributions

In a single factor model, we have: R(w) = [w′(ββ′σ2
f + Σ)w]1/2 and the Euler

risk contributions can be written as:

Ri(w) =
wi

(w′ Ωw)1/2
[
βi w

′ β σ2
f + wi σ

2
i

]
= Ris(w) +Riu(w),

where Ris(w) is the systematic risk contribution i and Riu(w) is the idiosyncratic risk
contribution of asset i:

Ris(w) = wi βi

w′β σ2
f

(w′Ωw)1/2
, Riu(w) = wi

wi σ
2
i

(w′Ωw)1/2
.

The expression of component Ris(w) shows the quantity wiβi invested in the

systematic factor f , and the risk contribution
w′β σ2

f

(w′Ωw)1/2
of a unit invested in f . By

adding the decompositions per asset, we get the decomposition of the total portfolio
risk as:

R(w) = Rs(w) +Ru(w), with Rs(w) = (w′β)2
σ2
f

(w′Ωw)1/2
and

Ru(w) =
w′Σw

(w′Ωw)1/2
,

that is the standard variance decomposition equation.

5.4.2. The α-VaR risk measure

The introduction of the VaR corresponds to the safety first criterion initially
introduced by Roy [ROY 52]. The α-VaR risk measure is defined by:

R(w) = −qα(w
′Y ),
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where qα is the α-quantile of the distribution of the portfolio return. More precisely,
the α-VaR is defined by the condition: P [w′Y < qα(w

′Y )] = α.

5.4.2.1. Minimum α-VaR portfolio

Let us first consider the Gaussian case before discussing the general framework:

– let us assume that the set of basic assets does not include the riskfree asset and
consider the allocation minimizing the α-VaR in a Gaussian framework. When the
vector of returns is Gaussian with mean μ and variance-covariance Ω, the optimal
allocation minimizes:

−qα(w
′Y ) = −w′μ− qαw

′Ωw,

where qα denotes the α-quantile8 of the standard Gaussian distribution under the
budget restriction w′e = 1. The minimum α-VaR portfolio allocation is then given
by:

w∗ =
Ω−1e

e′ Ω−1 e
+

1

2 qα
Ω−1

[
μ− e′ Ω−1 μ

e′ Ω−1 e
e

]
.

This formula highlights the key role of the minimum variance portfolio as the
benchmark portfolio for a very risk averse investor (when α → 0 and qα → ∞), but
also the importance of the excess expected returns;

– in the general framework, the returns are not necessarily Gaussian and the
minimum α-VaR portfolio is the solution of the system of equations:

∂qα(w
′Y )

∂wi
= λ(w), i = 1, ..., n, [5.13]

where the Lagrange multiplier λ(w) is fixed by the budget restriction w′e = 1. The
derivative of the α-VaR is equal to [GOU 00, HAL 03]:

∂qα
∂wi

(w′Y ) = E [yi|w′Y = qα(w
′Y )] , i = 1, ..., n. [5.14]

This derivative has no closed form expression in general and the minimum α-VaR
allocation has to be computed numerically.

8 Since α is small, qα is negative. Thus, the α-VaR is an increasing function of the variance of
the portfolio return and a decreasing function of its expected return.
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5.4.2.2. Risk contributions

When the risk is measured by the α-VaR, we get the following decomposition
formula of the global conditional quantile (see [GOU 13]):

qα(w
′Y ) = w′ ∂qα(w

′Y )

∂w
= w′E [Y |w′Y = qα(w

′Y )] , [5.15]

and

Ri(w) = E [wiyi|w′Y = qα(w
′Y )] . [5.16]

It measures the part of the expected loss due to asset i when the total portfolio is
in distress.

5.4.2.3. Systematic and idiosyncratic risk components

In the α-VaR case, the marginal effect of a change of weight of asset i can be
decomposed by equation [5.11] as:

wi
∂qα(w

′Y )

∂wi
= βi

∂qα(w
′Y )

∂βi
+ σi

∂qα(w
′Y )

∂σi
. [5.17]

The Euler components associated with systematic and idiosyncratic risks can be
explicited as follows:

∂qα(w
′Y )

∂β
= E [f |w′Y = qα(w

′Y )] ,
∂qα(w

′Y )

∂σi
= E [ui|w′Y = qα(w

′Y ) ].

In the linear factor model, the general decomposition [5.11] becomes:

Ris(w) = βiE [f |w′Y = qα(w
′Y ) ], Riu(w) = σiE [ui|w′Y = qα(w

′Y ) ],

[5.18]

and the decomposition of the total portfolio risk is:

R(w) = Rs(w) +Ru(w),

with

Rs(w) = β′ E [f |w′Y = qα(w
′Y ) ], Ru(w) =

n∑
i=1

σiE [ui|w′Y = qα(w
′Y ) ].

[5.19]
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5.4.3. Distorsion risk measures

A distortion risk measure is a weighted function of the VaRs associated with the
different risk levels. It can be written as:

R(w) =

∫
V aRα(w)dH(α) = −

∫
qα(w)dH(α),

where H is a given distortion measure on (0, 1), that is, an increasing concave
function. The expected shortfall is obtained when H is the cumulative distribution
function of the uniform distribution on the interval [0, α] (see e.g. [WAN 00,
ACE 02a, ACE 02b]).

5.4.3.1. Minimum DRM portfolio

The optimal allocations have no closed form expression and have to be derived
numerically. The minimum DRM portfolios solve the first-order condition (see
[GOU 00]):

(1− qα(w
′ Y ))E [Y |w′ Y = qα(w

′ Y )] = 0.

5.4.3.2. Risk contributions

Let us, for instance, consider the expected shortfall ESα. By definition we have:

ESα(w
′Y ) = w′E [Y |w′Y > qα(w

′Y )] , [5.20]

with risk contribution [TAS 00]: Ri(w) = E [wiyi|w′Y > qα(w
′Y )]. Thus, the risk

decompositions for VaR and ES differ by their conditioning set. These conditioning
sets correspond to different definitions of portfolio distress.

5.5. Application

We apply in this section the different portfolio management solutions of section 5.3
above to futures on commodities.

5.5.1. The investment universe

We consider futures contracts on physical commodities. These assets are split into
five sectors as described in Table 5.2.

The prices are daily closing prices from 14 May, 1990 up to 24 September, 2012,
and are all denominated in US$, even for metals traded in London. The physical
commodity prices include the storage and transportation costs. The returns are
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adjusted by rolling the futures’ positions in order to avoid the delivery process and to
get a stable time-to-maturity over time. We obtain rather symmetric distributions,
except for commodity “brent crudeoil”, which is left skewed, and for “cotton”, which
is right skewed9. All distributions feature tails fatter than Gaussian tail with kurtosis
up to 30–40 for “brent crudeoil” and “cotton”. The historical betas of each asset
returns with respect to the Dow Jones-UBS (DJUBS) commodity index are all
non-negative and some returns are very sensitive to changes in the index such as
“brent crudeoil” and “soybeans”. These large values do not reflect the composition of
the DJUBS index only. Indeed this index includes currently 20 physical commodities
for 7 sectors. Thus, several commodities in Table 5.2 are not included in the index.
The commodities included in the index are marked with a “*” in Table 5.2.
Moreover, if the weights of included assets are fixed according to their global
economic significance and market liquidity, they are capped. No commodity can
compose more than 15% of the index and no sector more than 33%. For instance,
cocoa, coffee and cotton have similar weights in the index, but cotton has a much
higher beta than the two other commodities.

Energy Grains & Seeds Softs Live Stock Metals
brent crudeoil∗ corn∗ cocoa lean hogs∗ copper∗

heating oil∗ rice coffee∗ live cattle∗ gold∗

light crudeoil∗ soybean oil∗ cotton∗ palladium
natural gas∗ soybeans∗ orange juice platinum

wheat∗ sugar∗ silver∗

Table 5.2. The commodities

For expository purposes, we focus in this section on the “Grains & Seeds”
sector10. Figure 5.1 plots the return evolutions of the five corresponding assets. These
evolutions can be very different in such a sector, which is clearly not homogenous.
Even if we observe common volatility clustering, there is a switching trend in both
mean and volatility for commodity “soybeans” and partly for the commodity
“soybean oil” positively correlated with it. It is this change of regime in 2004, which
explains the double regime dependence mentioned earlier.

5.5.2. Portfolio management with total risk contribution restrictions

Let us now consider four portfolio allocations for the “Grains & Seeds” sector: an
equally-weighted portfolio, a minimum-variance portfolio and two risk parity

9 Even if we do not focus on portfolio performances in this chapter, note that positive historical
skewness of individual asset returns might explain some good performance properties of the
equally weighted portfolio [BEL 12]. The small observed skewness show that this argument
will not apply to commodities.
10 The analysis for the other commodity sectors are available from the authors upon request.
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portfolios using either the volatility or the VaR at 5%, respectively. The three first
portfolios are frequently considered in the H.F. literature (see e.g. [DEM 09b]), and
can be used as benchmarks for comparison. The fourth portfolio allocation focuses
on extreme risks. The VaR and VaR contributions are estimated by kernel methods11,
the means and variances by their historical counterparts based on the 252 previous
observations. For each portfolio, we provide the evolutions of the portfolio weights
(Figure 5.2) and of the contributions to VaR (Figure 5.3), computed under
shortselling restrictions.

Figure 5.1. Returns for the Sector Grains & Seeds. For a color version

of the figure, see www.iste.co.uk/jurczenko/risk.zip

The main expected effect is to diminish the weights of highly risky assets for all
strategies controlling the risk (see Figure 5.2). At the extreme, the commodity
“soybeans” is not introduced in the min-variance allocation, whereas it appears
underweighted for strategies based on risk contributions, which are using the
“substitutability” with the less risky “soybean oil”. We also observe the instability
over time of the weights for the min-variance portfolio largely mentioned in the
literature. However, the two risk parity portfolios exhibit stable weights with a lower
turnover. However, the final allocation depends on the risk measure selected to write
the risk contribution restrictions.

11 The standard Nadaraya–Watson estimator has to be adjusted to ensure that the estimated VaR
and VaR contributions are compatible, that is satisfy exactly the Euler restriction.
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Figure 5.2. Evolution of Portfolio Weights for the Sector Grains &

Seeds. For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

The risk parity portfolios have rather stable risk contributions for the VaR risk
measure (see Figure 5.3), especially when we compare their contributions to the VaR
with the contribution of the equally weighted and min-variance portfolios. Whereas
the min-variance portfolio shows very erratic contributions to total risk, we observe a
highly risky trend in the evolution of the risk contribution for the portfolio with naive
1/n diversification. Finally, the VaR contributions of the two last portfolios are almost
the same, even if the portfolio VaR and portfolio volatility differ significantly.

5.5.3. Portfolio management with systematic risk contribution
restrictions

Let us now consider the constrained optimization problem introduced in
section 5.3.3 with a control for turnover:

min
wt

V aRt(wt) +δ[(1− π)V aRs,t(wt)− πV aRu,t(wt)]
2

+λ
∑n

j=1 w
∗
t−1,j ln

(
w∗

t−1,j

wt,j

)
,

s.t. w′
t e = 1, wit ≥ 0, i = 1, . . . , n,

[5.21]

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Equally−weighted portfolio − Sector Grains

 

 

corn
rice
soybeanoil
soybeans
wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Minimum−variance portfolio

 

 

corn
rice
soybeanoil
soybeans
wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Risk parity volatility portfolio − Sector Grains

 

 
corn
rice
soybeanoil
soybeans
wheat

Dec93 Sep96 Jun99 Feb02 Oct04 Jun07 Feb10 Sep12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Risk parity VaR portfolio − Sector grains

 

 
corn
rice
soybeanoil
soybeans
wheat



140 Risk-Based and Factor Investing

which corresponds to a mix between the minimization of the total VaR, the constraint
on the risk contribution for systematic risk and the turnover. The risk measure is the
VaR at 5%, and the systematic component is driven by a single factor chosen equal to
the DJUBS index return.

Figure 5.3. Evolution of VaR Contributions in the

Sector Grains & Seeds. For a color version of the

figure, see www.iste.co.uk/jurczenko/risk.zip

The optimal allocation depends on control parameters δ, π and λ:

– δ is a smoothing parameter: we get the min-VaR portfolio when δ = 0, and
the min-VaR portfolio with strict restriction on the systematic risk contribution when
δ → ∞;

– the benchmark systematic risk contribution π takes values in (0,1). When the
factor is a market index, π measures the degree of market neutrality of the portfolio
for extreme risks. When π = 0, we are looking for a portfolio with no market influence
on extreme risks;

– when used, the control for turnover takes two different values: λ = 0.01 and
λ = 1.
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We provide in Figures 5.4–5.5 the dynamic evolution of the weights for the
portfolios obtained with equation [5.21] for different values of the couple (π,δ) and
in the two cases λ = 0.01 and λ = 1.

Figure 5.4. Allocations of the 5%-VaR portfolio in sector Grains & Seeds including

the transaction costs balanced with a quite low parameter λ = 0.01 and for different

couples of parameters (π, δ). Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and each

column is for a fixed value of δ ∈ {10; 50; 100}. For a color version of the figure, see

www.iste.co.uk/jurczenko/risk.zip

For the small value of λ = 0.01, it seems quite possible to control the market
neutrality of the final portfolio by changing the values of π and δ. The higher π and δ
values are, the higher the allocations of the assets with a higher β (this is the case for
rice and wheat in Figure 5.4). However, when the manager focuses on reducing the
turnover of its portfolio (e.g. when λ = 1), then it seems very difficult to balance this
condition whatever are the values of π and δ. Note also that a portfolio management
which controls for extreme risk does not necessarily imply a “diversification” in terms
of portfolio allocation. It may be less risky to allocate the budget in a small number of
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assets. This phenomena is clearly seen on the top right panels of Figure 5.4 at the end
of the period. Table 5.3 reports the decomposition of total risk for a min-VaR (5%)
portfolio with a turnover control parameter λ = 0.01. We observe that, if rice is the
worst asset in terms of total risk contribution, its contribution to the systematic risk is
the lowest one.

Figure 5.5. Allocations of the 5%-VaR portfolio in sector Grains & Seeds including

the transaction costs balanced with a quite high parameter λ = 1 and for different

couples of parameters (π, δ). Each row is for a fixed value of π ∈ {0; 0.2; 0.5}, and

each column is for a fixed value of δ ∈ {10; 50; 100}. For a color version of the figure,

see www.iste.co.uk/jurczenko/risk.zip

When the solicited level of systematic risk contribution is high (Figure 5.5, λ = 1),
the tradeoff between the control on the systematic risk contributions and the turnover
is clearly in favor of this latter and we get then stuck with the initial portfolio, which
is, in the case of Figure 5.5, set as being the equally-weighted portfolio. This example
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shows that the calibration of the different control parameters is essential and yields to
quite different portfolio profiles.

Risk parity Systematic Idiosyncratic
Assets Beta VaR weight (%) factor (%) error (%) Total (%)
Corn 1.09 11.9 9.3 6.9 16.2
Rice 0.35 34.4 8.7 18.2 26.8

Soybeanoil 0.76 24.4 13.2 8.8 22.1
Soybeans 0.87 16.3 10.2 8 18.2

Wheat 1.12 13 10.4 6.3 16.7
Total 100 51.8 48.2 100

Table 5.3. Decomposition of total risk for a min-VaR (5%) portfolio with

a turnover control parameter λ = 0.01 in the sector Grains and seeds

as of 24 September 2012

5.6. Concluding remarks

We have introduced in this chapter a unified optimization framework for asset
allocation, which provides a mix between risk minimization, weakened risk
contribution restrictions and turnover. These allocation techniques include the most
well-known allocation procedures, such as the mean-variance and the
minimum-variance allocation as well as the equally weighted and risk parity
portfolios. There exist at least four reasons for considering such a mix focusing on
the systematic component of the risk. The first reason is to account for transaction
costs, when looking for the portfolio adjustment. In this respect, the introduction of
constraints on the risk contributions can have such an interpretation. The second
reason is to account for the regulation for financial stability, that is, for the
introduction of constraints on the budgets allocated to the different types of assets,
according to their individual risk, but also to the capital required for systematic risk,
which is based on the risk contribution. This justifies a restriction written on the
systematic component of the portfolio. The third reason is the possibility to manage
the degree of market neutrality of the portfolio. Finally, the standard mean-variance
approach applied to a large number of assets is very sensitive to small changes in the
inputs, especially to the estimate of the volatility–covolatility matrix of asset returns.
The introduction of budget and/or risk contributions, on either asset classes or types
of risks (systematic vs unsystematic), will robustify such an approach as well as the
accounting for turnover.

However, if such a mix is needed, there is no general method for selecting an
optimal mix, which might depend not only on the preference of the investor, but also
on the liquidity features and on the potential regulation. In this framework, the best
approach consists of considering different mix, to apply them empirically for portfolio
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allocation and compare the properties of the associated portfolios in terms of stability
over time of budget allocations, risk contributions and performances.

Our approach is easily extended to other type and number of factors. At the limit,
these factors on which the risk budgeting constraints are written might be at the
disposal of the portfolio manager and be selected to create oriented portfolio
managements (see e.g. [MEC 07]).
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6

Risk-Based Investing but What Risk(s)?

In this chapter, we propose a generalized risk-based investing framework, which allows us to deal

in a simple and flexible way with various risks beyond volatility and correlation, namely valuation,

asymmetry, tail and illiquidity risks. We empirically illustrate the methodology by proposing a risk-

based strategic allocation for a multi-asset portfolio made of bonds, equities, commodities, real

estate, hedge funds and private equity over the period 1990–2013.

6.1. Introduction

Risk-based investment strategies, such as minimum variance, maximum
diversification and risk parity, have attracted considerable attention from the investor
and academia community since the advent of the 2008 crisis. In most applications,
risk is measured through volatility, i.e. the standard deviation of a portfolio’s returns.
To many investors, associating risk with volatility is highly disputable.

Asness [ASN 14] illustrates this debate through the opposition between two
schools, with the “quant/geeks” using volatility as preferred to risk measure, while
some other investors argue valuation is the only true risk1. To some extent, this
opposition is coming from differences in investment horizons, and in the short term a
valuation approach can itself lead to huge losses – for instance, when assets are
entering into a “deep-value” phase. The story from Asness [ASN 14] ends up on a

Chapter written by Emmanuel JURCZENKO∗ and Jérôme TEILETCHE◦.
∗EHL ◦Unigestion
1 As a recent example, Montier [MON 14] writes: “Putting volatility at the heart of your
investment approach seems very odd to me as, for example, it would have had you increasing
exposure in 2007 as volatility was low, and decreasing exposure in 2009 since volatility was
high – the exact opposite of the value-driven approach”.
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more positive note by emphasizing that both approaches can be reconciled noting
that quants can incorporate valuation risks in their models through a positive
(negative) expected return hypothesis for the cheap (expensive) assets. More globally,
risk is a multi-facet concept as shown by many examples. Corporate bonds are
characterized by an intrinsic asymmetry of risk associated with default risk. Some
prominent alternative assets such as private equity, real estate and distressed
securities are affected by structural liquidity risks.

The purpose of our chapter is to propose a simple and flexible analytical solution
to deal with this diversity of risks. While not pretending to be exhaustive, we develop
a risk-based asset allocation framework, based on variations around expected shortfall
(ES) measures, where volatility, correlation, valuation, asymmetry, tail and illiquidity
risks can be fairly easily incorporated. We provide an illustration of the methodology
with a strategic asset allocation problem involving traditional and alternative assets.
To keep the text as readable as possible, most mathematical details are relegated to
the mathematical appendix, section 6.6. The data appendix, section 6.7, decribes the
construction of the dataset used in the empirical application.

6.2. Expected shortfall as risk measure

6.2.1. Expected shortfall: definition and properties

Our modeling framework is built around ES, also known as conditional value at
risk or expected tail loss. For a given confidence level of (1− α), ES corresponds to
the expected loss of the portfolio during the worst α-proportion of times for a
predefined investment horizon. In practice, the risk level α is typically chosen as
being low, e.g. α = 5%. This makes ES a more sensible risk measure than volatility
as it does concentrate on the left-tail of the return distributions corresponding to the
largest losses for the investors. Furthermore, ES is known to have properties superior
to other tail loss estimators such as value-at-risk (VaR). In particular, contrary to
VaR, ES is a subadditive risk measure [ART 99]. This means it is fulfilling the usual
diversification property which merely says that a portfolio can never be more risky
than the sum of risk of its individual components, which is not guaranteed for VaR.
Mathematically, this comes from the fact that ES is convex in portfolio’s weights, a
property of utmost importance to obtain a risk-based allocation solution, as we
discuss below.

To formally compute ES, let us consider a portfolio w = (w1, . . . , wn) made up of
n assets. Let μi and σi be the expected return and volatility of the i-th asset’s returns,
Ri. The associated portfolio returns are then given by Rp =

∑n
i=1 wiRi, with mean

μp =
∑n

i=1 wiμi and volatility σp =
∑n

i=1

∑n
j=1 wiwjσij , where σij denotes the
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covariance between the returns of assets i and j. It is convenient to re-express the
portfolio return through a location-scale representation

Rp = μp + σp Z, [6.1]

where Z = (Rp − μp) /σp is a zero-mean unit-variance random variable, with
distribution function G (.). The ES of the portfolio returns then equals:

ESα (w) = −μp − σp E
[
Z
∣∣Z ≤ G−1 (α)

]
, [6.2]

with

E
[
Z
∣∣Z ≤ G−1 (α)

]
=

1

α

∫ α

0

G−1 (s) ds,

where G−1 (.) is the quantile function associated with the portfolio’s return
distribution. Because E

[
Z
∣∣Z ≤ G−1 (α)

]
is a negative number in general for low

α, ES is expected to be a positive term conforming to the usual convention. The
higher the ES, the higher the loss. Higher expected return μp reduces ES. Higher
volatility σp increases ES.

The measurement of [6.2] requires us to estimate the quantities G−1 (α) and
E
[
Z
∣∣Z ≤ G−1 (α)

]
.

This can be done empirically from the time-series of innovations Z, either non-
parametrically or parametrically by postulating a specific distribution. The simplest
choice is to assume that Z follows a standard normal distribution, in which case [6.2]
becomes:

ESN
α (w) = −μp + σp λ

N
α [6.3]

with

λN
α =

φ (zα)

α
, [6.4]

where φ (.), Φ(.) and zα = Φ−1 (α) are the standard Gaussian density, cumulative
distribution and quantile functions, respectively. λN

α is a constant depending only on
α; it is higher for lower α, i.e. larger losses. For instance, we have λN

0.01 = 2.6652,
λN
0.05 = 2.0627 or λN

0.10 = 1.7550. While simple, the approach might be insufficient
as normality has well-known limitations to describe financial return distributions.
Later in the chapter, we discuss the Gaussian hypothesis.
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6.2.2. Contribution to expected shortfall and risk-based portfolios

Risk-budgeting principle is based on the decomposition of a risk measure in
contributions coming from the different components of a portfolio. For instance,
portfolio’s volatility can be decomposed as σp =

∑n
i=1 CVOLi, where

CVOLi = wi ∂σp/∂wi is the contribution of the i-th asset to the volatility of the
portfolio and ∂σp/∂wi = σip/σp is the marginal contribution to volatility with σip

the covariance of asset i returns with the ones of the portfolio. More generally, the
linear risk decomposition can be transposed to any risk measure which is
homogenous of degree 1 in the weights, since in this case we can apply Euler’s
decomposition [TAS 04]. ES is an example of a linear homogenous risk measure,
with ESα(w)=

∑n
i=1 CESα(i), where CESα(i) = wi ∂ESα(w)/∂wi is the

contribution of asset i to the ES of the portfolio. The percentage contributions are
given by %CESα(i) = CESα(i)/ESα(w), with

∑n
i=1 %CESα(i) = 1.

Risk-based investing is an application of risk-budgeting principles, which consists
of determining portfolio weights such that risk contributions match predefined risk-
budgeting policy. If we consider ES as the risk measure, then following Bruder and
Roncalli [BRU 12], any specific risk-based portfolio can be numerically obtained as:

w∗ = argmin
w

∑n
i=1

(
%CESα(i) − bi

)2
,

s.t.

{ ∑n
i bi = 1∑n
i wi = 1

∀i,
[6.5]

where bi corresponds to some arbitrary set of risk budgets. A simple example is the
risk parity strategy where we give the same risk budget to each asset in the portfolio,
i.e. bi = n−1 [MAI 10]; a key difference being that risk is here measured by ES and
not by volatility only. Other risk-budgeting policies can be considered as well. For
instance, the minimum expected shorfall portfolio is such that the risk budgets are
equal to capital weights, i.e. bi = wi.

Two additional remarks can be made. First, for long-only portfolios, program
[6.5] leads to a unique solution due to the convex property of ES [BER 04, RON 13].
Second, the “traditional” risk-based portfolio solutions are obtained as special cases
of [6.5] where all assets have zero expected returns and the distribution of return
innovations is Gaussian2. Departing from these hypotheses is what we propose in the
next section.

2 From Gaussian ES specification [6.3], we immediately deduce that CESN
α(i) = −wiμi +

λN
α CVOLi. It is straightforward to see that total ES contributions CESN

α(i) become equivalent
to total risk contributions to volatility CVOLi when μi = 0 ∀i.
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6.3. Broadening risk measures

We now review how to incorporate different types of risks within the ES
framework.

6.3.1. Volatility and correlation risks

The usual risk-based investment strategies determine their capital allocations such
that all components of the portfolio contribute to the same extent to its volatility.
Contributions to volatility are both dependent on individual volatilities and
correlation between assets.

In general terms, individual volatilities mainly measure the amplitude of returns;
the higher the volatility, the higher the range of potential returns. A common
criticism is that this measure is symmetric and hence does not differentiate between
gains and losses, while for investment purposes, the left-tail of the distribution
(losses) is probably more critical than the right-tail (gains) from a risk perspective.
Hence, it is often recommended to look at downside risk measures concentrated on
losses, and in particular on extreme losses. As the purpose of this chapter is to claim
that risk-based portfolios should be built on broader risk measures, we cannot totally
disagree. This being said, the criticism on volatility is a bit exaggerated. First,
volatility is potentially a more robust parameter as its estimation is based on the full
portfolio return distribution, and hence on larger samples. Second, volatility remains
a key component of extreme losses measure as clearly shown by equation [6.2] in the
case of ES.

Correlation between assets is often disregarded in risk-based solutions [CHA 11].
This has the advantage of solving the issue of estimation of these parameters but has
disadvantages as well. As an example, ignoring correlation renders risk parity
portfolios totally exposed to the duplication risk [CHO 13]. Applied to typical
multi-asset applications, ignoring correlation might turn into the same mistake that
was made some years ago by allocating to alternative assets as a way to diversify the
portfolio, while ignoring the common economic risk factors that affect both
traditional and alternative assets.

6.3.2. Valuation risk

Valuation is one of the major risks mentioned by investors. A natural way to
include valuation risk within the ES framework is to consider that the expected
returns μi are reflecting valuation misalignment. More specifically, we suggest using
carry as a measure of expected returns.
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Carry corresponds to the expected return of an asset if its price does not move in
the future [KOI 13]. As first-order approximation, carry will typically be measured
through bond or earning yields. More details are given in the data appendix (section
6.7). Carry is intrinsically related to valuation since it is obtained as the ratio between
the expected income associated with the holding of an asset and its current price.
For the same income stream, carry is larger (smaller) when asset prices are lower
(higher). A more general valuation model would imply to specifically measure the
difference between the current price and the fundamental value of the asset, but the
latter is not observable and is thus highly subjective. We do believe that the model-
free dimension of carry make it a more proper candidate for measuring valuation in a
risk-based context. All in all, our approach leads to the following mechanism: lower
(higher) carry implies lower (higher) expected returns, which translates into higher
(lower) ES through [6.2].

A related discussion is pursued by Roncalli [RON 14] who suggests using a
Gaussian ES to incorporate tactical views in a risk-budgeting framework. The author
draws a parallel with traditional Markowitz allocation problem, which does consist of
the minimization of the quantity −μp +

γ
2 σ2

p, where γ is the risk-aversion parameter.
Comparing this expression by [6.3], we deduce the implied risk-aversion parameter
in ES as being equal to γimp = 2

(
λN
α /σp

)
. It is interesting to note that the

incorporation of expected returns into the ES is made at very specific conditions, and
notably at very high level of risk aversion. For instance, if α = 0.05 and σp = 10%,
we have γimp = 41.2542, which is extremely high as typical risk-aversion estimates
are below 10 [MEH 85]. Hence, even if we allow the incorporation of expected
returns in a risk-based framework, the program remains fairly different from
Markowitz’s one in practice3.

6.3.3. Asymmetry and tail risks

It is widely acknowledged that financial return distributions frequently deviate
from a Gaussian distribution, as they present both asymmetrical and fat-tailness
characteristics. Asymmetry of risk describes a situation where potential gains and
losses are uneven. This risk is typical of asset classes such as credit, where issuers are
subject to default risk, implying a fundamentally negatively-skewed distribution of
returns, where the buy-and-hold bondholder can gain as a maximum the bond yield
to maturity (say, 5%) but can lose all its investment if the issuer goes bankrupt and
the recovery rate is zero. Tail risk expresses the fact that extreme events occur more
frequently than expected from a normal distribution, leading to a higher probability
of big losses or big gains. Different methodologies are available to model
non-Gaussian distributions.

3 See [JUR 15b] for an analytical framework allowing the combination of active views with a
risk-based portfolio.
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Following Zangari [ZAN 96], Cornish–Fisher (CF) approximations have gained
popularity due to their convenience and flexibility. The advantage of this approach in
the present context is to offer the opportunity of obtaining closed-form formulas for
the risk contributions, while alternative approaches would necessitate simulations at
each iteration used to solve the program [6.5]4. Under a second-order CF
approximation, with s2p ≈ 0, ES is equal to (see the mathematical appendix, section
6.6)5:

ESCF
α (w) = −μp + λN

α

(
1 + λCF

α

)
σp, [6.6]

where λCF
α =

[
1
6zαsp +

1
24

(
z2α − 1

)
(kp − 3)

]
is the adjustment to ES for the non-

Gaussian features of the distribution of returns; and sp and kp are the skewness and
kurtosis of the portfolio, respectively. For Gaussian returns, we have sp = 0, kp = 3,
λCF
α = 0, implying that we are back to [6.3]. Non-Gaussian distributions lead ES to

be impacted by skewness and kurtosis6. ESCF
α (w) is linearly decreasing in skewness

sp and linearly increasing in kurtosis kp. These are desirable features because they
imply that an asset with negative skewness or high kurtosis will tend to receive a
lower weight in a risk-based portfolio based on ES, all other things being equal.

To determine the exact risk-based portfolio composition, the next step is to get
individual ES contributions as inputs to program [6.5], which, under a CF hypothesis,
can be shown to be equal to (see Appendix 1)7:

CESCF
α(i) = CMEANi + CVOLi + CSKEWi + CKURTi, [6.7]

where CMEANi, CVOLi, CSKEWi and CKURTi are asset i mean, volatility,
skewness and kurtosis contributions to portfolio ES. Hence, the contributions of each
asset to ES can be broken down into its distributional characteristic risk
contributions. As we will illustrate in the empirical section, this decomposition
facilitates the identification of the various sources of risk at the level of individual

4 See [BRO 11] for an extensive study of ES under different distributional characteristics. While
in many cases, closed-form formulas can be obtained for ES itself, this is not the case for the
individual contributions to risk CESα(i). Technically, this is due to the fact that the quantile of
the distribution G−1 (α) is a complex function of portfolio’s weights. The absence of closed-
form formulas renders the optimization of the program [6.5] cumbersome. Our approach is
much more efficient in that perspective.
5 See [CHR 05] for a similar semi-parametric specification of the ES in which the term in s2p is
ignored.
6 In practice, we need to consider that under a CF approximation, the set of skewness-kurtosis
pairs must be restricted in order to yield monotonic quantile functions, with the skewness
varying between −3 and 3 and the excess kurtosis ranging between 0 and 8 [MAI 14].
7 A related formula is proposed by Boudt et al. [BOU 08]. Formula [6.7] has the advantage of
showing a clear decomposition of contributions to ES as a sum of contributions to the different
sources of risks. Furthermore, the expression is more tractable, making the optimization
program [6.5] easier to solve.
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assets, as well as at an aggregated portfolio level as summing over all ES
contributions [6.7] gives back the total ES risk itself, i.e.

∑
i CESCF

α(i) = ESCF
α (w).

The calculation of [6.7] necessitates computing all comoment matrices up to an
order of four. In practice, this can lead to a very large number of parameters. To cope
with this issue, we introduce in the mathematical appendix (section 6.6) a linear factor
model where the dependence between assets is modeled through a predefined set of
Gaussian factors, while the individual return innovations are potentially non-Gaussian.
This leads to a huge reduction in the number of parameters to be estimated.

6.3.4. Illiquidity risk

Illiquidity induces that transactions cannot be observed frequently, leading to
some form of stale pricing and smoothing return patterns. A common way to correct
for the associated biases in empirical risk measures is to unsmooth the time-series by
assuming that current returns form a moving-average of true returns; see, among
others, [GEL 93, ASN 01, GET 04, CAO 07]. In Appendix 1, we expand these results
to higher moments and comoments of the distribution. In particular, we give
expressions to correct covariance, coskewness and cokurtosis empirical estimates and
we derive a new expression for individual contributions to ES isolating illiquidity
risk, as follows:

CESCF
α(i) = CESo

α(i) + ILLIQUIDi, [6.8]

where CESCF
α(i) and CESo

α(i) are defined as in equation [6.7] and obtained through the
application of this formula to illiquidity-corrected and raw moments,
respectively. ILLIQUIDi corresponds to the contribution of asset i to total ES coming
from the impact of illiquidity on the various moments of the return distribution, with
ILLIQUIDi = 0 if the asset is liquid.

6.4. Empirical results

In this section, we empirically illustrate the ES decomposition methodology by
determining a risk-based strategic allocation for a multi-asset portfolio spanning a
range of traditional and alternative assets.

6.4.1. Data overview and preliminary analysis

Our database is made up of the quarterly returns and carry indicators for eight
traditional and alternative asset classes over the period spanning from the first quarter
of 1990 to the third quarter of 2013. Table 6.1 gives the list of assets and details sources
and carry definitions (more details are available in the data appendix, section 6.7).
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Code Asset class (index) Source Carry definition
EQ Equities Large Cap (S&P 500) Bloomberg Earning yield plus inflation expect
SC Equities Small Cap (Russell 2000) Bloomberg Earning yield plus inflation expect
IG U.S. Investment Grade (Barclays) Barclays’ Website Yield to worst plus roll-down
HY U.S. Corp. High Yield (Barclays) Barclays’ Website Yield to worst plus roll-down
CO Commodities (basket of 14 comm.) Bloomberg 1-year roll-yield
HF Hedge Funds (HFR) Bloomberg Regression-based implied carry
PE Private Equity (Cambridge) Cambridge’s Website Regression-based implied carry
RE Real Estate (NCREIF) NCREIF’s Website Rental income returns

Table 6.1. Data description

Table 6.2 displays descriptive statistics for the asset returns. The average
(arithmetic) returns spread from 1.8% per quarter (or 7.2% per year) for investment
grade bonds to 3.6% per quarter (or 14.4% per year) for private equity. All assets
have delivered substantial premia over the risk-free rate which was roughly 1% per
quarter over the same time period. Volatilities range from roughly 2.5% per quarter
for investment grade bonds and real estate to more than 10% per quarter for small cap
equities. Associated Sharpe ratios gravitate around 0.25 for most assets with the
noticeable difference of private equity and real estate. However, as we will see later,
the latter asset classes are characterized by substantial illiquidity that downward bias
the volatility measure and leads to overestimate the Sharpe ratio. Deviations from
normality are substantial and frequently significant as shown by Jarque–Bera
statistics. Most asset classes are indeed characterized by a negative skewness and an
excess kurtosis of the return distribution8. Incorporating this dimension of the asset
returns is critical when it comes to risk-based portfolio construction.

EQ SC IG HY CO HF PE RE
Average return 2.53% 2.90% 1.80% 2.30% 2.49% 1.84% 3.61% 1.83%
Volatility 8.15% 10.61% 2.73% 5.24% 9.22% 3.63% 5.14% 2.44%
Sharpe ratio 0.19 0.18 0.29 0.25 0.16 0.23 0.51 0.34
Skewness -0.55∗∗ -0.43∗∗ -0.11 0.29 0.03 -0.76∗∗∗ -0.50∗∗ -1.94∗∗∗
Excess Kurtosis 0.48 0.62 1.45∗∗ 5.34∗∗∗ 3.48∗∗∗ 3.07∗∗∗ 2.00∗∗∗ 4.95∗∗∗
Jarque–Bera 5.70 4.45 8.53∗∗ 114.08∗∗∗ 47.90∗∗∗ 46.48∗∗ 19.77∗∗∗ 156.82∗∗∗

Notes. *, ** and *** indicate significance at the 10, 5 and 1% level, respectively, (two-tail tests for skewness and kurtosis).

Sharpe ratios are not annualized and assume a 1% per quarter risk-free rate assumption.

Table 6.2. Descriptive statistics of quarterly returns, 1990Q1–2013Q3

8 The sole exceptions to this deviation from normality are for public equities (large cap and
small cap), which can be deemed as a surprising result. However, the frequency of data seems
to play an important role here. Indeed, normality assumption is strongly rejected at a higher
frequency. This is mainly explained by a reduction in kurtosis at lower frequency.
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Table 6.3 displays the average carry (per quarter) and average correlation with
other assets. We refer the reader to the data appendix (section 6.7) for more details
on carry calculations. Carry estimates vary from almost zero for commodities to more
than 2.5% per quarter for high yield. For some assets such as fixed income, or even real
estate, the carry constitutes the bulk of the return in the long run. At the opposite, for
commodities or hedge funds, the portion due to carry is very low. Equity (public and
private) is intermediary between these extremes. As far as correlation is concerned, we
can isolate two groups of assets. On the one hand, public and private equities, and high
yield bonds, all have average correlation to the rest of the universe of assets which are
roughly 0.4. On the other hand, investment grade bonds, commodities or real estate
appear as the most diversifying assets as their correlation with the rest of the universe
is close to 0.

EQ SC IG HY CO HF PE RE
Panel A: average carry (per quarter)

2.11% 1.49% 1.66% 2.59% 0.10% 0.36% 1.81% 2.00%
Panel B: average correlation

0.47 0.44 0.08 0.39 0.15 0.41 0.44 0.07

Notes. See Appendix 2 for more details on carry estimates. Average correlation is based on the full sample matrix.

Table 6.3. Average carry and correlation

Table 6.4 summarizes the estimations performed to correct the asset comoments
for illiquidity. We follow the steps described in section C of the mathematical
appendix (section 6.6). We first estimate moving-average models and then infer
corrections for the different comoment matrices. In Panel A, we first report Bayesian
information criterion (BIC) for the different moving-average models. We highlight in
bold the lag k that we retain for each asset as it leads to minimize the BIC statistic.
With the exception of high yield, traditional assets and commodities are all
characterized by a zero-lag, meaning they are deemed liquid through this criterion.
The exception for high yield is not surprising as it has the reputation of offering one
of the poorest liquidity among fixed income buckets. Alternative assets are also
characterized by estimated poor liquidity, particularly for private equity and even
more for real estate. These results are not surprising due to the characteristics of
these privately-exchanged assets, but our models provide a quantification which is
based on a consistent methodology across all assets. Panel B displays the associated
smoothing coefficients, while in Panel C we report the implied scaling coefficients
for the moments9. Cases where θi,0 = 1 indicate situations where there is no
estimated illiquidity-bias and no need for scaling up the moments. At the opposite,
cases where θi,0 < 1 indicate cases where some illiquidity bias is estimated.

9 Comoments will also be corrected through appropriate products of the smoothing coefficients
of the involved assets. See Appendix C of Appendix 1 for more details.
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Correcting for this leads to inflate moments. For instance, the volatility of real estate
is estimated to be understated by a factor of more than 2 due to the illiquid nature of
the asset. This notably implies that the impressive Sharpe ratios of Table 6.2 for the
less liquid assets will be questioned. Corrections for skewness and kurtosis are also
significant for some other assets.

EQ SC IG HY CO HF PE RE
Panel A: BIC criterion for MA(k)

k = 0 -207.76 -157.59 -415.86 -291.85 -184.29 -361.57 -295.29 -436.73
k = 1 -203.47 -153.99 -412.13 -301.97 -180.19 -362.98 -301.13 -480.00
k = 2 -199.04 -150.54 -409.60 -301.49 -175.81 -359.01 -302.40 -519.48
k = 3 -194.49 -146.91 -405.07 -297.04 -172.92 -354.91 -298.55 -515.39
k = 4 -190.05 -143.03 -404.37 -293.65 -168.66 -350.58 -295.47 -533.61

Panel B: smoothing coefficients
θi,0 1.000 1.000 1.000 0.658 1.000 0.808 0.650 0.305
θi,1 0.000 0.000 0.000 0.342 0.000 0.192 0.205 0.204
θi,2 0.000 0.000 0.000 0.000 0.000 0.000 0.145 0.203
θi,3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.131
θi,4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.157

Panel C: implied scaling coefficients for moments
Volatility 1.000 1.000 1.000 1.348 1.000 1.204 1.435 2.143
Skewness 1.000 1.000 1.000 1.255 1.000 1.072 1.182 1.976
Kurtosis 1.000 1.000 1.000 1.502 1.000 1.113 1.304 3.641

Table 6.4. Illiquidity corrections

To shed additional light on these issues, we report in Table 6.5 different
risk-adjusted performance measures. On top of the traditional Sharpe ratios, we
report illiquidity-corrected Sharpe ratio where volatility is incorporating the
illiquidity correction displayed in Table 6.4. We also report so-called conditional
Sharpe ratios, which are obtained as the ratio between asset excess returns and the
95% ES, where ES is estimated alternatively through three different models of
increased completeness: a Gaussian approximation (see equation [6.3]), a
skewness-kurtosis expanded version (see equation [6.6]) or the most complete model
incorporating expansions for non-normal behavior and illiquidity-bias. The risk
measure can have a significant implication on the assets ranks, notably when we
consider conditional (ES-based) Sharpe ratios involving the different risk
dimensions. Most spectacularly, while real estate is the best asset as far as
uncorrected conditional Sharpe ratio is concerned, it becomes the worst when we
incorporate correction for non-normality and illiquidity. These differences will also
get out in the risk-based allocations as we will see in the next section.
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Corrections Assets
Measure Skew-Kurt Illiquidity EQ SC IG HY CO HF PE RE
SR (Sharpe ratio) No No 0.19 0.18 0.29 0.25 0.16 0.23 0.51 0.34
SR No Yes 0.19 0.18 0.29 0.18 0.16 0.19 0.35 0.16
Conditional SR No No 0.18 0.15 0.47 0.27 0.15 0.33 0.52 0.57
Conditional SR Yes No 0.15 0.13 0.39 0.20 0.12 0.21 0.36 0.24
Conditional SR Yes Yes 0.15 0.13 0.39 0.11 0.12 0.16 0.20 0.05

Table 6.5. Comparison of risk-adjusted performance measures

6.4.2. Equal risk contribution under different risk models

Let us assume that an investor wants to build a fully invested portfolio where each
asset will contribute to the same extent to the global risk of the portfolio. Investors
would recognize “risk parity” in this portfolio construction seeking to maximize risk
diversification on an ex-ante basis. But, risk parity is in general associated with
volatility alone and might involve some leverage. Accordingly, let us call “Equal
Risk Contribution” [MAI 10] this risk-budgeting policy.

Our purpose is to illustrate how different will be the portfolios when the investor
uses different risk models. More specifically, we consider five different models of
increasing realism:

– naive risk parity (NRP): risk measure is volatility, ignoring correlation;

– risk parity (RP): risk measure is volatility, incorporating correlation;

– Gaussian expected shortfall (GES): risk measure is ES, assuming a Gaussian
distribution;

– modified expected shortfall (MES): risk measure is ES, where ES is modified to
incorporate skewness and kurtosis;

– liquidity adjusted modified expected shortfall (LAMES): risk measure is ES,
where ES is modified to incorporate skewness and kurtosis, and comoment matrices
are corrected for illiquidity.

Associated portfolio weights are given in Panel A of Table 6.6. We observe a
substantial variation across models. NRP is naturally allocating more massively to
assets with low volatility such as investment grade bonds and real estate, and will
give small weights to high-volatility assets such as equities and commodities. RP is
introducing correlation and will mitigate the NRP allocation by increasing the
allocation to low-correlation assets such as investment grade bonds, commodities and
real estate, and will reduce the allocation to the other ones. The next column marks
the entry into ES risk measures with first the Gaussian approximation. Relatively to
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RP, the key change in GES is to introduce carry, or valuation risk in our framework10.
The allocation is increased to assets presenting a high carry-to-volatility ratio,
namely investment grade bonds and real estate. Portfolio weights change
significantly when we correct ES for non-normal behavior, with notably a significant
drop in real estate weight, an asset characterized by high kurtosis and fairly negative
skewness, to the benefit of public equities and investment grade bonds. An interesting
result is the fact that the allocation to high yield bonds barely changes as its high
kurtosis is compensated by a (modest) positive skewness. Finally, the last column
presents the portfolio weights associated with the LAMES risk model, i.e. based on
ES incorporating both non-normal and illiquidity adjustments. As an asset
characterized by a poor liquidity, real estate sees its portfolio weight reduced further.
Private equity is also affected but to a lesser extent as its weight is already small due
to its high volatility, high correlation and non-normal features. In Panel B of Table
6.6, we finally report the portfolio metrics. More realistic risk models lead to build
portfolios with better carry to volatility profiles. But, the most significant
improvements are appearing for higher moments such as skewness and kurtosis, as
well as for the modified ES, while normal-Gaussian ES barely changes.

NRP RP GES MES LAMES
Panel A: portfolio weights

EQ 6.96% 4.55% 2.87% 7.02% 8.67%
SC 5.34% 3.80% 2.29% 7.19% 8.36%
IG 20.81% 27.85% 31.47% 52.10% 52.01%
HY 10.83% 7.89% 6.54% 7.22% 8.13%
CO 6.15% 6.76% 3.85% 3.21% 3.88%
HF 15.64% 11.05% 6.66% 7.58% 8.33%
PE 11.03% 7.44% 5.02% 6.32% 5.39%
RE 23.23% 30.66% 41.30% 9.38% 5.23%

Panel B: portfolio metrics
Average carry 1.58% 1.61% 1.73% 1.64% 1.62%
Volatility 3.61% 3.09% 2.88% 3.03% 3.26%
Skewness -2.64 -3.52 -4.19 -1.00 -0.62
Excess Kurtosis 12.15 17.74 18.69 3.92 2.91
Gaussian expected shortfall 5.87% 4.77% 4.17% 4.61% 5.11%
Modified expected shortfall 16.99% 18.15% 17.97% 7.83% 7.46%

Notes. NRP is naive risk parity, i.e. an equalization of contributions to portfolio volatility ignoring correlation. RP is
risk parity, i.e. an equalization of contributions to portfolio volatility taking into consideration correlation. GES is the
allocation equalizing ES contributions assuming a normal-Gaussian distribution. MES is the allocation equalizing ES
contributions where ES is the modified expected shortfall incorporating skewness and kurtosis. LAMES is the allocation
equalizing ES contributions where ES is the modified expected shortfall incorporating skewness and kurtosis, and corrected
for illiquidity bias. Portfolio statistics are computed using illiquidity-corrected comoments matrices. Modified expected
shortfall is incorporating skewness, kurtosis and illiquidity corrections.

Table 6.6. Equal risk contribution portfolio: differences across models

10 The valuation interpretation of the carry will be even more sensible in dynamic allocation
exercises. We leave this to future research.
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In Table 6.7, we provide more details on LAMES portfolio. In particular, we give
a breakdown of the portfolio ES (7.46%; see Table 6.6) along two axes, splitting
contributions by asset class and moments. For instance, the large cap equities are
contributing to 1.22% out of the 7.46% ES through the volatility of the portfolio.
The last column gives the contribution of each asset to total ES. All contributions
are equal as this is the objective of the equal risk contribution portfolio construction.
Figure 6.1 reports, for each asset class and the LAMES portfolio, the breakdown of
the ES contribution per moment. For liquid asset classes, the largest contributions
come from volatility. Most assets are contributing positively through the skewness
with the exception of bonds. Alternative asset classes are mainly contributing through
illiquidity, with the exception of commodities contributing everywhere to some extent.
Finally, we notice that even liquid assets such as investment grade can have an impact
through illiquidity, but this is mainly coming from products in comoment matrices
with other (illiquid) asset classes.

Moments attribution
Mean Volatility Skewness Kurtosis Illiquidity Total

EQ -0.18% 1.22% 0.15% -0.21% -0.05% 0.93%
SC -0.12% 1.45% 0.00% -0.33% -0.05% 0.93%
IG -0.86% 1.78% -0.75% 0.39% 0.37% 0.93%
HY -0.21% 0.72% -0.07% 0.38% 0.11% 0.93%
CO 0.00% 0.16% 0.29% 0.35% 0.13% 0.93%
HF -0.03% 0.41% 0.29% 0.10% 0.16% 0.93%
PE -0.10% 0.36% 0.29% 0.04% 0.34% 0.93%
RE -0.10% 0.01% 0.21% 0.13% 0.68% 0.93%
Portfolio -1.62% 6.10% 0.41% 0.86% 1.70% 7.46%

Table 6.7. LAMES portfolio: contributions to expected shortfall

6.5. Conclusion

Risk-based investing strategies are experiencing a growing popularity among
investors. Yet, in most applications, risk is usually measured through volatility, while
other risk characteristics are also important, especially when considering investing in
alternative asset classes. In this chapter, we propose a generalized risk-based
investing framework based on a semi-parametric ES risk measure that allows
investors to deal with various source of risks beyond volatility and correlation, such
as valuation, asymmetry, tail and illiquidity risks.

We obtain closed-form formulas for the moment contributions of each asset to
the portfolio ES, e.g mean, volatility, skewness and kurtosis risk contributions. We
also show how to isolate the individual illiquidity risk contributions through a simple
adjustment of the asset comoments. This decomposition facilitates the identification
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of the various source of risks both at the individual and portfolio level through the
aggregation of the individual risk contributions.

Figure 6.1. LAMES portfolio: contributions to

expected shortfall by asset

We illustrate the usefulness of our methodology with an in-sample analysis of
a typical risk-based strategic allocation across a range of traditional and alternative
assets. We show how the non-normality of returns and illiquidity biases can affect
significantly the capital allocation. We also find that the breakdown of the individual
risk contributions can be very different across assets, with the largest contributions
coming from volatility for traditional asset classes, while non-normality and illiquidity
are more important for alternative ones.

A natural extension of our research would consist of comparing the out-of-sample
performance of our generalized risk-based approach with alternative risk-based or
maximum Sharpe ratio portfolios. Another interesting extension would consist of
assessing the empirical performance of our robust factor-based moment estimators.

6.6. Mathematical Appendix

In this appendix, we detail the calculations used for computing and estimating ES
and contributions to ES. We first recall how to compute the sensitivity of the first four
moments of the portfolio’s return distribution to portfolio weights (Appendix A). We
then apply those results to compute contributions to ES, first under the hypothesis of
non-Gaussian distribution (Appendix B), and of illiquidity of assets (Appendix C).
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We finally provide structured multifactor estimators of the covariance, coskewness
and cokurtosis matrices (Appendix D).

Appendix A: Sensitivity of distribution centered moments to portfolio’s
weights

Let Rt and w be the (N × 1) vectors of the t-period returns and portfolio’s
weights for the different assets, respectively. The portfolio returns are denoted by
Rp,t = wTRt with mean μp = E (Rp,t). m(k) = E

[
(Rp,t − μp)

k
]

corresponds to
the portfolio’s k-th centered moment. By definition, the first centered moment m(1)

is equal to zero. Following the approach of Athayde and Flores [ATH 04] and
Jondeau and Rockinger [JON 06], it is convenient to express the centered moments
of order 2, 3 and 4 as follows:

m(2) = wT Ωw,
m(3) = wT Ξ (w ⊗ w) ,
m(4) = wT Γ (w ⊗ w ⊗ w) ,

[A.1]

where Ω = E
[
(Rt − μ) (Rt − μ)

T
]

is the (N ×N) covariance matrix, with

generic term σij = E [(Ri,t − μi) (Rj,t − μj)], Ξ = E
[
(Rt − μ) (Rt − μ)

T ⊗
(Rt − μ)

T
]

is the
(
N ×N2

)
coskewness matrix, with generic term

sijl = E [(Ri,t − μi) (Rj,t − μj) (Rl,t − μl)], Γ = E
[
(Rt − μ) (Rt − μ)

T

⊗ (Rt − μ)
T ⊗ (Rt − μ)

T
]

is the
(
N ×N3

)
cokurtosis matrix, with generic term

kijlm = E [(Ri,t − μi) (Rj,t − μj) (Rl,t − μl) (Rm,t − μm)] and ⊗ is the
Kronecker product symbol.

In what follows, we need to estimate the sensitivity of these moments to changes
in portfolio’s weights wi, denoted by ∂im(k). From [A.1], we have:

∂im(2) = 2 [Ωw]i = 2σip,
∂im(3) = 3 [Ξ (w ⊗ w)]i = 3sip,
∂im(4) = 4 [Γ (w ⊗ w ⊗ w)]i = 4kip,

[A.2]

where [A]i is the i-th row of matrix A, σip = E [(Ri,t − μi) (Rp,t − μp)], sip =

E
[
(Ri,t − μi) (Rp,t − μp)

2
]

and kip = E
[
(Ri,t − μi) (Rp,t − μp)

3
]

correspond to
the covariance, coskewness and cokurtosis between the i-th asset and the portfolio p.

Appendix B: Cornish–Fisher expected shortfall approximation and risk
contributions

The intuition of the Cornish–Fisher (CF) expansion is to approximate the quantile
function of a standardized non-Gaussian random variable Z by the quantile of a
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standard normal variable zα augmented by terms capturing the non-normal
characteristics through the direct introduction of skewness and kurtosis [ZAN 96].
Following Maillard [MAI 14], the CF quantile function can be expressed as:

G−1
CF (α) = a0 + a1 zα + a2 z

2
α + a3 z

3
α [B.1]

with ⎧⎪⎪⎨
⎪⎪⎩

a0 = − 1
6sp,

a1 = 1− 1
8 (kp − 3),

a2 = 1
6sp,

a3 = 1
24 (kp − 3),

where GCF (.) is the distribution function under a second-order CF approximation,
assuming s2p = 0, and (1− α) is the confidence level. sp = m(3)/m

3/2
(2) and kp =

m(4)/m
2
(2) are the portfolio’s skewness and kurtosis, respectively. The volatility is

defined as σp = m
1/2
(2) . The ES of the standardized return Z can then be obtained by

integrating the approximate CF quantile function [B.1]:

E
[
Z
∣∣Z ≤ G−1

CF (α)
]
=

1

α

∫ α

0

G−1
CF (s) ds [B.2]

=
1

α

∫ zα

−∞
a0φ (z) dz +

1

α

∫ zα

−∞
a1 zφ (z) dz

+
1

α

∫ zα

−∞
a2 z

2φ (z) dz +
1

α

∫ zα

−∞
a3 z

3 φ (z) dz,

where G−1
CF (.) is given in [B.1] and φ (.) is the standard normal density function.

Using the fact that
∫ zα

−∞
z 0φ (z) dz = α and

∫ zα

−∞
zk φ (z) dz = −zk−1

α φ (zα) +

(k − 1)

∫ zα

−∞
zk−2φ (z) dz, for k > 0, we deduce:

ECF

[
Z
∣∣Z ≤ G−1

CF (α)
]
= −λN

α

[
1 +

1

6
zαsp +

1

24

(
z2α − 1

)
(kp − 3)

]
, [B.3]

where λN
α =φ (zα) /α. Substituting [B.3] in the ES portfolio formula [6.2] yields:

ESCF
α (w) = −μp + λN

α

(
1 + λCF

α

)
σp, [B.4]

where λCF
α =

[
1
6zαsp +

1
24

(
z2α − 1

)
(kp − 3)

]
is the adjustment to ES for the non-

Gaussian features of the distribution of returns.

The estimation of a risk-based portfolio necessitates to obtain the individual
contributions to ES, CESα(i). Computing the first derivative of [B.4] relatively to wi,
we get:

∂iESCF
α (w) = −μi + λN

α

(
1 + λCF

α

)
∂iσp

+ λN
α σp

[
1
6zα∂isp +

1
24

(
z2α − 1

)
∂ikp

]
,

[B.5]
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where ∂i denotes the partial derivative relatively to wi. From the centered moments
derivatives given in Appendix A [A.2], we infer:

∂iσp =
∂im(2)

2m
1/2

(2)

=
σip

σp
,

∂isp =
m

3/2

(2)
∂im(3)− 3

2m
1/2

(2)
m(3)∂im(2)

m3
(2)

= 3
(

sip
σ3
p
− σip

σ2
p
sp

)
,

∂ikp =
m2

(2)∂im(4)−2m(4)m(2)∂im(2)

m4
(2)

= 4
(

kip

σ4
p
− σip

σ2
p
kp

)
,

[B.6]

Inserting these values into [B.5] and rearranging terms leads to:

∂iESCF
α (w) = −μi + λN

α
σip

σp
+ λN

α σp
zα
6

(
∂isp + ∂iσp

sp
σp

)
+λN

α σp
1
24

(
z2α − 1

) [
∂ikp + ∂iσp

kp−3
σp

]
.

[B.7]

Premultiplying by portfolio’s weights wi yields the contribution of each asset to
the total ES, i.e. CESCF

α(i), which can finally be rewritten as a weighted sum of
contributions to the first four moments of the portfolio as follows;

CESCF
α(i) = CMEANi + CVOLi + CSKEWi + CKURTi, [B.8]

with ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CMEANi = c1 wi μi,
∑n

i=1 CMEANi = c1μp,
CVOLi = c2

wi σip

σp
,
∑n

i=1 CVOLi = c2 σp,

CSKEWi = c3wi

(
∂isp + ∂iσp

sp
σp

)
,
∑n

i=1 CSKEWi = c3sp,

CKURTi = c4wi

(
∂ikp + ∂iσp

kp−3

σp

)
,
∑n

i=1 CKURTi = c4 (kp − 3) ,

where CMEANi, CVOLi , CSKEWi and CKURTi denote the contribution from the
i-th asset mean, volatility, skewness and kurtosis to the portfolio risk. c1, c2, c3 and
c4 are constants with c1 = −1, c2 = λN

α , c3 = λN
α σp

zα
6 and c4 = λN

α σp

(
z2
α−1
24

)
.

Summing over all assets, we retrieve ES as the sum of individual contributions
ESCF

α (w) =
∑n

i=1 CESCF
α(i).

Appendix C: Modeling illiquidity through smoothing

Following Getmanski et al. [GET 04], we assume that, due to illiquidity, the actual
returns Ri,t cannot be observed directly and that the reported returns of the illiquid
asset, denoted by Ro

i,t, are governed by a MA(K) process:

Ro
i,t =

K∑
k=0

θi,k Ri,t−k for i = (1, .., n) , [C.1]
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where θi,k ∈ [0, 1] for k = (0, ...,K) and
∑K

k=0 θi,k = 1. Getmanski et al. [GET 04]
have shown that the smoothing mechanism [C.1] leads to a bias in the volatility, while
expected returns are unaffected, i.e.:

μo
i = μi,

σo
i = σi ×

(∑K
k=0 θ

2
i,k

)1/2

� σi.
[C.2]

Cao and Teiletche [CAO 07] expand these results to the bivariate case, from which
we infer for covariance:

σo
ij = σij

(
K∑

k=0

θi,kθj,k

)
.

Covariances are thus understated,
∣∣σo

ij

∣∣ � ∣∣σij

∣∣, as
∑K

k=0 θi,kθj,k � 1. Following
the same type of reasoning, we deduce similar results for skewness si, coskewness
sijl, kurtosis ki and cokurtosis kijlm, that is:

soi = si

∑K

k=0
θ3
i,k(∑K

k=0
θ2
i,k

)3/2 ,

soijl = sijl

(∑K
k=0 θi,kθj,kθl,k

)
,

koi = ki

∑K

k=0
θ4
i,k(∑K

k=0
θ2
i,k

)2 ,

koijlm = kijlm

(∑K
k=0 θi,kθj,kθl,kθm,k

)
.

[C.3]

In all cases, we also see that the smoothing process [C.1] leads to an
underestimation (in absolute terms) of comoments. To cope with these biases, we
correct the covariance, coskewness and cokurtosis matrices before applying the risk
contribution calculations [6.7] and the program [6.5]. More specifically, we correct
the comoments in the following way:

σcorrected
ij =

σo
ij(∑K

k=0
θ̂i,k θ̂j,k

) ,
scorrected
ijl =

soijl(∑K

k=0
θ̂i,k θ̂j,k θ̂l,k

) ,
kcorrected
ijlm =

ko
ijlm(∑K

k=0
θ̂i,k θ̂j,k θ̂l,k θ̂m,k

) ,
[C.4]

where the terms θ̂i,k are inferred from the estimation of moving-average models. We
first estimate the MA(K) process, Ro

i,t = μi+εi,t+ϑi,1εi,t−1+· · ·+ϑi,Kεi,t−K , and

then simply deduce the smoothing parameters as θ̂i,0 = 1/
(
1 + ϑ̂i,1 + · · ·+ ϑ̂i,K

)
and θ̂i,k = ϑ̂i,k/

(
1 + ϑ̂i,1 + · · ·+ ϑ̂i,K

)
for k > 1.
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For each asset i, the implication of the illiquidity can then be judged by contrasting
the risk allocation of a considered portfolio on the basis of the corrected statistics
versus the ones based on the raw statistics with:

ILLIQUIDi = CESCF
α(i) − CESo

α(i), [C.5]

where CESCF
α(i) and CESo

α(i) correspond to the smoothed and unsmoothed individual
ES risk contributions, respectively. It is straightforward to see that ILLIQUIDi is equal
to 0 if all assets are liquid, i.e. θi,k = 1 for k = 1 and θi,k = 0 for k > 0.

Appendix D: Multifactor estimators for higher order moment matrices

The implementation of ES risk decomposition analysis requires an estimate of the
higher order moments of the return distribution. To reduce the dimensionality problem
typically involved in the estimation of the coskewness and cokurtosis matrices, we
assume that asset returns can be represented by the following linear Q-factor model:

Rt = μ+Bf t + εt, [D.1]

where ft = (f1,t,..., fQ,t)
T is the (Q× 1) vector of risk factors assumed to be jointly

normally distributed, with E [f t] = 0 and E
[
f t f

T
t ⊗fT

t

]
= 0;

εt = (ε1,t,..., εN,t)
Tis the (N × 1) vector of error terms which are supposed to be

independent with each of the risk factors and also cross-sectionally independent, i.e.
for any powers r and s and i �= j, E

[
(f t)

r
εsi,t

]
= E [ (f t)

r
]E

[
εsi,t

]
and

E
[
εri,t ε

s
j,t

]
= E

[
εri,t

]
E
[
εsj,t

]
; and B is the (N ×Q) matrix of factor loadings with

row vectors bT
i = (βi1,..., βiQ). The common risk factors can correspond either to

some set of observable macrofinancial variables, fundamental-based mimicking
portfolios or to latent statistical factors.

Under the simplifying assumption of the multifactor model [D.1], the comoment
matrices Ω, Ξ and Γ can then be decomposed as:

Ω = BΩf B
T +Δε,

Ξ = Ψε, [D.2]

Γ = BΓf

(
BT⊗BT⊗BT

)
+Φε,

where Ωf = E
[
f t f

T
t

]
is the (Q×Q) factor covariance matrix with generic term

σf
ij = E [fi,t fj,t] and Δε is the (N ×N) diagonal residual covariance matrix, with

elements δij = E
[
ε2i,t

]
when i = j and zero otherwise; Ψε is the

(
N ×N2

)
sparse

residual matrix of coskewness, with elements ψijk = E
[
ε3i,t

]
when i = j = k
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and zero otherwise; Γf = E
[
f t f

T
t ⊗fT

t ⊗fT
t

]
is the

(
Q×Q3

)
factor cokurtosis

matrix, with generic term kfijlm = σf
ijσ

f
lm+σf

ilσ
f
jm+σf

imσf
jl and Φε is the

(
N ×N3

)
residual matrix of cokurtosis, with φijlm = 6bT

i Ωfbi E
[
ε2i,t

]
+ E

[
ε4i,t

]
when i =

j = l = m, φijlm = 3bT
i Ωfbm E

[
ε2i,t

]
when i = j = l and m �= i (and similarly

for i = j = m and l �= i, i = l = m and j �= i, or j = l = m and i �= j), φijlm =

bT
i Ωfbi E

[
ε2l,t

]
+bT

l Ωfbl E
[
ε2i,t

]
+E

[
ε2i,t

]
E
[
ε2l,t

]
when (i = j) �=(l = m) (and

analogously for (i = m) �=(j = l) or (i = l) �=(j = m)), φijlm = 3bT
jΩfbl E

[
ε2i,t

]
when i = j, l �= i, l �= m and i �= m, and zero if i �= j �= l �= m.

As shown in the table below, the resulting number of parameters required to
estimate the comoment matrices is dramatically reduced under [D.1]. For universes
of medium sizes, say 50 assets and 4 factors, there are only 360 parameters to
estimate as opposed to 316200 in the general sample case. This translates in 878-fold
increase in the degrees of freedom if we use 5 years of daily data.

Moments Unconstrained Q-factor model
Ω N (N + 1) /2 Q (Q+ 1) /2 +N (Q+ 1)

Ξ N (N + 1) (N + 2) /6 N

Γ N (N + 1) (N + 2) (N + 3) /24 Q (Q+ 1) /2 +N (Q+ 2)

Total
N (N + 1) /2

+N (N + 1) (N + 2) /6
+N (N + 1) (N + 2) (N + 3) /24

Q (Q+ 1) /2 +N (Q+ 3)

Number of assets Total Total
Q = 1 Q = 2 Q = 3 Q = 4

N = 5 120 21 28 36 45

N = 50 316200 201 253 306 360
N = 100 4598025 401 503 606 710

Notes. The table represents the number of parameters to estimate for a universe of N assets, under a general unconstrained
set-up or through a Q-factor model.

6.7. Data Appendix

Our dataset covers eight traditional and alternative asset classes, over the period
spanning from the first quarter of 1990 to the third quarter of 2013. Due to limitations
related to private equity and real estate, we use quarterly data. Data are downloaded
from Bloomberg, and from Cambridge associates and National Council of Real Estate
investment Fiduciaries (NCREIF) Websites.

Our carry measures are inspired from [ILM 11] and [KOI 13], but with some key
methodological choices that we here detail. Furthermore, we extend the approach of
these authors to alternative assets for which carry estimates are less easily developed.
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For equities, we prefer to use earning yields rather than dividend yields, as the
latter forecasting abilities have notoriously decreased as companies have preferably
used shares buy-backs or accumulating cash rather than distributing it. In this regard,
earnings are giving a broader overview of the available income of the company. More
globally, earning yield, i.e. the ratio of earnings with current price, is a core measure
of equity valuation. Finally, we add inflation expectations to earning yields to get the
final carry measure as carry is reputed being a real variable. Inflation expectations are
based on University of Michigan Survey of Consumers 1 year ahead expectation, as
it is available at sufficient high frequency (monthly) and over a long history, and is
model-free as a direct survey, while inflation-linked bonds were not available before
1997 and require assumptions to derive inflation expectations. The source for earning
yields is Bloomberg where we use the reciprocal of the ratio between the 12 months
trailing weighted diluted earnings per share with the latest available price. For Russell
2000, price-earning ratios are not available before 1995. We fill the gap from 1990
to 1994, by considering that small cap stocks post earning yields half of the ones of
large cap stocks, as it does roughly correspond to the ratio observed between 1995 and
2013.

For fixed income securities, carry is given by the sum of current yield and the roll-
down. We use Barclays indices for U.S. Investment Grade and High Yield. The yield
measure is the yield to worst, which adjusts yield to maturity for prepayment, call or
other features characteristic of some bonds. To compute the roll-down, we make use
of informations we draw from different Barclays indices. In particular, we contrast the
“Global” all-maturity index we use as basis with the “Intermediate” versions, which
are based on shorter maturity bonds. More specifically, the roll-down is based on the
following formula:

Roll returnt = −D × yIntermediate
t − yGlobal

t

MGlobal
t −M Intermediate

t

,

where yt and Mt denote the yield-to-worst and maturity, respectively, and D is the
duration of the “Global” index.

Commodities portfolio is based on a basket of 14 primary commodities, which
offer available data back to 1990: sugar, coffee, cotton, cocoa, live cattle, lean hogs,
gold, silver, copper, WTI crude oil, brent, heating oil, gasoil and unleaded gasoline.
The basket is equally weighted in capital and rebalanced every end of quarter. For each
commodity, we take all available contracts over the next 12 months, and compute a
roll yield as follows:

12

K − 1

K∑
k=2

F
(k−1)
t − F

(k)
t

(Tk − T1)F
(k)
t

, [6.9]

where k denotes the various available contracts with k = 1 the front contract and K
is the number of available contracts, while Tk is the maturity in months of the k-th
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contract and F
(k)
t is its price. Similarly to earnings, aggregating yields over a full

year helps dealing with seasonality issues that affect many commodities. Carry for
commodities is finally the sum of the average roll yield and the cash returns earned by
investing every 3 months at USD Libor 3 months.

Hedge funds returns are measured through the Hedge Fund Research (HFR)
fund-of-hedge funds index. We select funds of hedge funds rather than single hedge
funds as the associated performance indices are much less subject to the typical
biases affecting single fund indices, such as survivorship and backfill biases. There is
no direct measure of carry for hedge funds and the idea could even sound strange as
hedge funds are not assets per se and they frequently benchmark themselves against
cash. However, a large academic literature indicates that a significant portion of their
returns can be linked to exposures to asset classes or risk factors either
contemporaneously or with a lag (see, among others, [HAS 07, ASN 01]). On this
basis, we suggest estimating the implied carry for hedge funds through a
regression-based aggregation of individual asset classes carry. More specifically, we
regress hedge funds (HF) excess returns on contemporaneous and lagged excess
returns of S&P 500 (EQ), Russell 2000 (SC), Barclays U.S. Corporate Investment
Grade (IG) and High Yield (HY), and commodities (CO) indices. We propose up to
four quarterly lags and retain significant lags through a stepwise regression at the
10% significance level over the period 1990Q1–2013Q3. The retained model is as
follows:

HFt = 0.2373 SCt + 0.1136 COt, R
2 = 0.4908.

Carry for hedge funds is then obtained as the beta-weighted average of individual
carry for the retained factors. From data in Table 6.3 for small cap equities and
commodities, we obtain an estimate of carry equal to 0.36% per quarter.

Private equity carry is not readily available as well. It has been shown that PE
returns are directly linked to traditional asset returns and, particularly, to the public
equity market contemporaneous and lagged returns. Using the same methodology as
for hedge funds, we have the following model:

PEt = 0.3102 EQt + 0.1482 EQt−1 + 0.1582 EQt−2 + 0.1414 EQt−4

+ 0.1348SCt + 0.119 COt, R
2 = 0.2569.

Carry is then finally computed similarly to hedge funds on the relevant PE factors.
From data in Table 6.3, we obtain an estimate of carry equal to 1.81% per quarter.

Contrary to other alternative assets, sensible measures for real estate carry are
readily available. In particular, real estate returns can be decomposed into two
components: an income return coming from gross rental income minus operating
expenses, and a capital return coming from the change in market value of the
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property. We retain the former measure as carry, because this is the return a real estate
investor captures if the property price does not move, hence being consistent with the
carry definition used across asset classes. In practice, income returns computed by
NCREIF have been historically very stable around 2% per quarter since 1978
(see, for example, http://www.ncreif.org/documents/event_docs/NCREIF_Academy/
NCREIF-Database-Query-Tools.pdf, p. 38), and this is the estimate we retain in our
empirical section.
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7 

Target Volatility  

7.1. Introduction 

It is a common practice among investment practitioners to scale (leverage) their 
portfolio positions in risky assets (or trading strategies) according to forecasted 
volatility. There is a cross-sectional and a time series aspect of this procedure. In the 
cross-sectional dimension, we scale all assets to a common target volatility. After 
scaling, all assets will display similar realized volatility, i.e. all assets will be equally 
important for overall portfolio risk and performance1. The objective here is better 
asset diversification. If all assets display equal Sharpe ratio and equal correlation, 
the resulting portfolio is also mean variance efficient. In the time series dimension, 
we want to achieve better time diversification, i.e. we want to make every period 
equally important for overall portfolio risk and performance. Both aspects of 
diversification can be found to different degrees in risk parity (predominantly cross 
sectional volatility scaling) as well as target volatility (predominantly time series 
volatility scaling) products. This contribution will focus on the theoretical and 
empirical foundations of target volatility. If target volatility offers better time 
diversification (even without larger expected returns), target volatility products will 
outperform buy and hold products by offering lower risk per unit of return. This will 
then lead to higher Sharpe ratios and mean variance utility. Section 7.2 will prove 
this conjecture via an old argument made by Paul Samuelson on the proper 
definition of time diversification. Section 7.3 will look at the empirical evidence, 
while section 7.4 relates target volatility to systematic beta variation. In section 7.5, 
we will ask whether target volatility is also a tail hedge. If volatility is kept targeted, 

                         
 Chapter written by Bernd SCHERER*. 
*Deutsche Bank Asset Management & Vienna University  
1 For this to be strictly true, we also need equal correlation among assets. Given that 
correlation varies widely across time, i.e. is difficult to estimate, most practitioners see this as 
an appropriate regularization constraint.  
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it seems plausible that large blowouts in times of risen volatility can be avoided. 
Section 7.6 analyzes the impact of asymmetric leverage constraints in target 
volatility products. Section 7.7 extends our analysis away from US stocks to global 
asset classes. Section 7.8 concludes the whole chapter. 

7.2. Better leverage and the Samuelson puzzle 

Why should a strategy – as simple as scaling volatility to a target level – lead to 
outperformance versus a buy and hold strategy? In the author’s view, the answer to 
this question has already been given by Paul Samuelson [SAM 92] in a related 
context2. Samuelson once famously asked on the consequences of uninformative 
(random) market timing: “What is riskier, 100% in a 50%/50% stock/bond portfolio 
all the time or 100% either in a pure stock or pure bond portfolio half the time? 
Samuelson found that non-informative and random market timing leaves expected 
returns unchanged but increases portfolio variance. 

How does target volatility relate to random market timing? Suppose we  
want to target a 10% constant volatility for a given market that displays on average a 
20% volatility (σ  ). This requires a nominal weight of a given assets evolves 
according to: 

.
0.10

0.5
0.20

target
nomw

σ

σ
= = =  [7.1] 

Unfortunately – and in line with reality – we are going to assume that our asset 
also displays large variations in volatility across time. If we decided, as suggested  
above, to give that asset a constant weight of 50% (i.e. a fixed weight of 50% cash 
and 50% market exposure), we would experience large variations in realized 
volatility. Alternatively, we can also view this as variations in the effective weight 
(random market timing) with respect to a constant volatility asset. What would that 
mean for our hypothetical example? Suppose realized volatility for a given period is 
30%. What would have been the synthetic weight in a 20% volatility asset? In other 
words, by how much does the weight in a 20% assumed volatility asset randomly 
vary with changing volatility? The answer is given below: 

,
,

0.30
0.50 0.75
0.20

realized t
eff t nomw w

σ

σ
= = =  [7.2] 

                         
2 Hallerbach [HAL 12] provides an interesting mathematical proof. 



Target Volatility     175 

We find a 50% fixed weight in a 30% volatility asset equals a (now increased) 

75% weight in a 20% volatility asset. Fixing nominal exposure ( nomw ) in a world of 

changing volatility is equivalent to randomly changing effective weights in a world 
of fixed volatility. This amounts to random (non-informative) market timing with 
the negative effects on Sharpe-ratios as established by Samuelson [SAM 92], 
Kritzman [KRI 00] and Ilmanen [ILM 14]3. Removing this element of random 
market timing is the value proposition of volatility scaling. Under constant volatility 
scaling, the nominal weight varies now according to: 

,
,

target

forecast t
nom tw

σ

σ
=  [7.3] 

while the effective weight becomes: 

( )( ) ( ), ,

, ,
,

target realized t realized t

forecast t forecast t
eff t nomw w

σ σ σ

σ σ σ
= =  [7.4] 

For perfect volatility forecasts, i.e. forecast realizedσ σ= , the effective weight is 

constant across time and equal to nomw . This would effectively remove random 

market timing with its negative effects on portfolio risk. 

We can now calculate ( ) ( ), ,portfolio t eff t tVar r Var w r=  under alternative 

hypothesis on the distribution of ( ),
,

realized t

forecast t

σ

σ
. In order to compute the effect of 

changing volatility on the risk of a (volatility unscaled) portfolio (excess) returns, 
we need to work out: 

( ) ( )*, ,portfolio t eff t tVar r Var w r=  [7.5] 

where *
tr  denotes the (unobservable) return of constant volatility asset. As an 

example, we assume random weights to be uniformly distributed according to: 

( ), ~ U ,eff t nom nomw w w− Δ + Δ
 [7.6] 

 

                         
3 This statement rests on the assumption that volatility does not represent an economic state 
variable, i.e. volatility is not correlated with future expected performance.  
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Without apology, we also assume market excess returns to be normally 
distributed as well as effective weights and returns to be independently distributed. 
This allows us to write down the joint distribution of random effective weights and 
random returns in a constant volatility assets as: 

( ) ( ) ( ) ( ) ( )

2
1
21 1

2

*

* *
r

long run

nom nom
eff eff w w

f w r f w f r e
μ

σ

σ π

−

−

⎛ ⎞⎟⎜− ⎟⎜ ⎟⎜⎝ ⎠
+Δ − −Δ

= =  [7.7] 

Note that: 

( ) ( )2 2* * *
,eff t t eff effVar w r E w r E w r

⎡ ⎤ ⎡ ⎤= −⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
 [7.8] 

Given the joint probability density [7.7], we start integrating over the joint 
probability density to calculate: 

( ) ( ) ( )
( )( )

2 2

22 2 21
3

3

* * * *,

lim

nom

nom

w

eff eff eff effw

nom x

E w r w r f w r dw dr

w μ σ

∞ +Δ

−∞ −Δ

→∞

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
= Δ + +

∫ ∫
 [7.9] 

We can now write: 

( ) ( )( )
2 2

2 2

2 2 2 2 2 21
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 [7.10] 

The reader will notice that for 0Δ →  (forecasted volatility gets close to realized 
volatility), we converge to the standard expression for portfolio risk with constant 
volatility. Realized risk equals targeted risk. What does [7.10] imply? As long as we 
have time varying volatility – that will implicitly vary our effective exposures – 
realized portfolio volatility will be higher than what we expect, even if our view on 
average volatility view was correct. If we could adopt our nominal weights (e.g. by 
forecasting realized volatility, instead of relying on average volatility) such that 
effective weights remain constant, we could reach target volatility. 
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7.3. Target volatility and Sharpe ratio improvement 

We want to evaluate the statistical properties of target volatility over the longest 
possible time period, i.e. with the highest statistical confidence. This section focuses 
on long term, high quality US equity data and in particular on returns for the Fama 
and French three factor model complemented by momentum as well as US industry 
returns (14 sectors). Our data source is French [FRE 15]. First, we calculate realized 

volatility for each month t , t̂σ , using daily intra month excess returns (returns 

minus risk free rate), i.e.: 

( )21
ˆ 250

#
t

t t
i montht

r r
i month

σ
∈

= −
∈ ∑  [7.11] 

where ir  (with ti month∈ ) are daily returns belonging to month t . Secondly, we 

calculate the after transaction costs (tc ) monthly returns for buy and hold ( & ,B H tr ), 

target volatility with lagged volatility ( ,TV tr  ) and perfect (i.e. the same month 

realized volatility) volatility forecast ( *,TV t
r ) as given below4: 
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, & ,

1 1 2

1 1 1
ˆ

ˆ ˆ ˆTV t t B H t
t t t

r n r tcσ
σ σ σ

−

− − −

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎤⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟= − −⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
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−

−

⎡⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎤⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟= − −⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟⎜ ⎜ ⎜⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  [7.13] 

Note that we scale weights to generate the average (full sample) realized 

volatility ( )1
t̂n σ− ∑ . Tables 7.1 (for factor returns) and 7.2 (for industry returns) 

report Sharpe-ratios as well as Sharpe-ratio differences together with their respective 
t-values – according to the Leung/Wong [LEU 08] test. Our calculations are based 
on monthly returns from November 1926 to December 2014. Assumed transaction 
costs (as a fraction of the traded underlying) amount to 30bps ( 0.003tc =  ). With 
the exception of momentum (UMD) and size (SMB), none of the realistic target 
volatility strategies display statistically significant Sharpe differences to a buy and 
hold strategy. Only perfect volatility forecasts deliver statistically significant 
Sharpe-ratio differences across factors and industries. 

                         
4 We do not consider performance related drift up to the end of month in this formulation.  
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&B HSR  TVSR  *TV
SR  

&TV B HSR SR−  * TVTV
SR SR−  

MKT  0,41 0,46 0,99 0,05 0,53 

3,93*** 4,32*** 9,28*** 0,76 11,59*** 

SMB  0,12 -0,01 0,18 -0,13 0,18 

1,27 -0,06 1,66 -2,66** 5,00*** 

HML  0,40 0,34 0,26 -0,06 -0,08 

3,72*** 3,18*** 2,44** -0,98 -2,08* 

UMD  0,51 0,80 1,04 0,29 0,24 

4,72*** 7,55*** 9,81*** 4,31*** 5,08*** 

Table 7.1. Target Volatility for Fama/French factors ( , ,MKT SMB HML )  
and momentum (UMD ) 

Table 7.1 displays individual Sharpe-ratios as well Sharpe-ratio differences 
together with their respective t-values – according to the Leung/Wong [LEU 08] test 
– for buy and hold ( &B H  ) as well as target volatility portfolios across four 
market factor returns. Realistic target volatility portfolios (TV ) are formed at the 
end of each month using realized volatility based on daily intra month returns. 

Perfect foresight target volatility ( *TV ) portfolios are constructed using next month 
realized volatility. We use daily data from November 1926 to December 2014. 
Assumed transaction costs (as a fraction of the traded underlying) are 30 bps. Data 
source: French [FRE 15].  

What drives these results? Do assets differ in their volatility persistence? Does 
realized volatility work as a state variable, i.e. does low (high) volatility forecast 
high (low) future returns? In order to answer this question, we run two separate 
regressions. First, we investigate how persistent realized volatility is. High 
persistence allows better forecasts, which in turn improves returns from target 
volatility. For this purpose, we estimate: 

0 1 1ˆ ˆt t ta a eσ σ −= + +  [7.14] 

for November 1926 to December 2014 (1058 observations). Tables 7.3 and 7.5 show 
our results. While persistence is high (correlation between this month and last month 
realized volatility hovers around 0.7) there are no significant differences between 
assets where target volatility had significantly improved Sharpe-ratios and where it 
had not improved Sharper-ratios. We acknowledge, this might be due to our 
simplistic forecast generation model or our infrequent rebalancing frequency. 
Second, we investigate whether past realized volatility is a good predictor for future 
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returns. Given that target volatility increases weights in the risky asset in times of 
falling volatility, we would expect that low volatility, predicts high future returns. 
For this purpose we estimate: 

& , 0 1 1ˆB H t t tr b b σ ν−= + +  [7.15] 

Tables 7.4 and 7.6 summarize the results for factors and industries. Most assets 
display insignificant and wrong signed (positive instead of negative coefficients) for 

1b . Exceptions are the momentum factor (UMD) and the telecom industry. 

Predictability is concentrated in those assets that displayed improved Sharpe-ratios 
after volatility targeting. It seems that the information content of volatility scaling 
(realized volatility as state variable) is more important than time diversification. 

&B HSR  TVSR  *TV
SR  

&TV B HSR SR−  * TVTV
SR SR−  

Non-durables 0,467 0,468 0,985 0,001 0,517 
 4,943*** 4,393*** 9,250*** -0,887 8,412*** 

Durables 0,368 0,367 0,601 -0,001 0,234 
 3,390*** 3,448*** 5,644*** 0,109 5,379*** 

Manufacturing 0,391 0,416 0,838 0,025 0,422 
 3,646*** 3,900*** 7,864*** 0,523 10,259*** 

Energy 0,405 0,455 0,704 0,049 0,250 
 4,212*** 4,268*** 6,615*** 0,098 6,239*** 

Chemicals 0,439 0,445 0,775 0,006 0,330 
 4,230*** 4,173*** 7,273*** -0,066 7,147*** 

Business Eq. 0,377 0,424 0,767 0,046 0,343 
 3,569*** 3,977*** 7,202*** 0,815 8,487*** 

Telecom 0,384 0,528 0,725 0,143 0,197 
 4,078*** 4,954*** 6,804*** 1,448 3,569*** 

Utilities 0,311 0,396 0,754 0,085 0,358 
 3,505*** 3,718*** 7,079*** 0,331 7,204*** 

Shops 0,407 0,470 0,880 0,063 0,410 
 4,082*** 4,415*** 8,265*** 0,670 7,844*** 

Health 0,459 0,465 0,847 0,006 0,381 
 4,666*** 4,368*** 7,951*** -0,511 7,503*** 

Finance 0,352 0,421 0,832 0,069 0,411 
 3,415*** 3,951*** 7,815*** 0,927 8,409*** 

Other 0,287 0,314 0,775 0,026 0,462 
 2,748** 2,943*** 7,280*** 0,386 10,705*** 

Table 7.2. Target volatility for industry portfolios 

Table 7.2 displays individual Sharpe-ratios as well as Sharpe-ratio differences 
together with their respective t-values–according to the Leung/Wong [LEU 08] test 
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– for buy and hold ( &B H  ) as well as target volatility portfolios across 14 US 
industry portfolios. Realistic target volatility portfolios (TV  ) are formed at the end 
of each month using realized volatility based on daily intra month returns. Perfect 

foresight target volatility ( *TV  ) portfolios are constructed using next month 
realized volatility. We use daily data from November 1926 to December 2014. 
Assumed transaction costs (as a fraction of the traded underlying) are 30bps. Data 
source: French [FRE 15].  

Table 7.3 shows regression coefficients from regressing last month realized 

volatility against this month realized volatility, i.e. from 0 1 1ˆ ˆt t ta a eσ σ −= + + . 

All 1058 data points are calculated from intramonth daily data. Our sample stretches 
from November 1926 to December 2014. Data source: French [FRE 15]. 

 0a  1a  2R  

MKT  0,039 0,715 0,511 
 10,965*** 33,231***   

SMB  0,019 0,732 0,537 
 10,315*** 34,946***   

HML  0,016 0,781 0,610 
 9,251*** 40,624***   

UMD  0,025 0,725 0,526 
 10,240*** 34,190***   

Table 7.3. Volatility persistence – factors 

Table 7.4 shows regression coefficients from regressing last month realized 

volatility 1t̂σ −  against this month returns, i.e. from & , 0 1 1ˆB H t t tr b b σ ν−= + + . All 

1058 data points are calculated from intramonth daily data. Our sample stretches 
from November 1926 to December 2014. Data source: French [FRE 15]. 

 0b  1b  2R  

MKT  0,007 -0,004 0,000 
 2,379** -0,204 

SMB  0,001 0,009 0,000 
 0,334 0,523 

HML  0,000 0,048 0,006 
 0,204 2,439** 

UMD  0,014 -0,089 0,020 
 6,593*** -4,651*** 

Table 7.4. Return predictability – factors 
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Table 7.5 shows regression coefficients from regressing last month realized 

volatility against this month realized volatility, i.e. from 0 1 1ˆ ˆt t ta a eσ σ −= + + . 

All 1058 data points are calculated from intramonth daily data. Our sample stretches 
from November 1926 to December 2014. Data source: French [FRE 15]. 

0a  1a  2R  

Non-Durables 0,041 0,643 0,414 

 12,728*** 27,281***  

Durables 0,054 0,732 0,536 

 10,849*** 34,894***  

Manufacturing 0,044 0,730 0,533 

 10,546*** 34,692***  

Energy 0,051 0,707 0,499 

 11,536*** 32,395***  

Chemicals 0,043 0,714 0,509 

 11,054*** 33,085***  

Business Eq. 0,051 0,748 0,560 

 10,395*** 36,610***  

Telecom 0,040 0,706 0,499 

 11,114*** 32,427***  

Utilities 0,029 0,769 0,591 

 8,775*** 39,018***  

Shops 0,042 0,709 0,503 

 11,230*** 32,674***  

Health 0,051 0,65 0,425 

 12,765*** 27,916***  

Finance 0,037 0,767 0,588 

 9,127*** 38,806***  

Other 0,046 0,712 0,507 

 11,079*** 32,963***  

Table 7.5. Volatility persistence – industries 

Table 7.6 shows regression coefficients from regressing last month realized 

volatility against this month returns, i.e. from & , 0 1 1ˆB H t t tr b b σ ν−= + + . All 1058 

data points are calculated from intramonth daily data. Our sample stretches from 
November 1926 to December 2014. Data source: French [FRE 15]. 
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0b  1b  2R  

Non-durables 0,004 0,026 0,002 

 1,556 1,332   

Durables 0,000 0,041 0,004 

 -0,014 2,148*   

Manufacturing 0,003 0,030 0,003 

 0,732 1,643   

Energy 0,008 -0,001 0,000 

 2,239* -0,052   

Chemicals 0,005 0,018 0,001 

 1,489 1,023   

Business Eq. 0,008 0,000 0,000 

 1,923 -0,009   

Telecom 0,010 -0,031 0,004 

 4,027*** -2,073*   

Utilities 0,005 0,006 0,000 

 2,021 0,413   

Shops 0,006 0,010 0,000 

 1,771 0,524   

Health 0,007 0,010 0,000 

 1,968 0,514   

Finance 0,009 -0,008 0,000 

 2,560** -0,506   

Other 0,005 0,007 0,000 

 1,248 0,343   

Table 7.6. Return predictability – industries 

7.4. Informative or uninformative leverage 

Target volatility adds time varying exposures (leverage) to a buy and hold 
strategy. It is hence natural to ask how much of these excess returns (versus a buy 
and hold strategy) can be explained by time varying exposures created by variations 
in economic state variables5. For this, we use the dynamic beta model as introduced 

by Ferson and Schadt [FER 96].  Let 1tz −  denote the demeaned series (surprises  

 

                         
5 Anderson et al. [AND 12, AND 14] also document that time varying leverage can 
significantly increase or decrease realized Sharpe-ratios. 
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from the unconditional mean) of a set of instruments (predictors). We run the 
following regression:  

( ) ( )
( )

, , 1 ,

1 0 11

tv t bh t t bh t t
n

t i ti

r r z r

z z

α β ε

β β β
−

− −=

′− = + +

= +∑
 [7.16] 

to focus explicitly on the % variation explained by economic state variables.  
Tables 7.7 and 7.8 display our regression results. We use dividend yields, term 
structure slope and real rates as state variables. Monthly inputs for state variables 
(dividend yields, long term rates, inflation) are sourced from Shiller [SHI 15].    

Table 7.7 displays regression coefficients for target volatility factor returns 

( ) ( )
( )

, , 1 ,

1 0 11

tv t bh t t bh t t
n

t i ti

r r z r

z z

α β ε

β β β
−

− −=

′− = + +

= +∑   

We use dividend yields, yield curve slope and inflation as economic state 
variables. All regressions use monthly data from November 1926 to December 
2014. Data source: French [FRE 15], Shiller [SHI 15]. 

α   0β  slopeβ  
divβ  realβ  2R   

MKT  0,001 -0,033 -0,069 -0,076 0,089 0,190 

- 1,563 -1,866 -4,049*** -6,404*** 4,652***   

SMB  -0,001 -0,013 -0,094 0,029 0,065 0,067 

-1,530 -0,741 -4,717 1,702 2,855**   

HML  0,000 -0,107 0,037 -0,085 0,152 0,213 

-0,497 -6,138*** 1,842 -6,349*** 7,688***   

UMD  0,004 -0,169 0,042 -0,039 0,179 0,212 

5,584*** -9,737*** 1,927 -3,434*** 7,995***   

Table 7.7. Dynamic factor timing using economic state variables – factors  
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Table 7.8 displays regression coefficients for target volatility industry returns 
according to  

( ) ( )
( )

, , 1 ,

1 0 11

tv t bh t t bh t t
n

t i ti

r r z r

z z

α β ε

β β β
−

− −=

′− = + +

= +∑   

We use dividend yields, yield curve slope and real interest rates as economic 
state variables. All regressions employ monthly data from November 1926 to 
December 2014. Data source: French [FRE 15], Shiller [SHI 15]. 

α   0β  slopeβ  
divβ  realβ  2R   

Non-Durables 0,000 0,018 -0,161 -0,050 -0,077 0,090 

0,194 0,956 -8,544*** -3,733*** -3,704***   

Durables 0,002 -0,001 -0,100 -0,055 0,228 0,363 

2,179* -0,083 -6,142 -5,002*** 11,613   

Manufacturing 0,002 0,006 -0,071 -0,089 0,216 0,368 

1,571 0,367 -4,280*** -7,787*** 11,668   

Energy 0,001 0,007 -0,053 -0,084 -0,025 0,050 

0,724 0,406 -2,979** -6,200*** -1,456   

Chemicals 0,000 -0,044 -0,016 -0,096 0,095 0,167 

 0,510 -2,477* -1,043 -7,524*** 4,808   

Business Eq. 0,002 -0,098 -0,032 -0,041 0,101 0,144 

 1,970 -5,853*** -1,838 -3,492*** 4,751   

Telecom 0,003 -0,078 -0,084 0,032 0,021 0,042 

 3,149*** -3,808*** -4,128*** 2,075*** 0,855   

Utilities 0,001 0,108 0,029 -0,109 0,323 0,211 

 0,878 4,184*** 1,133 -6,659*** 9,991   

Shops 0,002 -0,022 -0,087 -0,059 0,044 0,119 

 1,723 -1,247 -5,259*** -4,819*** 2,324   

Health 0,000 0,021 -0,137 -0,085 -0,057 0,150 

 -0,521 1,211 -7,899*** -7,926*** -3,028   

Finance 0,002 -0,022 -0,035 -0,055 0,221 0,251 

 1,951 -1,148 -1,790 -4,447*** 9,630   

Other 0,001 0,032 -0,081 -0,119 0,144 0,367 

 0,736 1,916 -4,967*** -11,720*** 8,432   

Table 7.8. Dynamic factor timing using economic state variables – industries 
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The success of this model is modest. A time varying beta model can explain 
about 20% of excess return variation for most factors but leaves significant alphas 
unchanged. If anything, additional alphas become significant or increase in t-values.  
This suggests that beta timing using realized volatility catches different information 
than beta timing using economic state variables.  

7.5. Target volatility and tail hedging  

Let us casually define tail risk hedging as a strategy to avoid extreme outcomes. 
One reason for the “large sigma” losses investors experienced in 2008 and 2009 was 
the calculation of sigma. A 40% loss in a month is a 6.93 sigma event for 20% per 
annum volatility, but only a 2.31 sigma loss for 60% volatility. In this view, tail 
losses arise mainly from investors failure to target the portfolio volatility they desire. 
Instead, they let portfolio volatility considerably increase in crisis periods. Volatility 
targeting provides a systematic approach to avoid a repeat. It uses cash/leverage as a 
way to reduce tail risk by keeping volatility at a predefined level, i.e. raising cash in 
times of rising volatilities, but equally leveraging existing assets in quiet times. It 
therefore attempts to avoid blowouts. So far the narrative. How can we provide 
evidence on our conjecture?  Target volatility increases leverage in times of falling 
volatility in up markets (some few target volatility hence as close relative to trend 
following). It is unrealistic to expect smaller drawdowns after a trend reversal. 
Larger leverage must lead to sharper drawdowns6. However, given that drawdowns 
occur in times of rising volatility (and hence quickly falling leverage) we could 
reasonably expect lower maximal cumulative drawdowns if volatility was persistent. 
We therefore focus on maximum cumulative drawdown to evaluate tail risk.  

Maximum cumulative drawdown (MDD) is defined as the worst case holding 
period return, i.e. the return for the unluckiest investor that bought at the worst 
moment (past high) and equally sold it at the worst moment (lowest low after past 
high). Some investors view MDD as a better risk measure as it incorporates the 
volatility of returns as well their tendency to exhibit large losses or to cluster in time. 
It is however also a noisier measure of (downside) risk as, unlike in volatility, not all 
data points have the same impact on its calculation. Observations in the drawdown 
period get a larger weight. The practical appeal of MDD for many investors arises 
from its direct interpretation as an actually experienced historical loss (unlike the 

                         
6 This contrast with simulation studies based on artificial data that found limited drawdowns 
for volatility targeting. The problem here are of course the artificial data. Simulating long-
term stock market returns using a Heston stochastic volatility model ignores jumps (occurring 
most of the time on the downside). Continuous and reactive adjustments will lead to lower 
drawdowns if the market moves smoothly. However, for a process with jumps it will often be 
too late to react. Lower drawdowns look then not realistic.    
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abstract notion of variance). MDD is not only useful for clients but also for hedge 
fund owners as it resembles the distance from a hedge funds high watermark, i.e. it  

Table 7.9 displays maximum cumulative drawdowns relative to volatility. We 
use monthly data from November 1926 to December 2014. Data source: French 
[FRE 15], Shiller [SHI 15]  

 &B HMMD  TVMDD  *TVMDD  

MKT  -2,892 -2,209 -1,936 

SMB  -5,725 -7,097 -5,461 

HML  -3,661 -2,535 -3,360 

UMD  -3,709 -1,541 -1,427 

Table 7.9. Maximum drawdown to volatility – factors 

Table 7.10 displays maximum cumulative drawdowns relative to volatility 
according to [7.18]. We use monthly data from November 1926 to December 2014. 
Data source: French [FRE 15], Shiller [SHI 15].  

 &B HMMD  TVMDD  *TVMDD  

Non-durables -2,175 -1,741 -0,921 

Durables -2,845 -3,076 -1,826 

Manufacturing -2,571 -1,689 -1,200 

Energy  -2,378 -0,936 -0,836 

Chemicals -2,209 -1,313 -0,988 

Business Eq -3,108 -2,176 -2,141 

Telecoms -4,817 -2,767 -3,236 

Utilities -2,025 -3,918 -0,844 

Shops -1,980 -3,160 -0,406 

Health -2,222 -1,994 -1,419 

Finance -3,079 -1,763 -1,731 

Other -2,673 -2,445 -1,506 

Table 7.10. Maximum drawdown to volatility – industries 
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represents the moneyness of the performance fee option. Given a random process x  

on 0,T⎡ ⎤⎣ ⎦  the historic maximum drawdown (MDD) at T  is defined as:    

( )
0, 0,
sup sup s t
t T s t

MDD x x x
⎡ ⎤ ⎡ ⎤∈ ∈⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦

 [7.17] 

Equation [7.17] looks for each t  for the worst possible entry point in the past 
starting from zero up to t . The worst of theses drawdowns is called the maximum 
drawdown or sometimes also called the maximum cumulative drawdown. In 
practice, MDD is often scaled with respect to volatility to make it comparable across 
strategies. 

( ) 0, 0,
sup sup s t
t T s t

x x
MDD x

σ σ

⎡ ⎤ ⎡ ⎤∈ ∈⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥−⎢ ⎥⎢ ⎥⎣ ⎦=  [7.18] 

The intuition is that we would expect a more volatile investment to show larger 
MDD.  Relating MDD to volatility also allows comparisons across investments with 
different risks. MDD to volatility is among practitioners also used as a characteristic 
attributable to investment strategies.  

Tables 7.9 and 7.10 display the results of our calculations. As conjectured, the 
maximum drawdown to volatility is in most cases considerably smaller than for a 
buy and hold investment. In the absence of improved Sharpe ratios, lower 
cumulative drawdowns could explain the appeal of target volatility to investors.  

7.6. Asymmetric leverage 

Many real-world investors dislike leverage. For a volatility targeting investor, 
leverage aversion might turn out to be a costly disorder. Target volatility is likely to 
underperform the unleveraged portfolios in the long run, as it will display a beta < 1 
due to the (self) imposed leverage constraint.  

In Figure 7.1, we display beta, Sharpe-ratio and turnover for target volatility 
funds with varying target volatility investing into the S&P 500. We use daily data 
for the period January 2003 to December 2013. The fund is rebalanced daily. Under 
a leverage constraint, nominal weights must not exceed 100%.   
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Figure 7.1. Target volatility and leverage 
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Let us illustrate this point using excess returns on the S&P 500. In contrast to the 
previous sections, we rebalance daily using a 20 day rolling realized volatility to 
construct the target volatility portfolio. Figure 7.1 displays the results where we 
compare symmetric and asymmetric target volatility (leverage constraints does not 
allow nominal weights to exceed 100%) to a buy and hold strategy. We can establish 
the following regularities:  

1) Target volatility with leverage constraints runs at a lower beta than buy and 
hold. Only when target volatility becomes very large this beta gap narrows (as this 
forces target volatility to remain fully invested almost all the time). 

2) For low target volatility, a leverage constraint has little impact on beta. This 
changes for high target volatilities. Investors need to ensure target volatility and 
leverage constraints are consistent. 

3) Even target volatility without leverage constraint set at the long run S&P 
volatility of 21% will display a beta lower than 1 due to the imperfect correlation 
with the S&P. 

4) Volatility scaling will lead to higher Sharpe ratios (unless low volatility is 
followed by low returns; empirical examples for this can be found but they are not 
the norm in equities) 

5) Imposing leverage constraints on volatility targeting creates an asymmetry in 
using volatility information. This leads to a decrease in Sharpe ratio.  

6) The decrease in Sharpe ratio is smaller, if volatility targets are low (i.e. the 
volatility target normal portfolio already contains cash, thereby reducing the above 
mentioned asymmetry)  

As a consequence, investors should avoid imposing asymmetric leverage 
restrictions in order not to hurt long-run performance.   

7.7. Target volatility across asset classes 

So far, we have focused on (US) equity markets. How do our results carry over 
to global returns on equities, fixed income, commodities and currencies? For this, 
we use (excess) returns on 50 liquid futures contracts starting in January 1980 
(where available) and ending in August 2013. First, we look at cross-sectional effect 
of volatility targeting in Figure 7.2.  For assets with unconditional risk premium 
(equities and bonds), there is a significantly negative and tight relationship between 
volatility and Sharpe ratio. Low volatility assets offer high historical Sharpe-ratio 
assets. This is the empirical regularity risk parity investing leverages on (overweight 
high Sharpe ratio assets due to their low volatility). Its theoretical basis is the notion 
of leverage aversion by Frazzini and Pederson [FRA 10]. However, we also see that 
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this regularity does not carry over to assets with conditional risk premium 
(currencies and commodities)7. There the relation is positive and sketchy. Secondly, 
we investigate the impact of volatility scaling on the (time series) performance of 
target volatility strategies in Figure 7.3. The left hand panel displays the relation 
between buy and hold and target volatility performance (Sharpe-ratio) for realistic 
volatility forecasting (last month realized volatility as predictor of future volatility) 
while the right hand panel displays the less realistic case of perfect foresight 
volatility. We see that perfect volatility forecasts lead to substantial Sharpe-ratio 
increases while natural volatility persistence is not enough to engineer target 
volatility Sharpe-ratios larger than buy and hold strategies. Thirdly, we repeat 
predictive regressions where we use last month’s realized volatility as a predictor of 
next month returns.  Results from these regressions (t-values on the regression 
coefficient for realized volatility) are displayed in Figure 7.4. Only two contracts 
(natural gas and wheat) show significantly negative t-values (low volatility is 
followed by high returns) while six contracts display significantly positive t-values 
(low volatility is followed by low returns). In summary, we find little evidence that 
volatility targeting improves Sharpe-ratios. This is similar to our results on US 
equity markets.  

In Figure 7.2, we display the relation between volatility and Sharpe-ratio for 
alternative asset classes. All calculations are based on monthly futures returns for 
the period January 1980 to August 2013 (subject to availability).  

 

Figure 7.2. Cross-sectional relation between volatility and Sharpe-ratio 

                         
7 This should not surprise, as a conditional risk premium requires changing long short 
positions.  
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In Figure 7.3, we display the relation between Sharpe-ratios for target volatility 
versus buy and hold for alternative precision of volatility forecasts. The left hand 
panel displays the relation between buy and hold and target volatility performance 
(Sharpe-ratio) for realistic volatility forecasting (last month realized  
volatility as predictor of future volatility) while the right hand panel displays the  
less realistic case of perfect foresight volatility. All calculations are based on 
monthly futures returns for the period January 1980 to August 2013 (subject to 
availability).   

 

Figure 7.3. Volatility targeting versus buy and hold for forecasted  
versus perfect foresight volatility  

In Figure 7.4, we display the t-values on the slope coefficient from a predictive 
regression relating month t   volatility to month 1t +  returns. All calculations are 
based on monthly futures’ returns for the period January 1980 to August 2013 
(subject to availability). 

7.8. Conclusions 

At a minimum, volatility scaling to a target volatility offers – cet.par. – better 
diversification by avoiding random market timing and cutting down on tail risk. At 
the maximum, volatility scaling directly improves returns by creating informative 
leverage. So far the theoretical arguments. Empirically, we find little evidence for 
the assets under investigation that target volatility indeed improves performance. 
The notable exception is momentum investing for US Equities.  
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Figure 7.4. Predictive regressions 
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Smart Beta Equity Investing  
Through Calm and Storm  

Smart beta portfolios typically achieve a superior diversification than the benchmark market 
capitalization-weighted portfolio, but remain vulnerable to broad market downturns. We examine 
tactical investment decision rules to switch timely between equity and cash investments based 
on an underlying regime switching model with macroeconomic, macrofinancial and price 
momentum variables as drivers for the time-varying transition probabilities. A regression-based 
method is applied to select the relevant state variables. An extensive out-of-sample evaluation 
for the S&P 500 stocks over the period 1991–2014 shows the gains of smart beta portfolios, the 
usage of time-varying transition probabilities and the requirement that the expected return 
should exceed the time-varying threshold implied by a forward-looking extension of Faber’s 
market timing strategy. The resulting investment decisions are more reactive to changes in the 
market conditions, tend to avoid equity investment in bearish market conditions and have a 
substantially better risk-adjusted performance and lower drawdowns.  

8.1. Introduction 

Tobin’s separation theorem recommends investors to combine an investment in 
the maximum Sharpe ratio risky asset with an appropriate amount of cash. Based on 
the capital asset pricing model (CAPM) model, the investment community has 
traditionally put forward the market capitalization-weighted portfolio as the 
maximum Sharpe ratio portfolio. This traditional choice is increasingly criticized  
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because the underlying CAPM assumptions are often not met on real data. At the 
same time, a growing literature on smart beta portfolios shows that risk-based 
portfolios outperform the market capitalization-weighted portfolio in the long run in 
terms of risk-adjusted return [BAK 11].   

Smart beta portfolios typically achieve a superior diversification than the 
benchmark market capitalization-weighted portfolio, but remain vulnerable to broad 
market downturns. This chapter proposes a pure quantitative tactical asset allocation 
framework that removes emotion and subjective decision-making by delegating the 
allocation decision to a simple rule: invest as long as the market is expected to be 
rising or flat and the estimated downside risk is below its maximum risk level. The 
predicted return and expected shortfall (ES) are computed under a regime switching 
model with an optimized set of macroeconomic, macrofinancial and price 
momentum variables driving the dynamic transition probabilities. The out-of-sample 
analysis examines the performance of the investment rules on the universe of S&P 
500 constituents over the period 1991–2014 and compares the performance when 
the underlying equity strategy is the standard market capitalization-weighted 
portfolio with the alternative use of three smart beta equity investments, namely 
inverse volatility weighted, equally weighted and fundamental value-weighted 
portfolios invested in the S&P 500 constituents.  

The proposed tactical allocation framework is closely linked to Faber’s [FAB 07] 
market timing model. It is founded on the time-tested intuition that market timing 
based on trend-following strategy is a risk-reduction technique that signals when an 
investor should exit a risky asset class in favor of risk-free investments. It exploits 
the information in the 10-month moving average price to stay invested in increasing 
markets and exit the risky investment in falling equity markets. It thus safeguards 
the investor against the well-known disposition effect of selling their winning 
investments too early and to hold on too long to their losing positions [SHE 85]. In 
addition, market timing can have a major impact on reducing volatility, avoiding 
large negative returns and (because of the asymmetric impact of large negative and 
positive returns on compound performance) it tends to lead to a higher long-term 
investment value. Similar results are obtained by Kritzman et al. [KRI 12] in an 
asset allocation framework, where they use a regime switching model for state 
variables and show that a tactical asset allocation strategy based on differentiating 
investments in high and low regimes of the state variables (e.g. financial stability vs. 
financial turbulence, high and low inflation, economic growth vs. recessions) leads 
out-of-sample to higher investment returns, lower volatility, lower value at risk 
(VaR) and a lower maximum drawdown, compared to constant mix strategies.  

The proposed market timing model with downside risk control requires a 
forward-looking mean and risk estimate, which we obtain under parametric 
assumptions on the return generating process. An appropriate model for equity 
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returns needs to accommodate the stylized facts of time-varying volatility, skewness 
and kurtosis of stock returns. The workhorse method in applied financial time series 
is to use rolling estimation samples to accommodate the gradual changes in the 
return distribution. Such a method is, however, inherently slow in adapting to abrupt 
changes in the return distribution. These may happen when the economy’s 
endowment switches between high and low economic growth [CEC 93], in case of 
asset pricing bubbles and collapses [BLA 82] or in times of transitions between 
exogenous and endogenous risk regimes [DAN 11]. In order to account for these 
sudden changes in the return distribution, we will use Hamilton’s [HAM 89] regime 
switching model in which, conditionally on the regime, the stock return is normally 
distributed. As shown by Guidolin and Timmermann [GUI 08], such a regime 
switching model is able to accommodate fat tails and skewness in the return 
distribution, and since it is estimated on rolling estimation samples, it is also robust 
with respect to the more persistent volatility dynamics observed in return data. 

In addition to the across-sample dynamics in the model parameters captured by 
the rolling sample estimation, we expect that the transition probabilities of the 
regime switching model change within the sample as a function of the changing 
market conditions. We follow the standard approach to generate dynamics in the 
transition probabilities by using lagged variables as the source of time variation 
[DIE 94, SCH 97]. These authors use one state variable. We will take a composite of 
state variables that we obtain based on an underlying linear regression model to 
forecast returns and where variable selection techniques are used to determine the 
relevant variables. The fitted return (a linear combination of the factors) is used as 
the state variable to drive the time-variation in the transition probabilities.  

We then show how the predicted return and risk under the proposed regime 
switching mean-variance model for the smart beta equity returns can be used as input for 
tactical investment decision rules to switch timely between equity and cash investments 
based. The proposed market timing strategies can be interpreted as a forward-looking 
alternative for the backward-looking market timing model of Faber [FAB 07].  

The empirical analysis on the S&P 500 stocks shows that, over the out-of-sample 
period 1991–2014, the inverse volatility-weighted portfolio offers the best risk-
adjusted performance among all smart beta portfolios considered. This ranking is 
robust to the analysis that controls for the Fama–French–Carhart factor exposures, 
since we find that the alpha is the highest for the inverse volatility-weighted 
portfolio. Second and third best in terms of alpha is the equally weighted portfolio 
and fundamental value-weighted portfolio, while the market capitalization-weighted 
portfolio thus has the worst alpha of all portfolio weightings considered.  

A common drawback of all pure equity portfolios is that they have large 
drawdowns that range between 36% for the inverse volatility-weighted portfolio and 
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58% for the fundamental value-weighted portfolio. We find that the active strategy 
of switching between the equity portfolio and the cash position (with switches 
driven by the regime switching model predicted return and risk of the equity 
investment and the use of forward-looking minimum required return target) reduces 
substantially the largest drawdown, which now ranges between 15 and 20%. It also 
improves the other performance measures in terms of a higher return, significantly 
lower volatility and lower downside risk than their equity-only counterparts. Finally, 
the analysis of the turnover shows that the gains from switching are high enough to 
compensate the transaction costs.  

The rest of the chapter is organized as follows. Section 8.2 presents the regime 
switching model based-approach to market timing the smart beta equity investment. 
Section 8.3 describes the sample and variables used in the analysis. Our findings are 
presented in section 8.4. Finally, section 8.5 concludes. Section 8.7 contains 
technical details on the implementation of the regime switching investment model. 

8.2. A regime switching approach to market timing 

Faber [FAB 07] shows the good performance of a simple, but effective 
investment rule based on a trend signal extracted from rolling prices. We first review 
this approach and then present an alternative investment decision framework based 
on a regime switching model for the risky asset returns. We limit ourselves to the 
equity timing decision and do not consider approaches (such as volatility target or 
portfolio insurance investment strategies) that aim to construct an optimally 
weighted portfolio of cash and equity investment.  

8.2.1. Faber’s timing model based on rolling price averages 

Faber [FAB 07] evaluates in detail the performance of a trend-following market 
timing model. He emphasizes that, in order to avoid behavioral bias in investment 
decisions, a quantitative investment model is needed. He recommends a trend-
following model which invests in a risky asset over the period [t-1, t] when the price 
of the risky asset at time t-1 is greater than the 10-month simple moving average. 
The condition that ௧ܲିଵ exceeds the simple average of	 ௧ܲିଵ, ௧ܲିଶ,…, ௧ܲିଵ can be 
reverse engineered to find the lower bound constraint on the asset return in month  
t-1 needed for this condition to be satisfied. More precisely, it can be shown that the 
condition that ௧ܲିଵ exceeds the simple average of ௧ܲିଵ, ௧ܲିଶ,…, ௧ܲିଵ is equivalent to 
requiring that the asset return in month t-1exceed the following dynamic threshold:  

௧ିଵߢ ൌ 	 భవ∑ షభబసమషమ െ 1. [8.1] 
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Otherwise, the investment is in cash. This dynamic threshold ߢ௧ିଵis shown in the 
short-dashed line in Figure 8.1. We see that in bullish markets, the threshold 
becomes negative, while in bearish markets the threshold becomes relatively high 
and the condition that ݎ௧ିଵ exceeds ߢ௧ିଵ becomes thus very restrictive. By lowering 
the threshold in bullish equity markets, the probability of investing in equities 
increases, and vice versa in bearish markets. This explains why Faber’s strategy is 
qualified as a trend-following investment strategy. Note in Figure 8.1 that the 
dynamic threshold ߢ௧ିଵ of Faber [FAB 07] can become relatively extreme. 

The advantage of Faber’s momentum strategy is that it is also a risk management 
model. By avoiding the market downtrends, a significant reduction in volatility is 
achieved. Faber [FAB 07] shows that the performance gains in terms of lower 
volatility and higher return are not a result of data mining, since they are found for 
different markets including stocks, bonds, commodities and the real estate market, 
and over many time periods.  

The disadvantage of Faber’s momentum strategy is that it is too mechanical and 
does not exploit the information in state variables predicting the future return 
distribution. A solution for this is our timing model based on the predicted return 
distribution from a mean-variance regime switching model with state variables 
driving transition probabilities presented in the next section.  

A further drawback is that the investment decision is backward-looking (invests 
in equity over the horizon [t-1, t] if the past return ݎ௧ିଵ exceeds the market trend-
following thresholdߢ௧ିଵ defined in [8.1]. We will consider a forward-looking 
alternative, which invests in equity when the predicted return for the period [t-1, t] 
(μ௧|௧ିଵ) is such that the predicted stock price exceeds the (predicted) 10-month 
simple moving average, i.e. that ௧ܲିଵ(1+μ௧|௧ିଵ) exceeds the simple average of ௧ܲିଵ(1+μ௧|௧ିଵ), ௧ܲିଵ,…, ௧ܲିଽ. As such a forward-looking alternative for the threshold ߢ௧ିଵcan be obtained by deriving the minimum expected return required for ௧ܲିଵ(1+μ௧|௧ିଵ) to exceed the simple average of ௧ܲିଵ(1+μ௧|௧ିଵ), ௧ܲିଵ,…, ௧ܲିଽ. In order 
to avoid extreme conditions, the obtained threshold is further truncated at −2 and 
+2%. As such risky equity investments are avoided when the predicted return is less 
than –2%, while the equity investment is enforced when the predicted return is 
above 2%. More precisely, we invest in equities when the predicted return μ௧|௧ିଵexceeds the forward-looking return target threshold ̃ߢ௧ିଵ given by:  

}௧ିଵ  = min{maxߢ̃
భవ∑ షవసభషభ െ 1, -2%},  2%}. [8.2] 

The resulting time series of forward-looking minimum return target is plotted in 
the long-dashed line in Figure 8.1. We see that during the bullish market, it  
usually stays at –2% and it is close to 2% in bearish markets. The corresponding 
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8.2.2.1. Regime switching model for equity returns 

Let ݕ௧ be the monthly stock return (t = 1, 2, ..., T) whose distribution depends on 
a state variable ܵ௧. Assume further that there are two states (ܵ௧=1 for the first regime 
and ܵ௧=2 for the second regime), and that, conditionally on the state ܵ௧, the return 
distribution is normal with mean ߤௌ and variance ߪௌଶ ௧ݕ : ൌ ௌߤ	 	ߝ௧;	ߝ௧~	݅݅݀	ܰሺ0, ௌଶߪ ). [8.3] 

The regimes can be interpreted as good and bad regimes. Note that, even though, 
conditionally on the regime, returns are normal, the unconditional distribution is 
often non-normal [ANG 12, MAR 92]. 

We follow Hamilton [HAM 08] and assume the states to be unobserved. 
Likelihood-based filters are used to infer the state ܵ௧ from the observed ݕ௧’s under 
the additional assumption that the latent state variable ܵ௧ is a realization of a Markov 
chain with time-varying transition probabilities:  

Pr(ܵ௧=j|ܵ௧ିଵ= i,ܵ௧ିଶ=k,…) = Pr(ܵ௧=j|ܵ௧ିଵ= i) = ,௧. [8.4] 

The specification in [8.4] assumes that the probability of a change in regime 
depends on the past only through the most recent regime. The properties of pij,t are: ∑ ,௧ଶୀଵ ൌ 1; and	,௧  0	∀݅, ݆	 ∈ ሼ1,2ሽ.	 

The diagonal elements of this matrix are parameterized using the logit 
transformation of an underlying time-varying processܿଵ  ݀ଵݔ௧ିଵ, ܿଶ  ݀ଶݔ௧ିଵ that 
depends on the state variables ଵܸ, ଶܸ, … , ேܸ through the following calibration: ݔ௧ିଵ ൌ 	 ݄௧ିଵሺ ଵܸ, ଶܸ, … , ேܸሻ Diebold et al. [DIE 94]: ଵଵ,௧ ൌ exp൫ܿଵ  ݀ଵ ݄௧ିଵሺ ଵܸ, ଶܸ, … , ேܸሻ൯ /ሾ1  exp൫ܿଵ  ݀ଵ ݄௧ିଵሺ ଵܸ, ଶܸ, … , ேܸሻ൯ሿ, [8.5] ଶଶ,௧ ൌ exp൫ܿଶ  ݀ଶ ݄௧ିଵሺ ଵܸ, ଶܸ, … , ேܸሻ൯ /ሾ1  exp൫ܿଶ  ݀ଶ ݄௧ିଵሺ ଵܸ, ଶܸ, … , ேܸሻ൯ሿ, [8.6] 

where the parameters ܿ and ݀ are the intercept and coefficient modeling the impact 
of the lagged value of the state variable on the time-varying transition probability for 
state j (j= 1, 2);the function ݄௧ିଵ corresponds to the estimated function of the future 
return ݕ௧ based on the linear regression model: ݕ௧ ൌ ߚ	  ∑ ߚ ܸ,௧ିଵேୀଵ 	߳௧, [8.7] 

where the variables in the prediction function are a subset of those in Table 8.1, 
selected as the subset having the lowest Bayesian information criterion (BIC). The 
predicted return under this selected model is used as the driver for the transition 
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probabilities, both in-sample and out-of-sample to forecast return and transition 
probabilities for the next period. As such, the time-variation in the transition 
probabilities is driven by the state of the financial and economic system. Of course, 
from [8.5] and [8.6], we have ଵଶ,௧ ൌ 1 െ	ଵଵ,௧, and	ଶଵ,௧ ൌ 1 െ  .ଶଶ,௧
8.2.2.2. Estimation 

The model parameters are estimated by maximum likelihood on rolling 
estimation samples of 6 years of monthly observations. For each estimation window, 
eight parameters are estimated by maximum likelihood techniques (the parameter 
vector θ = (ߤଵ, ,ଶߤ ,ଵߪ ,ଶߪ ܿଵ, ܿଶ, ݀ଵ, ݀ଶ) where ߤ and ߪ are the mean and 
volatility of the risky asset return in each regime, and ܿ and ݀ are the intercept and 
slope coefficient in time-varying transition probability matrix, respectively; 1, 2 
stand for the good and bad regime)1. The likelihood is calculated under the weighted 
likelihood approach in which the more recent observations receive a higher weight. 
The motivation is that relatively long estimation samples are needed to calibrate the 
regime switching model (6 years) and by using the exponentially decaying weights, 
the obtained predictions are more robust to the in-sample changes in the parameters. 
Following Meucci [MEU 13], the weights are defined as follows: ݓ௧ ൌ 	 ∑ തసభ  , [8.8] 

݃௧ ൌ 	 ݁ି	ౢ	ሺమሻഓ |௧ି	௧̅|, [8.9] 

where ̅ݐ denotes the most recent observation (72 in our research) and ߬	> 0 is the 
half-life of the exponential decay, which we set to 36.  

Based on the estimated parameters, the predicted probability that the smart beta 
return is in each regime in the next period can then readily be computed. Assume ߦ,௧ିଵ|௧ିଵ to be an inference of probability in regime i on date t-1 based on 
information up to date t-1 (obtained using the Hamilton’s filter, as described in 
section 8.7), the predicted probability of regime j on date t is given by:  ߦ,௧|௧ିଵ ൌ 	∑ ,௧ଶୀଵ  ,௧ିଵ|௧ିଵ, [8.10]ߦ

where ,௧ denotes the transition probability from regime i to regime j on date t.  

                         
1 The log-likelihood function of the regime-switching (RS) model can have local optima. In 
order to avoid the gradient-based optimization method to be stuck in a local optimum, we first 
use the stochastic global optimizer differential evolution [PRI 06] to find the best starting 
value. Based on these starting values, the log-likelihood function is then optimized using the 
quasi-Newton Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, using transformations 
to ensure the parameters are well defined. 
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8.2.2.3. Investment decision 

Our investment decision is based on two factors: predicted return under regime 
switching model and expected shortfall level. Under the two-regime specification, 
the predicted return is the weighted expected return of each regime, with weights 
equal to the predicted probability of each regime:  ߤ௧|௧ିଵ ൌ 	∑ ଶୀଵߤ,௧|௧ିଵߦ , [8.11] 

where ߦ,௧|௧ିଵ is the predicted probability of regime j on date t based on the return 
information available at time t-1, and ߤ: mean of return under regime  j. 

The conditional density of the one-step ahead return is a mixture of two Gaussian 
densities with weights ߦଵ,௧|௧ିଵ and ߦଶ,௧|௧ିଵ. We compute the expected shortfall under 
this mixture distribution, as detailed in section 8.7.  

In our report, two types of market timing strategies are tested: Faber’s market 
timing rule and the regime switching approach. Under Faber’s market timing rule, 
the decision is to invest in the equity as long as its price level is greater than the 10-
month simple moving average price. Otherwise, a bear market is detected and the 
portfolio is fully invested in London Interbank Offered Rate (LIBOR). 

Under the regime switching approach, the objective is to invest in the risky 
equity asset as long as the market is expected to be rising or flat, i.e. when ߤ௧|௧ିଵ is 
above the minimum expected return target. Two types of return target will be tested: 
(1) the fixed return target at –2% and (2) the forward-looking return threshold ̃ߢ௧ିଵ 
in [8.2], which is more restrictive in bearish markets (̃ߢ௧ିଵ is around 2%) than in 
bullish markets (̃ߢ௧ିଵ is around –2%). Otherwise, the portfolio is invested in  
1-month LIBOR, in USD.  

In addition, we consider the same market timing strategy, but with a downside risk 
management overlay. As in Yamai and Yoshiba [YAM 05], we restrict ourselves to 
the equity market as long as the expected market return is above the minimum 
expected return and the expected shortfall at 95% is less than 10%. Otherwise, the 
portfolio is invested in  
the LIBOR. To summarize, we will consider three investment decisions based on the 
regime switching model (all of them have parameters estimated with the predictive log 
likelihood in which more recent observations have higher weights): 

1) RS_static: market timing strategy based on the regime switching model with 
static transition probabilities; 

2) RS_dynamic: market timing strategy based on the regime switching model 
with time-varying transition probabilities; 
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3) RS_EScontrol: market timing strategy based on the regime switching model 
with time-varying transition probabilities and with a control of downside risk 
(expected shortfall calculated at 95%). 

8.2.3. Performance evaluation 

For each time series of out-of-sample monthly return, we report five performance 
measures to describe the gross performance (before transaction costs): (1) annualized 
average return; (2) annualized volatility; (3) annualized Sharpe ratio; (4) maximum 
drawdown; and (5) historical expected shortfall at 95%. For the first three measures, 
we will test whether the observed differences are statistically significant2. 

In order to account for differences in transaction costs, we also report three 
descriptive measures on the frequency and cost of switching between the risky asset 
and cash, namely: (1) the average portfolio turnover; (2) the percentage of months 
for which the investment is in cash; and (3) the two-way break-even transaction cost. 
Similarly as in Chandrashekar [CHA 05] and Kritzman et al. [KRI 12], the break-
even transaction cost is defined as the fee (expressed as a percentage of the amount 
traded) that makes the annualized Sharpe ratio of the out-performing strategy (in our 
case: the market timing portfolio) equal to the annualized Sharpe ratio of the 
benchmark portfolio (in our case: the buy-and-hold equity portfolio). Such a break-
even transaction fee is of course only reported for the outperforming market timing 
strategies in terms of a higher Sharpe ratio with respect to the benchmark portfolio. 

For the evaluation of the smart beta portfolios, we further control for style risk 
by computing the alpha of the portfolios using the Fama–French–Carhart four-factor 
model to decompose excess returns of the smart beta portfolios into its abnormal 
return component and the return explained by the exposure to the market, size, value 
and momentum factors. The estimated abnormal return α (alpha) is the least squares 
estimation of the intercept in the regression of the excess portfolio return (ܴܧ௧) on 
the four factors in Fama and French [FAM 92] and Carhart [CAR 97]: ܴܧ௧ ൌ 	ߙ	 	ߚଵܭܯ ௧ܶ 	ߚଶܵܤܯ௧  ௧ܮܯܪଷߚ 		ߚସܯܱܯ௧ 			ߝ௧, [8.12] 

                         
2 For this, we follow Engle and Colacito [ENG 05] by testing significant differences between 
the monthly portfolio returns and squared returns using a Diebold and Mariano [DIE 95] type 
test. It regresses the monthly differences between the performance measures of two portfolio 
methods on a constant, and tests whether the estimated constant is significantly different from 
zero using a Newey−West standard error (that accounts for the serial correlation and 
heteroskedasticity in the return series). The significance of the difference in Sharpe ratios is 
evaluated using the test of Jobson and Korkie [JOB 81], Memmel [MEM 03] and Ledoit and 
Wolf [LED 08] in which Newey−West standard errors are also used. 
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where ܭܯ ௧ܶ denotes the market excess return on date t; ܵܤܯ௧ is the size factor on 
date t (i.e. is the average return on the three small portfolios minus the average 
return on the three big portfolios); ܮܯܪ௧ stands for the return on the book-to-market 
factor on date t (i.e. is the average return on the two value portfolios minus the 
average return on the two growth portfolios) and ܯܱܯ௧ is the return on the 
momentum factor on date t (i.e. is the average return on the two high prior return 
portfolios minus the average return on the two low prior return portfolios) (see, for 
example, Bauer et al. [BAU 05] and Barber and Lyon [BAR 97]). Data of the four 
factors are for the U.S. stock market and obtained from the K. French data library. It 
is worth noting that alpha in [8.12] can typically be interpreted as a measure of out 
or underperformance relative to market proxy and the size, value and momentum 
risk factors. The statistical significance of the estimated alpha is evaluated using the 
t-test with Heteroskedasticity and Autocorrelation Consistent (HAC) standard errors. 

8.3. Sample and variable description 

8.3.1. Choice of risky asset 

The investment universe consists of the S&P 500 stocks over the period January 
1985–July 2014. Return data series of these stocks are computed using adjusted 
price data from COMPUSTAT. We will consider four types of equity weighting: the 
traditional market capitalization-weighted portfolio, the inverse volatility-weighted 
portfolio [LEO 12], the equally weighted portfolio [DEM 09] and the fundamental-
weighted portfolio [ARN 05]. Below, we discuss each of them in detail: 

– Market capitalization-weighted portfolio. The market capitalization represents 
a broadly invested portfolio, which has the advantage of a low turnover and can be 
interpreted as an equilibrium portfolio [PER 07]. The popularity of the market 
capitalization-weighted portfolio originates from the CAPM which states that the 
market capitalization-weighted portfolio is the maximum Sharpe ratio portfolio 
under very strict assumptions. In practice, the assumptions are often violated, 
leading to the observed mean-variance domination of the market capitalization-
weighted portfolio over long evaluation windows [BAK 11]. 

– Inverse volatility-weighted portfolio. Among others, Baker and Haugen  
[BAK 12] and Dutt and Humphery-Jenner [DUT 13] show that low volatility stocks 
earn higher returns compared to high volatility stocks. They find that this 
phenomenon is consistent both over time and over different markets. In our 
application, we follow the S&P Dow Jones index [DOW 14] methodology and 
compute the low risk portfolio as the inverse volatility-weighted portfolio invested 
in the 100 least volatile stocks. The volatilities are estimated over a 252-day moving 
window.  
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– Equally weighted portfolio. The equally weighted portfolio represents a naively 
diversified portfolio, in which all assets (whatever their size, value or risk 
characteristics) receive the same weight. While the equally weighted portfolio is 
highly diversified in terms of weights, the diversification in terms of risk is often 
limited.  

– Fundamental value-weighted portfolio. Arnott et al. [ARN 05] popularized the 
approach of fundamental value weighting (also called fundamental indexation (FI)). 
Under this approach, assets are selected and weighted based on fundamental metrics 
of company size. In our application, we consider similar fundamental characteristics 
as Arnott et al. [ARN 05], namely: book value of common equity, dividends, net 
operating cash flow3 and sales. Each of them is computed on the basis of 5-year 
rolling averages. The metrics are aggregated into a composite weight by: first, 
dividing each metric by the total value of the metrics over all firms in the universe 
(standardization) and then taking the average value of these weights. The 
fundamental data are retrieved from the COMPUSTAT database on an annual basis 
from 1984 to 2014. The metrics are lagged by one quarter to ensure data availability. 

8.3.2. Variables in the multivariate regression model 

Table 8.1 shows the different state variables that we consider as possible drivers 
for the time-varying transition probabilities. Consistent with previous research of 
Giot and Petitjean [GIO 11], De Boer and Norman [DEB 14] and many other 
researchers, we classify them into three groups: macroeconomic variables, 
macrofinancial variables and price momentum variables. The first two groups are 
exactly the same among smart beta portfolios, while the last group is the momentum 
specific to each of them. All variables considered are required to be prespecified and 
do not depend on the estimated regime switching model. This excludes the use of 
duration as a driver for time-varying transition probabilities [MAH 00]. All variables 
are considered at their end-of-month value. To avoid look-ahead bias, all variables 
series used in multivariate regression model are always lagged by a month compared 
to the time series of monthly returns4. 

                         
3 We follow Kothari et al. [KOT 05] in defining net operating cash flow as the difference 
between the operating income before depreciation and total accruals. The accrued liabilities at 
time t are the change in current assets minus the change in cash and short-term investments, 
minus the change in current liabilities excluding long-term debt minus the amount of 
depreciation and amortization scaled at the lagged value of total assets. 
4 The macroeconomic and macrofinancial variables are retrieved from the Website of the 
Federal Reserve Bank of St. Louis. The CAY series is downloaded from 
http://faculty.haas.berkeley.edu/lettau/data_cay.html and the CAPE series is downloaded from 
Shiller’s Website at http://www.econ.yale.edu/~shiller/data.htm. 
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The estimation window used for the multivariate regression is also 6 years  
(72 monthly observations) and matches thus with the in-sample window of the 
regime switching model. Based on real data availability of all series, some of them 
miss data before 1990. Any series that has a missing observation in the 72-month 
rolling sample will be omitted. To reduce the impact of outliers, the state variables 
are winsorized at a lower and upper bound corresponding to their in-sample median 
+/– two times the median absolute deviation. In each estimation window, the most 
predictive variables are selected according to the BIC [KON 08]. Then, the predicted 
return from the selected regression model is used as the state variable driving the 
time-varying transition probabilities of the regime switching model. 

8.4. Results 

In this section, first, we present the results of the impact of the choice of portfolio 
weighting method (market capitalization, inverse volatility, equal and fundamental 
value weighting schemes) on the out-of-sample performance on the universe of S&P 
500 stocks. We will show that these portfolios still suffer from extreme downside 
risks. Then, we will analyze market timing strategies using cash (1-month LIBOR-
based USD) as a safe haven investment in case the trend and/or risk signals indicate 
that the equity investment is estimated to be decreasing in value and/or is too risky. 

Variable description References 

Macroeconomic variables  

Real GDP growth: y-o-y change of real GDP [DEB 14] 

Inflation: y-o-y change of consumer price index 
(CPI) 

[DEB 14, EST 98, FAM 77,  
FAM 90] 

PMI: purchasing manager index [EST 98, WOL 04] 

Macrofinancial variables  

TED spread: difference between 3-month USD 
Libor rate and 3-month T-Bill yield 

[BOU 12, DEB 14] 

Short-term yield: the difference between short-
term interest rate (3-month T-bill yield) and a 
12-month backward-looking moving average 

[EST 98, FAM 90, GIO 11] 

Long-term yield: the difference between long-
term government bond yield (10-year bond) and 
a 12-month backward-looking moving average 

[EST 98, FAM 90, GIO 11] 
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Term spread: logarithm of difference between 
long-term government bond yield and short-
term interest rate 

[EST 98, GIO 11, FAM 90] 

Credit spread: difference between Moody’s 
seasoned Baa corporate bond yield and Fred 
fund rate 

[GIL 09, NOR 09] 

VIX: CBOE’s implied volatility index of S&P 
500 index options 

[BOU 12, GUO 06]  

Monthly change of VIX index [BOU 12] 

Variance risk premium: the difference between 
implied variance and realized variance, where 
implied variance is the squared return of VIX 
and realized variance is the squared of last 
3-month return of SP500 

[BOL 09] 

CAY: consumption wealth ratio is defined as 
the log of consumption in the US divided by 
aggregate wealth 

[LET 01, BOL 09] 

CAPE: cyclically adjusted price-earnings: price 
level of the S&P500 divided by the average of 
earnings adjusted for inflation 

[TAB 11] 

Fear index: the difference between VIX data 
and annualized standard deviation of 3-month 
daily returns 

[SHA 14] 

Price momentum variables  

1-month return [VAN 99] 

Rolling 3-month average returns [VAN 99] 

Price spread: difference between the current 
price and its simple moving average over 10 
months 

[FAB 07] 

Table 8.1. State variables used in the predictive return model  
to construct the composite state variable driving the time-variation  

in the transition probabilities 
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Invest 100% in  
equity if 

Benchmark 
(buy-and-hold) 

Faber’s strategy
 (௧ିଵߢ<௧ିଵݎ)

RS_static RS_dynamic RS_EScontrol μ௧|௧ିଵ> -2% μ௧|௧ିଵ>̃ߢ௧ିଵ μ௧|௧ିଵ> -2% μ௧|௧ିଵ>̃ߢ௧ିଵ μ௧|௧ିଵ> -2% μ௧|௧ିଵ>̃ߢ௧ିଵ 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Market capitalization  
weighted portfolio 

              

Ann.ret 10.32% 11.13% 9.77% 11.40% 11.45% 11.67% 10.45% 10.71% 

Ann.sd 14.53% ***10.41% 13.58%*** ***10.65% ***12.11%** ***10.45% ***11.27% ***10.26% 

Sharpe 0.71 *1.07 0.72* *1.07 0.95 **1.12 0.93 1.04 

Max.DD 50.05% 17.03% 42.68% 23.72% 32.21% 16.40% 32.21% 16.40% 

His.ES 9.30% 5.95% 8.83% 6.16% 7.90% 6.37% 7.38% 6.34% 

Turnover NA 4.24% 1.41% 4.95% 8.83% 8.83% 7.42% 8.48% 

Percentage_in_cash NA 22.26% 3.89% 20.85% 22.26% 30.39% 31.8% 37.1% 

Breakeven 
transaction cost 
(two-way) NA 3.13% 0.30% 2.71% 1.17% 1.73% 1.23% 1.49% 

Inverse volatility  
weighted portfolio 

              

Ann.ret 11.45% 11.39% 11.45% 10.81% 11.87% 11.72% 12.24% 12.08% 

Ann.sd 10.92% ***8.53% 10.92%*** ***8.86%* **10.28%*** ***8.42% **10.12%** ***8.24% 

Sharpe 1.05 1.34 1.05 1.22 1.15 *1.39 1.21 **1.47 

Max.DD 36.26% 16.22% 36.26% 23.24% 36.26% 15.00% 36.26% 15.00% 

His.ES 6.64% 4.46% 6.64% 4.88% 6.18% 4.39% 6.18% 4.38% 

Turnover NA 4.59% 0% 4.95% 3.89% 7.42% 5.30% 8.83% 

Percentage_in_cash NA 17.67% 0% 16.25% 6.01% 20.85% 9.19% 24.03% 

Breakeven 
transaction cost 
(two-way) NA 1.82% NA 1.10% 1.03% 1.32% 1.15% 1.37% 

Equally weighted  
portfolio 

              

Ann.ret 12.94% 11.19% 11.77% 10.71% 14.73%* 13.42% 11.09% 11.74% 

Ann.sd 16.51% ***11.47% 15.18%*** ***11.66% **14.12%** ***12.08% ***12.8% ***11.67% 

Sharpe 0.78 0.98 0.78 0.92 1.04 1.11 0.87 1.01 

Max.DD 55.60% 19.88% 41.47% 19.88% 38.35% 19.88% 29.79% 19.88% 

His.ES 10.65% 6.36% 9.79% 6.74% 7.75% 6.10% 7.22% 6.05% 

Turnover NA 6.71% 2.12% 7.24% 7.77% 10.78% 9.36% 11.48% 

Percentage_in_cash NA 19.43% 3.89% 18.73% 16.25% 25.8% 29.68% 34.98% 

Breakeven 
transaction cost 
(two-way) NA 1.21% NA 0.82% 1.72% 1.39% 0.44% 0.88% 

Fundamental value  
weighted portfolio 

              

Ann.ret 11.73% 11.72% 10.82% 12.02% 12.30% 13.23% 11.29% 12.77% 

Ann.sd 15.42% ***10.43% 13.83%*** ***10.4% **12.09%* ***10.54% ***11.42% ***10.28% 

Sharpe 0.76 *1.12 0.78 *1.16 1.02 **1.26 0.99 **1.24 

Max.DD 58.72% 21.18% 40.86% 15.13% 29.04% 15.13% 32.39% 15.13% 

His.ES 10.30% 5.82% 9.07% 5.73% 7.03% 5.64% 6.87% 5.51% 

Turnover NA 5.30% 1.41% 5.12% 5.65% 6.36% 7.07% 7.07% 

Percentage_in_cash NA 19.43% 3.89% 19.08% 18.37% 25.09% 28.27% 32.51% 

Breakeven 
transaction cost 
(two-way) NA 2.46% 0.77% 2.82% 1.95% 2.91% 1.35% 2.52% 

Table 8.2. Out-of-sample performance of different smart beta  
portfolios and portfolios applying market timing strategies 
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COMMENT ON TABLE 8.2.– Out-of-sample period from January 1991 to July 2014. 
***, ** and * on the left-hand side: comparison between market timing portfolios 
and the benchmark (column 2) at 1, 5 and 10%, significance level, respectively; ***, 
** and * on the right-hand side: comparison between the market timing portfolios 
using regime switching model versus the market timing portfolios using Faber’s 
strategy (column 3) at 1, 5 and 10% significance level, respectively; expected 
shortfall (ES) is the historical ES estimate calculated at 95%; portfolio turnover of 
switching between risky asset and cash (turnover) in the out-of-sample period (283 
months); percentage_in_cash: number of months in cash in the out-of-sample 
period; break-even transaction cost is calculated on the basis of two-way rule and 
defined as the rate that makes annualized Sharpe ratio of the market timing portfolio 
and the benchmark indifferent; NA: not applicable. 

8.4.1. Impact of choice of smart beta equity strategies on portfolio 
performance 

How does the equity weighting affect the portfolio performance? This is the 
question we investigate in the second column of Table 8.2. We find a clear 
confirmation of the low risk anomaly: the inverse volatility-weighted portfolio has a 
higher annualized return and lower annualized volatility than the market 
capitalization-weighted portfolio (annualized return: 11.45 vs. 10.32% and 
annualized volatility: 10.92 vs. 14.53%). Its downside risk (maximum drawdown 
and historical expected shortfall) is also lower. This can also be seen in Figure 8.2 
where we report the histogram of the negative portfolio returns. The black bars 
correspond to the buy-and-hold portfolios. Note that the inverse volatility-weighted 
portfolio has more small monthly losses (e.g. [–2%, 0%), [–4%, –2%)) and less 
extreme monthly losses (e.g. a monthly return below –10%) than the market 
capitalization-weighted portfolio. These results are similar to those reported by 
Baker et al. [BAK 11], Baker and Haugen [BAK 12] and Leote De Carvalho et al. 
[LEO 12]. 

The equally weighted portfolio has the highest annualized return of all four 
weighting strategies (12.94%). It turns the initial investment of $1 in January 1991 into 
$17.65 at the end of July 2014, compared to $10.14, $12.88 and $13.68 for the market 
capitalization weighted, inverse volatility weighted and fundamental value-weighted 
portfolio. In terms of risk, the equally weighted and fundamental value-weighted 
portfolios have a higher annualized volatility than the market capitalization-weighted 
portfolio (16.51 and 15.42% vs. 14.53%). Also, their maximum drawdown levels are 
higher than the one of the market capitalization-weighted portfolio (55–58% vs. 50%). 
The higher risks of extreme negative returns for these portfolios are illustrated in 
Figure 8.2 where we show the histogram of negative returns for the equity-only 
investment in the first column of each block. We see that extreme losses of equal 
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weight and fundamental value-weighted portfolio are more frequent than that of the 
market capitalization and inverse volatility-weighted portfolio.  

 

Figure 8.2. Histogram of monthly negative returns for the equity-only benchmark 
portfolios, as well as the switching portfolios using rolling price averages (Faber’s 
strategy) and the market timing portfolio using the regime switching model with 

dynamic transition probabilities and the forward-looking return target 

COMMENT ON FIGURE 8.2.– In the charts, the frequency of the left tail of the return 
distribution is shown, on the grid [–22%,–20%), [–20%, –18%),…, [–2%,0), 
respectively. The regime switching portfolios shown in the four charts are those 
corresponding to market timing based on the RS model with dynamic transition 
probabilities and the forward-looking return threshold (RS_dynamic). 

Portfolio Market cap. Weighted Inverse volatility 
weighted 

Equally 
weighted 

Fundamental value 
weighted 

(1) (2) (3) (4) (5) 

Alpha 0.0432  0.2226**  0.1715**  0.1029** 

(Se) (0.0323) (0.1129) (0.0682) (0.0454)

Table 8.3. Alpha of smart beta portfolios obtained under the  
Fama–French–Carhart four-factor model 
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COMMENT ON TABLE 8.3.– Alpha and HAC standard error (denoted as Se and put in 
parentheses) are multiplied by 100. ***, **and * indicate significance at the 1, 5 and 
10% level, respectively. 

The return outperformances of smart beta portfolios are confirmed by the alpha-
performance (which corrects for the exposure of the investments with respect to the 
Fama–French–Carhart four-factor model) presented in Table 8.3. They show that 
both three smart beta portfolios have significantly positive alpha after adjusting for 
both four risk factors. Their alphas range from 0.1–0.2% and are significant at the 
5% level. The alpha of inverse volatility-weighted portfolio is the highest among the 
three smart beta portfolios considered.  

Overall, we see that smart beta portfolios achieve higher returns than the market 
capitalization-weighted portfolio. But, they remain vulnerable to broad market 
downturns, as they still have large drawdowns (36–58%). Let us now investigate 
whether market timing reduces these drawdowns and whether there is a cost in terms 
of expected returns to be paid.   

8.4.2. Impact of market timing strategies on portfolio performance 

Is it possible to increase the performance both in terms of returns, risk and 
drawdown by switching the portfolio allocation between equities and a cash 
investment? This is the next question that we study. To answer this question, first we 
will present performance of portfolios using Faber’s method and then consider six 
market timing investment strategies based on the expected return (and risk) of three 
estimated RS models with two types of return target. The first RS model-based 
investment assumes static transition probabilities and is denoted by RS_static. The 
second one (RS_dynamic) innovates by considering time-varying transition 
probabilities based on a composite index of state variables. RS_static and 
RS_dynamic invest in equities when the market is flat or rising. The third model is 
based on the same model as RS_dynamic but adds an additional risk control layer in 
the investment and invests in equities only if the market is flat or rising and the 
expected shortfall calculated at 95% is below 10% (RS_EScontrol). For each of 
these three regime switching strategies, two types of minimum return target are 
studied: a fixed return target of –2% and a forward-looking (time varying) return 
target ̃ߢ௧ିଵin [8.2]. The main results are reported in Table 8.2, where we report the 
different return and risk performance measures on a gross performance basis. In 
order to describe the corresponding transaction costs, we also calculate the statistics 
on the frequency and persistence of the switches between equities and cash. More 
precisely, the last three rows in Table 8.2 report: (1) the portfolio turnover, (2) the 
percentage of months the strategy invests in cash (1-month LIBOR-based USD) and 
(3) break-even transaction cost (two-way) that equalizes annualized Sharpe ratio of 
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the market timing strategy to the benchmark (buy-and-hold strategy) during the out-
of-sample period (1991–2014). 

8.4.2.1. Market timing based on Faber’s method using rolling price averages 

The performance of the portfolios using Faber’s method is presented in column 
three of Table 8.2. Regarding the market capitalization-weighted portfolio, the 
portfolio using Faber’s method has a higher annualized return (11.13 vs. 10.32%), 
significantly lower annualized volatility (10.41 vs. 14.53%), significantly higher 
Sharpe ratio (1.07 vs. 0.71) and lower drawdown (maximum drawdown is 17 vs. 
50% of the benchmark). This result is in line with the research of Faber [FAB 07]. 
When Faber’s method is applied to the three smart beta portfolios (inverse volatility, 
equal and fundamental value-weighted portfolio), the resulting market timing 
portfolios have slightly lower annualized returns (11.19–11.72% vs. 11.45–12.94%), 
but also significantly lower annualized volatilities (8.53–11.47% vs. 10.92–16.51%), 
substantially higher Sharpe ratios (0.98–1.34 vs. 0.76–1.05) and much lower 
drawdowns (maximum drawdowns between 16 and 21% vs. 36 and 55%) than the 
buy-and-hold benchmarks. 

In terms of portfolio stability, we find that the portfolios applying Faber’s 
strategy have a turnover between 4.2% (the market capitalization-weighted 
portfolio) and 6.7% (the equally weighted portfolio). Overall, the portfolio is 
invested in cash for 20% of all months. The better risk-adjusted performance in 
terms of Sharpe ratio is robust to transaction costs, since the break-even transaction 
cost that makes their Sharpe ratio equal to the Sharpe ratio of the corresponding buy-
and-hold benchmark is as high as 1.21–3.13% per transaction.  

Overall, using Faber’s method, portfolios have similar returns and much lower 
volatilities and drawdowns. By consequence, the risk-adjusted returns are all higher 
with respect to the benchmarks. In the next section, we investigate whether the 
market timing strategies using the regime switching models improve the portfolio 
performance.  

8.4.2.2. Market timing based on three different regime switching models 

In this section, we study the impact of the design of the regime switching-based 
investment on the portfolio performance. 

8.4.2.2.1. Model 1: the constant (static) transition probabilities regime 
switching model 

The results for the regime switching model with static transition probabilities and 
a static –2% target in terms of minimum required return are reported in column four 
in Table 8.2. Note that the RS portfolios using static transition probabilities have 
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similar gross performance to the benchmarks (the equity-only investment in column 
two in Table 8.2) in terms of a similar annualized return, volatility and Sharpe ratios. 
The similar performance is due to the low turnover value (0–2.12%) and low 
percentage of time investing in cash (less than 4%). For the inverse volatility-
weighted portfolio, there is even no switch at all using the static transition 
probabilities regime switching model. The net performance after transaction costs 
measured by break-even transaction cost is only applicable for the market 
capitalization-weighted portfolio (0.3%) and the fundamental value-weighted 
portfolio (0.77%). In comparison with Faber’s method, portfolios using this market 
timing strategy underperform (annualized returns are lower, volatilities are 
significantly higher and Sharpe ratios are also lower). Overall, the market timing 
strategy using static transition probabilities and a fixed –2% return threshold only 
slowly reacts to the market changes. 

A solution is to apply the forward-looking return target ̃ߢ௧ିଵ as can be seen in 
column five in Table 8.2. Portfolios using static transition probabilities regime 
switching model then have better performance than using the fixed return target in 
terms of risk-adjusted return and drawdowns. The impact on annualized return is 
mixed (higher for the market capitalization portfolio and fundamental value-
weighted portfolio but lower for others) but the annualized volatilities are 
significantly lower and the Sharpe ratios are substantially higher. Also, the 
drawdowns are improved compared to the buy-and-hold in the equity benchmarks. 
The higher Sharpe ratios are calculated on the gross return basis. From the large 
values for the break-even transaction costs for all four equity indices (0.82–2.82%), 
it can be expected that the out-performance in terms of Sharpe ratio also exists when 
computed on the portfolios’ net returns (after transaction costs). The risk-adjusted 
returns (Sharpe ratios) are nevertheless lower than those using Faber’s method. 

The results of regime switching model with static transition probabilities are, 
therefore, not satisfactory yet. It motivates us to study the usage of dynamic 
transition probabilities in regime switching model to do market timing.  

8.4.2.2.2. Model 2: time-varying (dynamic) transition probabilities regime 
switching model 

As described in section 8.3.2, we consider 17 candidate state variables as drivers 
for the transition probabilities. Before analyzing the performance of the market 
timing strategy with dynamic transition probabilities regime switching model, we 
investigate which variables are selected as drivers for time-varying transition 
probabilities and when. 
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Variables selected as drivers for the transition probabilities 

It is natural to expect that the variable selection will depend on the market 
regime. In Table 8.4, we show, for the market capitalization-weighted portfolio, the 
obtained variable selection in terms of number of months for the bullish and bearish 
periods in our sample, January 1991–July 20145. 

Period January 
1991- 
June 
1998 

July 
1998- 

August
1998 

September
1998- 

August 
2000 

September
2000-  

September 
2002 

October
2002- 

October
2007 

November
2007- 

February
2009 

March 
2009- 
July 
2014 

Full  
sample 

Duration (in 
months) 

90 2 24 25 61 16 65 283 

Macroeconomic 
variables     

Real GDP growth 3 0 1 19 13 12 16 64 

Inflation 6 0 9 3 1 9 24 52 

PMI 3 0 0 0 15 2 4 24 

Macrofinancial 
variables     

TED spread 18 0 0 9 6 0 1 34 

Short-term yield 0 0 4 3 15 0 23 45 

Long-term yield 13 0 1 0 6 0 5 25 

Term spread 9 1 1 7 10 4 11 43 

Credit spread 13 1 18 0 2 5 37 76 

VIX 0 1 20 8 35 0 0 64 

Change of VIX 0 0 0 0 1 0 56 57 

Variance risk 
premium 

0 0 0 0 0 0 49 49 

CAY 6 1 21 23 58 12 34 155 

CAPE 33 0 21 23 57 16 52 202 

Fear index 6 0 3 0 26 9 63 107 

Price momentum 
variables     

1-month return 16 0 1 9 1 0 1 28 

Average of 3-
month return 

0 0 1 0 0 1 0 2 

Price spread 44 2 8 16 3 2 45 120 

Table 8.4. Variable selection in the multivariate regression model that predicts the 
market capitalization-weighted portfolio returns based on lagged state variables. For 

each variable, the number of months the variable is selected is reported 

                         
5 We only present the table of variable selection for the market capitalization-weighted 
portfolio. Those of other equity portfolios are similar and available upon request. 
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COMMENT ON TABLE 8.4.– The order of variables matches with the order in Table 
8.1; the second, fourth and sixth periods are bearish and others are bullish; variables 
are selected in terms of BIC. 

We follow Ellis [ELL 05] in defining a bearish period for the US equities market 
as the period over which the S&P 500 index declines by more than 12%. This leads 
to three bearish equity market regimes: July 1998–August 1998; September 2000–
September 2002 and November 2007–February 2009 with compound losses of 
15.32%, 42.68% and 50.05%, respectively. Table 8.4 shows that during the bullish 
periods, macrofinancial variables and price momentum variables are mostly 
selected, while the group of macroeconomic variables appears in the selection 
during the bearish periods (September 2000–September 2002 and November 2007–
February 2009), particularly the real GDP growth variable in this group is usually 
selected. Two variables (CAPE and CAY) in the group of macrofinancial variables 
are actively selected in all periods. Overall, macrofinancial variables (consumption 
wealth ratio (CAY), cyclically adjusted price-earnings (CAPE) and fear index) and 
price momentum variables (price spread) play the most important roles in predicting 
stock return. 

Performance gains of market timing strategy using time-varying (dynamic) 
transition probabilities 

Let us now return to the key question of this part: is the strategy of dynamic 
transition probabilities regime switching better than the buy-and-hold strategy and 
Faber’s strategy in terms of improving the portfolio performance? We find that, 
compared to the benchmark (column two in Table 8.2), the portfolios that invest 
based on the expected return under the regime switching model with dynamic 
transition probabilities regime switching model and the fixed return target (column 
six in Table 8.2) perform better than the benchmarks with insignificantly higher 
annualized returns (0.5–3%) and significant lower annualized volatility (0.6–3% at 1 
and 5% significant level), their Sharpe ratios are insignificantly higher than the 
benchmarks. Their downside risks are also lower than the benchmarks (maximum 
drawdowns are in the range of 29–38% vs. 36–58%) (except for the inverse 
volatility-weighted portfolio, their maximum drawdown is 36%, the same as the 
benchmark). The outperformance in terms of Sharpe ratios on gross returns is 
expected to be robust to transaction costs, since the corresponding break-even 
transaction costs are relatively high (1.03–1.95%). Compared to the market timing 
strategy of Faber, portfolios using this strategy have higher annualized return as well 
as significantly higher annualized volatilities, so their Sharpe ratios are indeed lower 
than those using Faber’s strategy (except for the equally weighted portfolio). In 
addition to the higher volatility, they also have higher average portfolio turnovers. 
Therefore, their break-even transaction cost values are usually lower than those 
using Faber’s strategies (1.03–1.95% vs. 1.21–3.13%).  
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Column seven in Table 8.2 shows the performance of the portfolios invested in 
equities based on the forward-looking return target in [8.2]. These portfolios 
consistently yield higher annualized returns, significantly lower annualized 
volatilities, significantly higher Sharpe ratios and lower drawdowns than the 
corresponding buy-and-hold benchmarks. In comparison with portfolios using 
Faber’s strategy, these portfolios always have higher annualized returns (11.67–
13.42% vs. 11.13–11.72%), higher Sharpe ratios (1.11–1.39 vs. 0.98–1.34), 
comparable volatility (8.42–12.08% vs. 8.53–11.47%) and slightly lower 
drawdowns (maximum drawdown of 15–19.88% vs. 16.22–21.18%). The relative 
outperformance in terms of gross returns comes at the price of higher turnover than 
in Faber’s strategy (6.36–10.78% vs. 4.24–6.71%). The relative performance as 
measured by the break-even transaction costs depends on the equity index. For the 
market capitalization and inverse volatility-weighted portfolio, the break-even 
transaction costs are lower for the regime switching model than for Faber’s timing 
model (1.73 vs. 3.13% and 1.32 vs. 1.82%). For the equally weighted and 
fundamental value-weighted portfolio, the reverse is observed.  

The bottom line of this analysis is to confirm that the usage of dynamic transition 
probabilities regime switching and the forward-looking return target improves the 
portfolio performance compared to the buy-and-hold strategy (both gross and net 
performance) and Faber’s strategy (especially the gross performance). Next, we will 
investigate the benefits of risk control in the market timing strategy using dynamic 
transition probabilities regime switching model. 

8.4.2.2.3 Model 3: time-varying (dynamic) transition probabilities regime 
switching with a risk control model 

We have seen the benefit of using dynamic transition probabilities in market 
timing strategy in the previous sections. In this part, we will investigate  
the benefits of including also a limit on downside risk in the investment  
by answering the question: does the market timing strategy using the dynamic 
transition probabilities perform better than the buy-and-hold strategy and  
Faber’s strategy? 

First, we will check this strategy with the usage of fixed return target. Compared 
to the benchmarks, the portfolios using dynamic transition probabilities regime 
switching with the control of expected shortfall (column eight in Table 8.2) have 
mixed results of annualized returns and significant lower annualized volatilities than 
the benchmarks. Their downside risks are also lower than the benchmarks. Since the 
break-even transaction costs are relatively high (0.44–1.35%), it can be expected 
that the outperformance with respect to the buy-and hold benchmarks subsists after 
transaction costs. Compared to the competing market timing portfolio based on 
Faber’s rule, the strategy based on the regime switching model underperforms in 
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terms of lower returns (except for the inverse volatility-weighted portfolios), lower 
Sharpe ratios, higher volatilities and drawdowns and a higher turnover. 

Let us now study the improvements in performance obtained when, instead of 
investing based on comparing the predicted mean μ௧|௧ିଵ with the fixed level of   
–2%, we compare the conditional mean μ௧|௧ିଵ with the forward-looking return 
threshold (̃ߢ௧ିଵ). The resulting performance is shown in column nine of Table 8.2. 
Using this strategy, portfolios usually have higher annualized returns (except for the 
equally weighted portfolio), higher Sharpe ratios and lower annualized volatility and 
drawdowns than the benchmarks. Their performance is slightly better than those 
using Faber’s strategy in terms of higher annualized returns (except for the market 
capitalization-weighted portfolio), higher Sharpe ratio (1.01–1.47 vs. 0.98–1.34) and 
lower annualized volatility (8.24–11.67% vs. 8.53–11.47%), drawdowns (15–
19.88% vs. 16.22–21.18%). In terms of portfolio turnover, this strategy has much 
higher turnovers (7.07–11.48% vs. 4.24–6.71%) and slightly higher Sharpe ratios. 
As a result, the break-even transaction costs (which make the Sharpe ratios on net 
returns equal to those of the buy-and-hold benchmarks) are lower than Faber’s 
strategy (except for the fundamental value-weighted portfolio: 2.52 vs. 2.46%).  

Compared to portfolios using strategy without risk control (column seven in 
Table 8.2), portfolios with risk control have lower volatility. These results are 
expected as this market timing strategy focuses on controlling potential risk. The 
lower risk comes at the expense of lower average portfolio returns (except for the 
inverse volatility-weighted portfolio where the return is higher: 11.72 vs. 12.08%). 
Note also that the risk-controlled strategy tends to be more frequently invested in 
cash.  

In summary, we find first that the usage of the forward-looking return target is 
better than the fixed one. Second, among the three regime switching-based 
investment models considered (static transition probabilities, dynamic transition 
probabilities and dynamic transition probabilities with a risk control), the market 
timing strategy using dynamic transition probabilities performs best. It yields higher 
annualized returns, Sharpe ratios and lower drawdowns with respect to the simple 
trend-following rules based on moving average price of Faber’s strategy. We thus 
find that, for our sample of S&P 500 stocks over the period 1991–2014, the 
complexity of the regime switching model-based tactical allocations seems to pay 
off compared to the computationally more simple strategy of Faber [FAB 07]. 

To get an insight into the superior performance of the market timing strategy 
using dynamic transition probabilities regime switching model (with forward-
looking return threshold) over Faber’s strategy, Figure 8.3 compares the buy-and-
hold cumulative returns for the four equity indices (market capitalization, inverse 
volatility, equally and fundamental value-weighted portfolio) with the timing 
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decisions by showing their relative performance versus the benchmarks of these two 
strategies. It shows that these two strategies make different timing decisions. The 
strategy using dynamic transition probabilities regime switching model (with 
forward-looking return threshold) usually has more timely reactions to the market 
change during down-trend markets, leading to their superior return performance 
compared to Faber’s strategy over the whole period.  

 

Figure 8.3. The cumulative return of the benchmarks and relative  
performance of the switching portfolios based on rolling prices  

(Faber) and the regime switching model with dynamic transition  
probabilities and the forward-looking return target 

COMMENT ON FIGURE 8.3.– Each figure shows, on the right-hand side axis, the full 
line is the cumulative return of the equity-only-weighted portfolio (the 
benchmark). On the left-hand side axis, the long-dashed line and short-dashed  
line are the relative performance of the dynamic regime switching portfolio with 
the forward-looking return target (Rp_RS) and Faber’s strategy (Rp_Faber) versus 
the benchmark, respectively. The cash investments of portfolios using dynamic 
transition probabilities regime switching model and forward-looking return target 
are indicated with the lower vertical bars (RS (in cash)), while the upper vertical 
bars indicate the cash investments of portfolios using Faber’s strategy (Faber  
(in cash)). 
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8.5. Conclusion 

Smart beta portfolios are increasingly popular. By an alternative weighting and 
selection with respect to the market capitalization-weighted portfolio, they typically 
achieve a superior diversification, but remain vulnerable to broad market downturns. 
We examine tactical rules to switch timely between equity and cash investments 
based on an underlying regime switching model with macroeconomic, 
macrofinancial and momentum variables as drivers for time-varying transition 
probabilities. The investment universe analyzed consists of the S&P 500 stocks over 
the period 1991–2014. We answer two questions. First, how does an alternative 
smart beta weighting scheme affect the portfolio performance compared with the 
market capitalization-weighted portfolio. Second, we investigate whether the smart 
beta portfolio performance can be improved by switching the portfolio allocation 
between equities and a cash investment. 

We find that, compared to the traditional market capitalization-weighted 
portfolio, the equally weighted, inverse volatility-weighted and fundamental 
value-weighted portfolios yield a higher compound return over the period. Except 
for the inverse volatility-weighted portfolio, this comes at higher investment risks. 
The higher return and lower risk of the inverse volatility-weighted portfolio are 
consistent with the ample literature documenting the low risk anomaly for  
the universe we analyze. We further show that the tactical investment  
decisions based on the regime switching model with time-varying transition 
probabilities and the forward-looking return target improve the portfolio 
performance. It leads to investment decisions that are more reactive to changes  
in the market conditions and a substantially better risk-adjusted performance and 
lower drawdowns. 
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8.7. Appendix 

In this section, we provide more details on the inference regarding the 
probabilities to be in each regime using Hamilton’s filter and the calculation of the 
expected shortfall. 
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8.7.1. Hamilton’s filter 

Hamilton’s filter aims at estimating from the observed returns ݕ௧ the probability 
to be in each regime, given all information available in the return data up to time t: ߦ,௧|௧ ൌ Prሺܵ௧ ൌ ݆|Ω௧;  ሻ, [8.13]ߠ	

where Ω௧ ൌ 	 ሼݕ௧, ,௧ିଵݕ … , ,ଵݕ  ሽ denotes the set of observations obtained as of dateݕ
t; and	ߠ is a vector of population parameters. The key magnitudes to perform this 
iteration are the densities under the regimes:  

,௧ߟ ൌ ݂ሺݕ௧|ܵ௧ ൌ ݆, Ω௧ିଵ; ሻߠ	 ൌ 	 ଵ√ଶ.గఙೄ exp		ቆെ ൫௬ିఓೄ൯మఙೄమ ቇ. [8.14] 

Given the input from [8.13], we can iteratively compute: 

,௧|௧ߦ ൌ ∑ ೕ,క,షభ|షభఎೕ,మసభሺ௬|ஐషభ;	ఏሻ , [8.15] 

where ,௧ is the transition probability from regime i to regime j on date t and ݂ሺݕ௧|Ω௧ିଵ; ;௧|Ω௧ିଵݕis the conditional density of the t-th observation: ݂ሺ	ሻߠ	 ሻߠ	 ൌ 	∑ ∑ ,௧ଶୀଵଶୀଵߟ,௧ିଵ|௧ିଵߦ,௧ . [8.16] 

8.7.2. Calculation of expected shortfall of stock returns under the RS 
model 

As we assume the returns follow a normal distribution in the two regimes, the 
conditional return distribution is a mixture of normals, and, as explained in  
[BRO 11], expected shortfall can be computed in two steps. First, it requires us to 
compute the corresponding quantile based on numeric techniques. Then, an explicit 
expression for the expected shortfall is calculated. More precisely, let μ,  be the	ߪ
mean and sigma of the return series yt under regime  j;yt ~ N(μ,ߪଶ); (j = 1, 2). The 
cdf corresponding to [8.16] is:  ܨሺݕ௧|Ω௧ିଵ; ሻߠ	 ൌ 			∑ ,ߤ	;௧ݕ,௧|௧ିଵΦ൫ߦ ଶ൯ଶୀଵߪ ,	 [8.17] 

where ߦ,௧|௧ିଵ stands for the predicted probability in regime j on date t (as defined in 
[8.10]). It follows that the ɣ- quantile of ݕ௧, ݍ௬,ɣ, can be determined by solving the 
equation ɣ- ܨሺݍ௬,ɣ;  ɣ is set to 0.05, corresponding to	 ሻ = 0 (throughout the chapterߠ	

a 95% ES calculation). Letting ܿ,௧ ൌ 	 ൫ݍ௬,ɣ െ	ߤ൯/ߪ, Φ൫ ܿ,௧൯ and ߮൫ ܿ,௧൯ are the 
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standard normal distribution and density function evaluated at	 ܿ,௧, respectively. 
Then, the expected shortfall of the return is given by:  ܵܧɣ൫ݕ௧;	ߤ, ,ߪ ,௧|௧ିଵ൯ߦ ൌ 	∑ కೕ,|షభ൫ೕ,൯ɣଶୀଵ ൜ߤ െ	ߪ ఝ	൫ೕ,൯൫ೕ,൯ൠ. [8.18] 
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Solving the Rebalancing Premium Puzzle1

Volatility is usually considered as a synonym for risk. However, recently developed investment

strategies based on the concept of volatility harvesting claim to use volatility as a source of

additional return. Proponents of these strategies refer to the additional return they offer over

buy-and-hold investments as rebalancing premium or rebalancing bonus. In this chapter our

analysis of performance of rebalanced portfolios is consistent with multi-period capital growth

theory. We identify that over short horizons there is a risk premium associated with rebalancing

and zero expected additional growth over buy-and-hold portfolios. We point out that at longer

time horizons a bonus from rebalancing does appear under some conditions. We clearly identify

these conditions when comparing the expected growth rate of optimally rebalanced portfolio with

the expected growth rate of the best asset in this portfolio. Finally, we provide insights on how

and when it is possible to add value from rebalancing in active portfolio management. As fire can

be either dangerous, if uncontrolled, or useful to run a mechanical engine if controlled, in the

same way it should be possible to put volatility to work in a controlled manner in order to produce

growth.

9.1. Introduction

Over the last decade, convincing evidence has led to a growing consensus that
part of the alpha of active managers could be explained by the existence of systematic
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factor risk premia [ANG 15]. A good review on factor investing is given in [CAZ 14,
HAR 15, ANG 15].

In a quest to apply alternative risk premia in asset allocation and portfolio
construction framework, an observation that rebalancing volatile assets in a portfolio
may produce an extra return with respect to a passive buy-and-hold portfolio awakes
the interest of a number of authors [BOU 12, HAL 14, PAL 13]. Indeed, the idea that
rebalancing a portfolio to some predefined fixed weight may increase the long-term
growth of capital is not new. Historically, it can be traced back to optimal-growth
portfolio strategies in the 1960s by Claude Shannon, the father of information theory.
Although Shannon never published on the subject, he gave a historic talk at the MIT
in the mid-1960s on the topic of maximizing the growth rate of wealth. By using a
simple Wiener example, he detailed a method on how to grow portfolio wealth by
rebalancing weights to some predefined allocation. This followed the line of thought
of the works by Kelly [KEL 56] and Breiman [BRE 61] relating the information
asymmetry to optimal bet sizing in order to minimize the time necessary for the
wealth to achieve a specific goal.

In this quickly developing area of quantitative asset management, there is a
significant confusion in terminology and often a lack of agreement about when
rebalancing premium exists and when it does not. No wonder that the general
investment community is left perplexed and is somewhat distrustful of the
innovations in this area. In our views, the confusion arises principally from the fact
that the rebalancing premium is by construct a multi-period effect, while traditional
tools and metrics to tackle premia (e.g. beta and alpha) are based on a single-period
approach.

Indeed, it is clear that properties related to volatility harvesting and rebalancing
premium are intimately related to the concept of optimal growth portfolios [MAC 10].
One of the first formalisms used to address volatility harvesting is Stochastic portfolio
theory [FER 02, ODE 13]. In this context, it can be shown that if the market remains
diverse (i.e. none of the stocks dominates the market in terms of capitalization), then
eventually a rebalancing effect can be observed.

In this chapter, we aim to debunk some common misconceptions and long-standing
issues concerning rebalancing. In doing this, to foster intuition, we focus initially on
the two-asset case and drop Fernholz diversity condition, i.e. in our context, a cap-
weighted market could be dominated by the best performing asset.

We focus on capital growth dynamics of two strategies in stationary markets: a
contrarian strategy based on a constantly rebalanced portfolio, and a trend following
strategy corresponding to a buy-and-hold portfolio. In this, we will abstract from
more challenging issues of real non-stationary markets and the effects of transaction
costs. We believe that additional layers of complexity should be added only once the
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right level of intuition is established. Our objective is to extract some simple rules on
regimes allowing the relative dominance of one strategy with respect to the other.

We approach the problem from two horizon limits. In section 9.2, we show that
on short-time horizon, there is no expected rebalancing bonus but a risk premium
related to rebalancing emerges. In this case, frequent local gains are compensated by a
negative skew of the resulting distribution of relative in-sample growth rates. In section
9.3, we probe the applicability of the short-time limit in realistic scenarios. When we
extend the time horizon and the cumulative growth becomes large, in some cases the
rebalancing bonus emerges. In section 9.4, we identify regimes when a rebalanced
portfolio is expected to grow faster than the best asset in this portfolio, in doing this
we lay down the path to explaining the low-risk anomaly. Armed with our results,
we arrive at a number of interesting theoretical and practical conclusions in terms
of optimal allocation in section 9.5, where we summarize when rebalancing makes
sense and provide a diagram of the best investment choices for the case of two risky
and one risk-free asset and perfect information. In order to not dilute concepts with
technicalities, we omit obvious algebra and relegate non-trivial derivations until the
appendix in section 9.7.

9.2. Rebalancing as a risk premium

Authors analyzing rebalancing return and its components usually consider the
limit of small variations in asset prices over the considered time horizon. This
approximation is implicit in the derivation of the so-called dispersion discount in
[HAL 14]. Yet, the approximation is not often explicitly pointed out while it bears
some remarkable consequences as we will outline in the sequel. In this chapter, we
refer to this regime as the short term or short sample limit.

Another common misunderstanding in the literature regarding rebalancing return
arises from the confusion between model parameters and in-sample realization of
these parameters. This distinction becomes especially important in the short sample
limit. We will show here that in the short-term approximation, rebalancing premium
does not come as a free lunch but genuinely behaves as a risk premium, i.e.
frequent-limited gains are counterbalanced by rare but potentially severe losses
drawn from a left-skewed distribution of returns.

To gain an easy insight into our thesis, we start from a very simple two asset set-
up. We then build two reference portfolios: a buy-and-hold portfolio where weights
fluctuate according to asset returns; a rebalanced portfolio, the weights of which are
reset to the initial ones at the end of each rebalancing period. We start with the buy-
and-hold portfolio initially identical to the rebalanced portfolio with weights ω1o and
ω2o. Both portfolios have the same return over the first period t = 1.
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Instead of starting with a predefined breakdown of volatility premium and
dispersion discount, we simply find a second-order expansion of realized growth
rates of rebalanced and buy-and-hold portfolios. In our simple two assets case
considering T rebalancing periods (derivation for N assets is given in section 9.7),
we analyze the realized growth rate gp per rebalancing period2. The realized growth
rate for the rebalanced portfolio grbp is given by:

grbp = 1
T

T∑
t=1

grbpt
= 1

T

T∑
t=1

log (1 + ω1or1t + ω2or2t)

2nd Order≈ rp − 1
2

(
T−1
T σ̂p

2
+ r2p

) [9.1]

where the sample mean return of the rebalanced portfolio rp is given by:

rp =
1

T

T∑
t=1

(ω1or1t + ω2or2t)

and sample rebalanced portfolio variance σ̂p
2 is defined as:

σ̂p
2
=

1

T − 1

T∑
t=1

(ω1or1t + ω2or2t − rp)
2

where r1t and r2t are the simple returns of the two assets over period t.

Similarly for the realized growth rate gbhp of the buy-and-hold portfolio, we get:

gbhp = 1
T log

(
1 + ω1o

(
T∏

t=1
(1 + r1t)− 1

)
+ ω2o

(
T∏

t=1
(1 + r2t)− 1

))

= 1
T log

(
ω1o

T∏
t=1

(1 + r1t) + ω2o

T∏
t=1

(1 + r2t)

)
2nd Order≈ rp − T

2 r
2
p − T−1

2T

(
ω1oσ̂1

2
+ ω2oσ̂2

2
)
+ T−1

2

(
ω1or

2
1 + ω2or

2
2

)
[9.2]

where ri and σ̂i are the realized mean return and sample standard deviation of asset i.

While to get a usable expression for the rebalanced portfolio, we only need
σi << 1 for the second-order expansion in equation [9.1], we must assume
Tri << 1 in order to drop cross terms of the higher order in the first step of equation
[9.2]. In the appendix, section 9.7, we show in detail why this approximation is

2 Note that the growth rate per period is not the same as geometric average return rgeomp =
exp (gp)− 1, although these two quantities are often confused.
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needed and point out that it is identical to
√
Tσi << 1. For the difference of the

realized growth rates, we get:

grbp − gbhp =
1

2

T − 1

T

[
ω1o

(
σ̂1

2 − Tr21

)
+ ω2o

(
σ̂2

2 − Tr22

)
−

(
σ̂p

2 − Tr2p

)]
[9.3]

This result is quite similar to the one obtained by Hallerbach in [HAL 14].
Importantly, we identify the limits of applicability

√
Tσi << 1 of both

equation [9.3] and the result in [HAL 14]. The expression in equation [9.3] can be
grouped into terms identified as volatility premium and dispersion discount as in
[HAL 14]. However, we find that such a grouping makes it difficult (if not
impossible) to compare premium and discount terms3, we will thus proceed in an
alternate way.

While the difference of the realized growth rates in equation [9.3] can be either
positive or negative, it is important to make assessment of this value on average over
multiple observations. Therefore, we define rebalancing bonus as the expected value
of the difference grbp − gbhp .

Up to this point, we made no assumption about the distributions of asset returns ri
in this section. If we assume geometric Brownian motion (normally distributed returns
with zero mean and no serial dependence N(σi, μi = 0)), we gather that there is no
rebalancing bonus in the short term. By taking the expected value of equation [9.3]
and noting that the expected value of the square of the sample realized mean ri over
T observations is:

E
(
ri

2
)
=

E

(
σ̂i

2
)

T
=

σ2
i

T
> 0

we get the result that on average in the limit
√
Tσi << 1 the rebalancing bonus is

zero4:

E
(
grbp − gbhp

)
= 0 [9.4]

Once again, we emphasize the importance of distinguishing between the
parameters of return distributions σi, μi and the sample observations σ̂i, ri. Over
multiple observation periods, σ̂i will have an expected value σi and independent
observations will be distributed according to χ2 distribution with (T − 1) degrees of
freedom. At the same time, ri2 will have an expected value of σ2

i /T and will be

3 Note that our expression contains a correction for volatility premium, consistent with the fact
that for T=1 the difference in the growth rates should be zero by definition.
4 It is obvious from above that if returns have a serial dependence characteristic to a mean-
reverting process, a positive rebalancing bonus will be observed.
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distributed as χ2 with one degree of freedom. The resulting combined distribution
describing realized observations of growth rate differences will then be characterized
by a strong negative skew. If we attempt to profit from rebalancing in the short term,
we will observe frequent small positive returns over buy-and-hold strategy, which
will eventually be offset by rare but large negative returns. This is well evidenced by
a numerical experiment for two assets and T=10 repeated 100,000 times. The
histogram of the realized difference of growth rates grb − gbh and approximation of
this difference by equation [9.3] is shown in Figure 9.1.

Figure 9.1. Distribution of the realized growth rate difference grbp − gbhp for a

portfolio of two uncorrelated assets with normally distributed returns with zero

means and 2% per period volatilities. 100,000 simulations over T = 10

rebalancing periods are considered

What if we consider assets with returns following geometric Brownian motion but
with non-zero expected returns? It appears that for proponents of rebalancing, things
only get worse. In this case:

E
(
ri

2
)
= μ2

i +
σ2
i

T
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Therefore, on average we have:

E
(
grbp − gbhp

)
= −Tω1oω2o (μ1 − μ2)

2 [9.5]

When expected returns are different, there is a small (second order in difference
of μ) rebalancing discount even when we do not take into account transaction costs.
From this result, it would appear that, if we intend to keep our portfolio allocations
for a short time, it is better not to rebalance the portfolio.

This result seemingly contradicts conclusions from a number of previous studies
claiming that regular rebalancing leads to a better performance. In the next section,
we will evaluate what happens when the approximation

√
Tσi << 1 breaks down.

9.3. Probing the limits: when simulations provide more insight

In order to check the case
√
Tσi � 1, we can proceed with the expansion of

buy-and-hold growth rate to the fourth order. After some tedious algebra, we indeed
obtain a positive expected value for the rebalancing premium but choose not to show it
here to save space. Instead, we rely on a simple Monte Carlo simulation to probe when
the effective rebalancing premium comes into force and the approximation breaks. We
analyze this by plotting the expected difference between the growth rates of rebalanced
and buy-and-hold portfolios in the numerical experiment described below when the
number of rebalancing periods increases. The parameters used for this exercise are
estimated from the total return series of Starbucks and Apple stocks over a horizon
from January 1993 to May 2015. Obviously, the following example is not general but
it provides some useful insights.

We select i.i.d. normally distributed asset returns with the daily expected return
of 11.4 and 12.1 basis points for assets 1 and 2, while daily volatility is 2.6 and 3%,
respectively. The correlation between asset returns is 0.25. Initially, the portfolio holds
50% of each asset. We compare the difference between daily expected growth rates of
a portfolio rebalanced daily and buy-and-hold portfolio for horizons between 2 weeks
and 1,000 years. The results of simulations are summarized in Figure 9.2. Each point
is an average over 200,000 independent simulations. Observed rebalancing bonus per
day for Apple and Starbucks over this horizon is also shown in the figure.

Despite the simplicity of the numerical experiment described above, we can make
some important conclusions. First, the short horizon approximation used in section
9.2 has very limited applicability. In our example, the result in equation [9.3] works
for horizons up to 5 months and then it breaks down as the difference between
approximated and exact calculations becomes statistically significant. Many authors
consider implicitly the second-order expansion of buy-and-hold portfolio’s
multi-period growth rate and apply the results of this expansion to multi-year periods.
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In the light of our example, conclusions of these authors should be re-examined. As
we show, second-order results apply only for very short horizons when realistic asset
parameters are considered. Second, we demonstrate that, while it is futile to look for
advantages of rebalanced over buy-and-hold portfolios over a short horizon in case of
i.i.d normally distributed returns, the rebalancing bonus may indeed appear when
longer horizons

√
Tσi � 1 are considered.

Figure 9.2. Rebalancing bonus per day versus horizon for two assets with normally

distributed daily returns N(0.00114, 0.026) and N(0.00121, 0.03) and correlation

0.25. Each point represents an average over 200,000 independent simulations. Black

diamonds represent approximate results using equation [9.3], while grey squares show

results of the exact calculation. Black line is the expectation according to equation

[9.5] and grey line shows expected difference between the growth rate of rebalanced

portfolio and that of the best asset (SBUX). Black dot shows the actual rebalancing

bonus observed for AAPL and SBUX over a horizon from January 1993 to May 2015

Another important observation concerns the limiting value of the rebalancing
bonus at long horizons. The expected growth rate of a buy-and-hold portfolio
approaches the expected growth rate of the best asset in the portfolio in the long term.
The asset with the higher expected growth rate in a portfolio thus plays an important
role in defining the maximum possible value of rebalancing premium.

Before moving on to consider when the expected growth of the rebalanced
portfolio is higher than the expected growth of the best asset, we show a couple of



Solving the Rebalancing Premium Puzzle 235

easy extensions of the numerical experiment defined above. Can we compare
rebalancing bonus at different rebalancing frequencies? We already noticed that
rebalancing bonus appears when

√
Tσ � 1. If instead of rebalancing daily, we do

this once a month (roughly once every 20 days), the number of rebalancing periods
over T days will decrease to T/20, while the volatility of monthly returns will

increase to σ
√
20. Overall, we see that if

√
Tσ = 1, then

√
T
20σ

√
20 = 1. It appears

that in a frictionless market, the rebalancing bonus should not depend on rebalancing
frequency. We verify this observation in numerical simulations summarized in
Figure 9.3.

Figure 9.3. Rebalancing bonus for two assets with normally distributed returns

N(0.00114, 0.026) and N(0.00121, 0.03) and correlation 0.25. Daily (grey squares)

and monthly (black triangles) rebalancing frequencies are compared in a frictionless

market. Lines of corresponding color show impact of 30 bps two-way transaction costs

on rebalancing bonus

When we include realistic two-way transaction costs of 30 bps, the situation
obviously changes. Monthly rebalancing becomes profitable for horizons longer than
1 year, while daily rebalancing bonus is only sufficient to offset transaction costs
after 4 years or more. Before embracing rebalancing as a source of excess returns, we
need to be aware that even if it is positive, it may take a while before we observe the
benefit in practice.
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9.4. Beating the best asset: a path to the low-risk anomaly explanation

As explained in the previous sections, analytical Taylor series expansion of the
growth rate of buy-and-hold portfolios is inadequate when horizon T becomes large
(i.e. approaches the limit

√
Tσ � 1). Can we obtain additional insight into rebalancing

problem without resorting to numerics? It turns out that we can say a lot more when
comparing rebalanced portfolio growth rates with the growth rates of individual assets.
In fact, when we move into the long horizon limit, this becomes the most relevant
question to ask. In the long term, the growth of the buy-and-hold portfolio will be
determined by its fastest growing asset and the dependence on the initial allocation of
weights in the buy-and-hold portfolio will eventually disappear.

As before, the growth rate of the rebalanced portfolio is given by equation [9.1].
We assume that asset 1 has a higher expected growth rate and that one-period returns
of both assets are small |rit| << 1

g1 =
1

T

T∑
t=1

log (1 + r1t)
2nd Order≈ 1

T

T∑
t=1

(
r1t − 1

2
r21t

)
[9.6]

Before proceeding further to the expected value of the difference between growth
rates of the rebalanced portfolio and the fastest growing asset, we make an
assumption of stationary i.i.d. normally distributed asset i returns with mean μi and
standard deviation σi over one period:

rit = μi + σiεit [9.7]

where εit is a standard normal i.i.d. variable N(0, 1) with zero mean and unit
variance. Assuming correlation between the two assets to be ρ, we have the following
expressions for the expected values:

E(
T∑

t=1
εit) = 0

E(
T∑

t=1
ε2it) = 1

E(
T∑

t=1
εitεjt) = ρ

E(
T∑

t=1

∑
t �=k

εitεjk) = 0

[9.8]
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After some simple algebra, we obtain expected growth rates:

E(g1) = μ1 − 1

2

(
μ2
1 + σ2

1

)
E(grb) = ω1oμ1 + ω2oμ2 − 1

2
ω2
1o

(
μ2
1 + σ2

1

)− 1

2
ω2
2o

(
μ2
2 + σ2

2

)
−ω1oω2o (μ1μ2 + σ1σ2ρ) [9.9]

Assuming full investment ω1o + ω2o = 1 and comparing expected value of the
rebalanced portfolio growth rate with that of asset 1, we determine the weight limits
when the rebalanced portfolio is expected to outperform the best asset in the long run:

0 < ω2o < 2
μ2 − μ1 + μ2

1 + σ2
1 − μ1μ2 − σ1σ2ρ

μ2
1 + σ2

1 + μ2
2 + σ2

2 − 2μ1μ2 − 2σ1σ2ρ
[9.10]

The optimal weights, for which the expected growth rate of the rebalanced
portfolio is maximized, are given by:

ω1o =
μ1 − μ2 + μ2

2 + σ2
2 − μ1μ2 − σ1σ2ρ

μ2
1 + σ2

1 + μ2
2 + σ2

2 − 2μ1μ2 − 2σ1σ2ρ

ω2o =
μ2 − μ1 + μ2

1 + σ2
1 − μ1μ2 − σ1σ2ρ

μ2
1 + σ2

1 + μ2
2 + σ2

2 − 2μ1μ2 − 2σ1σ2ρ
[9.11]

Before moving further, let us consider two special cases for the parameters in
equations [9.11].

In the case where μ1 = μ2, the optimal growth portfolio turns out to be the
rebalanced MV portfolio between two assets, shadding some light on the so-called
low-risk anomaly in [HAU 91] (see also [HAU 12]). In this respect, the anomaly
disappears as the dominance of a MV allocation framework emerges as a natural
phenomenon implicit in the compounding process. In the absence of any valuable
information on future expected returns, the rebalanced MV portfolio turns out to be
the most sensible choice if we target the long-term growth of capital. In a separate
paper, we go a step further and obtain full efficient frontier of Markovitz portfolio
theory based on information theoretic considerations and the result in equation [9.11]
[DUB 15].

Another special case, which is even more relevant for the discussion about
rebalancing, concerns a combination of one risky and one risk-free asset. If we set
σ2 = 0 and denote μ2 = rf the risk-free return, we obtain the optimal weight for the
risky asset to be held with the risk-free asset in an optimal rebalanced portfolio. To
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simplify notation, we drop the subscript for the risky asset in what follows: μ1 = μ,
σ1 = σ, and ω1o = ωo

ωo =
(μ− rf )(1− rf )

σ2 + (μ− rf )2
[9.12]

The optimal expected growth of this rebalanced portfolio is then given by:

E(grb) = rf + ωo (μ− rf )− 1

2
ω2
oσ

2 − 1

2
(rf + ωo(μ− rf ))

2

= rf − 1

2
r2f +

1

2

(μ− rf )
2(1− rf )

2

σ2 + (μ− rf )2
= gf +

1

2

SR2(1− rf )
2

τ + SR2

[9.13]

where growth rate of the risk-free asset is gf = rf − 1
2r

2
f , Sharpe ratio of the risky

asset is SR =
√
τ
μ−rf

σ and τ is the number of rebalancing periods per year5. An
important property of the rebalanced portfolio is immediately obvious from equation
[9.13]. If we have to choose one risky asset from many, we should select the asset with
the highest Sharpe ratio as it yields the highest growth rate in the optimally rebalanced
portfolio, which includes a risk-free asset. Incredibly, from a solution to a simple two-
asset rebalancing problem, we directly obtain one of the most important results in
modern portfolio theory. Indeed, this is a multi-period case of the Tobin’s mutual
fund theorem [TOB 58]. Note that this result does not require an ad hoc assumption
that investors are averse to asset price volatility. In our problem setting, investors are
only concerned with maximizing the expected growth rate of their wealth. For such
an investor, risk is no longer simply synonymous with volatility. More generally and
more intuitively, the risk can be associated with the probability of negative returns
or negative growth rates and, thus, it is related to the accuracy of forecasting return
expectations. For a more detailed discussion on this, see [DUB 15].

Another important characteristic of equation [9.13] is that optimal expected growth
is positive even for assets with negative Sharpe ratio (when expected return of the risky
asset is smaller than the risk-free return). In this case, according to equation [9.12],
it is optimal to short the risky asset and invest the proceeds at the risk-free rate. In
addition, if optimal weight in equation [9.12] is greater than 1, the optimal strategy is
to borrow money at the risk-free rate and to leverage investment into the risky asset.
It is easy to prove that if short-selling and leverage are allowed and if borrowing at
the risk-free rate and trading for free are possible, it is more profitable to invest in a
constant-weight portfolio of a risk-free and risky asset than in the risky asset alone. In
this framework, knowledge of future expected returns and variance fully determines

5 Note that
√
τ scaling factor is needed to annualize return and volatility as Sharpe ratio is

usually defined for annualized quantities.
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the choice of leverage. There is no need to assume a certain arbitrary trade-off between
risk and variance to find an optimal leverage.

If neither leverage nor shorting is allowed, we can determine the limits when
rebalancing is more profitable than holding the risky asset. From equation [9.12], in a
long-only non-leveraged case, when ωo ≤ 0 we hold risk-free asset instead of
rebalancing and when ωo ≥ 1 it is better to fully invest in the risky asset6.

⎧⎪⎨
⎪⎩
rf < μ < σ2/2 ⇐⇒ E(g1) < gf < E(grb)

σ2/2 < μ− rf < σ2 ⇐⇒ gf < E(g1) < E(grb)

σ2 < μ− rf ⇐⇒ gf < E(grb) < E(g1)

[9.14]

Equation [9.14] provides an important insight into a problem of allocating capital
between a risky and a risk-free asset. Let us take rf = 0 as is proper in the current
investment environment.

If the expected return of the risky asset is less than zero, it does not make sense
to invest. This should not be a surprise to anyone. However, positive arithmetic mean
μ does not guarantee growth of the investment in the risky asset. In fact, if 0 < μ <
σ2/2, the buy-and-hold strategy will eventually lose all initial investments. While this
result is familiar to many investors, very few actually know that it is possible to obtain
positive growth for a regularly rebalanced portfolio of cash and a risky asset even if
by itself the risky asset has a negative expected growth rate. It is even less obvious
that an optimal rebalanced portfolio will in a long run outperform any buy and hold
combination of a risky asset and cash if μ < σ2. Finally, if the expected return is large
enough μ > σ2, the investor should fully invest in the risky asset to maximize the
long-term wealth.

9.5. When rebalancing pays off

We should point out that the methodology adopted in section 9.4 is readily
extendable to any number of assets. Here, we consider the case of two risky assets
and cash given perfect knowledge about future expected returns, volatilities and
correlations. Short-selling and leverage are not allowed. This case is practically
useful and is well suited for an intuitive graphical representation [LAU 09] . We
clearly separate the parameter space into regions where rebalancing adds value from
the regions where it is best to hold one asset with the highest growth rate.
Schematically, the regions are shown in the diagram in Figure 9.4. A point on this
diagram, showing excess expected returns for the two assets, will determine what
investment choice will produce the highest growth in the long term. As is well known

6 Here, we dropped usually much smaller (μ− rf )
2 terms.
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in option pricing, asset variance turns out to be a useful measuring stick in the return
space.

Below, we focus on explaining optimal investment choices corresponding to each
region. Light gray areas in the parameter space is where rebalancing adds value. In
white areas, it is better to buy-and-hold a single asset.

Region A covers the most obvious case – when expected excess returns of both
risky assets are negative, we should just hold the risk-free asset. Regions B, C and D
have a common characteristic in that they require rebalancing between the risk-free
asset and risky assets. As shown in equation [9.13], the risky asset with maximum
Sharpe ratio maximizes expected growth when combined with the risk-free asset.
Region B corresponds to the set of parameters, for which asset 2 has the highest
Sharpe ratio, in region C – it is asset 1 that dominates. In region D, the risky holding
with the highest Sharpe ratio is a rebalanced portfolio of two risky assets. Clearly, the
risky assets have to be held in proportions that produce the maximum Sharpe ratio in
order to maximize the expected growth rate in equation [9.13]. Region D is the only
region, where all three assets are held and rebalanced. In region G, we should hold an
optimal combination of risky assets according to equation [9.11]. In regions E and F,
the best expected growth is produced by fully investing into the corresponding risky
asset. The lines separating region B from E and region C from F are defined by 100%
optimal weight of the risky asset in equation [9.12]. Similarly, the lines separating
region G from E and F correspond to 100% weight of one of the assets in
equation [9.11]. Within region G, we identify the lines reflecting some well-known
portfolio construction choices. The dashed line corresponds to MV portfolio of two
risky assets, while the dotted line corresponds to their equal weight combination.

Having identified regions for optimal investment in the parameter space, we turn
to a simple example to illustrate how much difference the correct selection can make.
We consider total returns of two stocks: Apple Inc. as asset 1 (AAPL), and Starbucks
Corporation as asset 2 (SBUX) over the period from January 1993 to May 2015.
Both companies were big success stories over the period considered. If you were to
invest $100 in AAPL in January 1993, your investment would grow to $6800, while
initial $100 investment in SBUX would be worth $9800 today. Holding a monthly
rebalanced equal weight combination of the two assets demonstrates the power of
rebalancing in the long term. $100 invested into this rebalanced portfolio would be
worth $17000 today. The difference appears to be impressive. However, let us
consider another case, where we make investment decisions roughly every 3 years.
The points identified in Figure 9.4 by two numbers show where the realized returns
of AAPL and SBUX fall over the period specified. What if every 3 years we were
able to correctly predict the region in the parameter space where the expected returns
of the pair of stocks would fall? Now, we are not claiming the perfect knowledge but
just an ability to correctly identify the region for each 3-year period. Also, we do not
expect to hold the optimal weight but choose equal weight combinations in relevant
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regions. If we were to invest according to such region selection, we would do so as
follows: from 1993 to the end of 1996 and from 2000 to 2002 we would hold SBUX,
from 1997 to 1999 and from 2003 to 2005 we would hold AAPL, from 2006 to 2008
we would rebalance between 50% in cash and 50% in AAPL and only starting from
2009 we would have a monthly rebalanced equal weight combination of the two
assets. Incredibly, correct identification of the regions in the parameter space would
help us turn our initial investment of $100 in 1993 into $370000 today or about 54
times more than the investment into AAPL would bring. The cumulative wealth
curves are shown for each case considered above in Figure 9.5. 30 bps two-way
transaction costs were included in calculation.

Figure 9.4. Optimal investment choices given perfect information for two risky and one

risk-free asset. Gray regions – rebalancing yields higher expected growth (region B –

between risk-free and asset 2, region C – between risk-free and asset 1, region G –

between risky assets, region D – risk-free and the maximum Sharpe ratio combination

of risky assets). White regions – single asset holding is optimal (region A – risk-free

asset, region E – asset 2, region F – asset 1). Dots with numbers show realized returns

of a pair (AAPL and SBUX) over corresponding periods

Realistically, even the correct prediction of a region for a set of assets may not be
possible. However, schematic representation in Figure 9.4 may also guide us in



242 Risk-Based and Factor Investing

portfolio construction if we take into account uncertainty in expected return
forecasts. If instead of given μ1 and μ2 we have a distribution of likely outcomes, we
can construct a portfolio that maximizes growth taking an integral over such a
distribution. This can be easily accomplished even in a multiple stock setting by a
Monte Carlo integration technique. An application of this approach to portfolio
construction is a topic of a separate study.

Figure 9.5. Cumulative wealth growth curves for investments into cash, AAPL and

SBUX from January 1993 to May 2105. Thin black (AAPL) and grey (SBUX) lines

show 100% buy-and-hold investments into corresponding stocks. Thick grey line shows

growth of capital of an equal-weighted monthly rebalanced portfolio of AAPL and

SBUX. Thick black line shows potential performance if regions in Figure 9.4 were to

be correctly identified every 3 years

It is well known that expected returns are difficult to forecast accurately. However,
we can better forecast variances and to a certain degree correlations. One relevant
question to ask then is which assets we should select from the point of view of their
volatilities and correlations in order to ensure that rebalancing adds value. What we
strive to achieve is to make our regions where rebalancing is optimal (gray areas)
bigger in the parameter space. Selecting very volatile assets is one way to do this.
Hence, the name volatility harvesting. If you have volatile assets you are more likely to
end up in a region where periodic rebalancing is beneficial. One way to expand regions
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D and G is to choose assets with low correlations. Thus, portfolios well diversified into
assets with low pairwise correlations are more likely to benefit from rebalancing.

Our simple graphical representation of optimal investment choices has already
yielded a number of insights. Another observation concerns certain risk-based
portfolio construction techniques. It is often claimed that risk-based investing takes
no views on expected returns. However, in order to be optimal from the point of view
of expected growth rate maximization, each risk-based methodology implies a
certain view on expected returns [QIA 05, MAI 10, JUR 15]. As pointed out above,
rebalanced minimum variance portfolio (MV) construction implies that the expected
returns are assumed to be equal. If they are, then in region G MV portfolio is the
optimal growth portfolio. Therefore, in Figure 9.4, MV line corresponds to μ1 = μ2.

Similarly, equally weighted portfolio (EW) fully invested in risky assets implies
that the expected growth rates of the two assets are the same:

μ1 − σ2
1

2
= μ2 − σ2

2

2
[9.15]

EW portfolio is in the middle of the region G in Figure 9.4. This means that EW
portfolio is ideal if we expect assets to have equal growth rates. Such a view
expressed by equation [9.15] is also least sensitive to misspecification. Among all
portfolios where rebalancing is expected to dominate, departures from equal growth
rate expectations are least likely to bring us into a regime where buy-and-hold is the
best strategy.

Equal risk contribution (ERC) portfolio is identical to maximum diversification
portfolio in the two-asset case. This portfolio lies between MV and EW lines in
Figure 9.4 and it implies the following expectation on future mean returns:

μ1 − μ2 =
(1 + ρ)σ1σ2(σ1 − σ2)

σ1 + σ2
[9.16]

It is clear that in the two-asset case for the ERC portfolio to be expected growth
optimal, it is necessary to assume that expected returns of assets are proportional to
their volatilities7.

9.6. Conclusions

This work started as an attempt to clarify a widespread confusion about
rebalancing premium. In order to do so, we looked at a simplified case of only two

7 Note that this assumption is necessary but not sufficient for optimality.
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assets. In the process, we discovered that the insights we obtain in this simple setting
allow us to tackle some of the long-standing controversies over return from
rebalancing. We showed how the confusion arises principally from the fact that the
rebalancing premium is by construct a multi-period effect, while conventional tools
and metrics to describe rebalancing premia are single-period averages. By using an
adapted formalism and by carefully considering the difference between the
one-period model set-up and the statistics of in sample realizations, the premium
appears as a genuine risk premium with frequent small gains counterbalanced by rare
but large losses. Our results allowed us to describe market regimes for which
rebalancing works and regimes for which it does not and enabled us to clarify the
implicit return assumptions of fashionable allocation schemes such as the ERC and
MV portfolios.

It is worthwhile to sketch out future research work within the framework we
propose. The concept should be extended to the multi-asset case, take into account
transaction costs and realistic asset properties such as mean reversion. In particular, it
will be of great interest to analyze optimal rebalanced portfolios with the use of
results from information theory by changing the focus from risk aversion to more
general expected return uncertainty.

9.7. Appendix

9.7.1. Rebalancing premium: the multi-asset case

Average growth rate grbp over T periods, we will have:

grbp =
1

T

T∑
t=1

grbpt
=

1

T

T∑
t=1

log

(
1 +

N∑
i=1

ωiorit

)

2nd Order≈ 1

T

T∑
t=1

N∑
i=1

ωiorit − 1

2T

T∑
t=1

(
N∑
i=1

ωiorit

)2

= rp − 1

2

(
σ̂p

2
+ r2p

)
[9.17]

where the sample mean return of the rebalanced portfolio rp is given by:

rp =
1

T

T∑
t=1

N∑
i=1

ωiorit

and the following relation is used for the sample rebalanced portfolio variance σ̂p
2:

σ̂p
2
=

1

T − 1

T∑
t=1

(
N∑
i=1

ωiorit − rp

)2

=
T

T − 1

(
1

T

T∑
t=1

r2pt − r2p

)
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Similarly for the growth rate gbhp of the buy-and-hold portfolio, we get:

gbhp =
1

T
log

(
1 +

N∑
i=1

ωio

(
T∏

t=1

(1 + rit)− 1

))

2nd Order≈ 1

T
log

(
1 +

N∑
i=1

ωio

(
T∑

t=1

rit +
∑
t>k

ritrik

))

2nd Order≈ 1

T

N∑
i=1

T∑
t=1

ωiorit − T

2

(
N∑
i=1

ωiori

)2

+
1

2T

N∑
i=1

ωio

∑
t �=k
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= rp − T

2
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T

2
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i=1

ωior
2
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1

2T

N∑
i=1

ωio

T∑
t=1

r2it
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2
r2p −

T − 1

2T

N∑
i=1

ωioσ̂i
2 +

T − 1

2

N∑
i=1

ωior
2
i

[9.18]

In the second line of the expression [9.18], we make a strong assumption
Tri << 1 to take only the terms of the first and second order in rit. The need for this
assumption arises due to larger number of terms associated with higher orders in rit.
Thus, we have T terms of the first order, T (T − 1)/2 terms of the second order and
T (T − 1)(T − 2)/6 terms of the third order. In order to drop third-order terms, we
need to assume rit(T − 2)/3 << 1 or ri(T − 2)/3 << 1 . For T >> 1 and a
stationary process with the assumption of small mean compared to volatility, we have
a simpler requirement

√
Tσi << 1 for all assets. The necessity of this approximation

may have been overlooked by other authors studying the expansion of rebalancing
premium to the second order.

Note that in order to arrive to the final expression in [9.18], we used the following
steps to simplify the double sum over cross-products of returns:

∑
t>k

ritrik =
1

2

∑
t �=k

ritrik +
1

2

T∑
t=1

r2it −
1

2

T∑
t=1

r2it

=
1

2

(
T∑

t=1

rit

)2

− 1

2

T∑
t=1

r2it =
T 2

2
r2i −

T − 1

2
σ̂i

2 − T

2
r2i [9.19]
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10

Smart Betas: Theory and Construction1

10.1. Introduction

Smart beta, also known as rule-based strategies, or systematic strategies, or
alternative beta, or exotic beta, or quantitative alpha, or “factors” or “risk premia”,
are portfolio construction techniques inspired by the key theorems of asset pricing,
following the work of [ROS 85, FAM 93] and [GRI 99]. More recent reviews include
[CAZ 14, AME 14] and [HOM 15].

The rationale behind smart beta is the belief in a persistent relationship similar to
the Arbitrage Pricing Theory (APT) across each time period:

performance plain/"smart" beta noise
Πt→t+1 − rrft→t+1vt = β1,tZ1,t+1 + · · ·+ βk̄,tZk̄,t+1 + U t+1

, [10.1]

where the factors have positive premia:

(
E{Z1,t+1}
E{Z2,t+1}·
E{Zk̄,t+1}

)
=

( λ1

λ2·
λk̄

)
> 0. [10.2]

In the above, the factors Zk,t range from the plain betas, namely well-known
factors such as the Capital Asset Pricing Model (CAPM)-like excess market return to
alternative/exotic/smart betas, which represent the value added by the portfolio
manager.

Chapter written by Attilio MEUCCI∗.
∗KKR & Symmys
1 The author is grateful to Marcello Colasante, Francesco Minotti and Alberto Santangelo.
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If the multi-period model [10.1] is identified, we can proceed to replicate the
factors Zk,t with suitable investments, and cash the premia [10.2] λk period after
period. Unearthing and investing in the betas is the ultimate goal of systematic
investment.

The standard approach to systematic investment proceeds as follows: first, we
guess potential predictive signals for the risk drivers; second, we transform the signals
into factors, which we replicate via investable portfolios.

In section 10.2, we explain the notion of signal and we describe different classes
of signals, such as fundamental, pricing and statistical. We refer to the longer version
at symmys.com/node/3300 for the important, yet tedious step of signal filtering.

In section 10.3, we introduce the fundamental law of asset management, which
inspires the construction of the factors.

In section 10.4, we describe how to build factors from signals via (flexible)
characteristic portfolios, and how to backtest the factors.

In the longer version of this chapter at symmys.com/node/3300 , we discuss in
more depth the connections between smart beta and APT, and we point the readers
toward more recent developments in building quantitative strategies, such as machine
learning [WIK 15a] techniques. Furthermore, at symmys.com/node/3300 , we provide
all the codes.

10.2. Signals

Signals are the “Holy Grail” of quantitative portfolio management. Constructing
signals is the main skill of quantitative portfolio managers.

In full generality, a signal st is the (possibly vector-valued) output of a function
that summarizes relevant features from the information set it available in the market
at the current time t:

st ≡ signalφ(it), [10.3]

where φ is a set of parameters for the function signal that is used to build the signal.

A signal cluster sclustert is a set of signals generated by common
themes/characteristics, which are used in conjunction:

sclustert ≡
(

scluster1,t·
scluster
k̄,t

)
≡ signalφ(it), [10.4]
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where signalφ is now a vector-valued function parametrized by φ. To simplify the
notation, we drop the apex “cluster” whenever we focus on a generic signal cluster.

EXAMPLE 10.1.– For a publicly traded stock, the value signal is the value-to-book
ratio of the stock, i.e. the ratio of the traded value of the firm vt (from the stock market),
to the book value [WIK 15b] of the firm book_val t (from accounting data).

svaluet ≡ vt
book_val t

, [10.5]

see [FAM 93] and later [ASN 13]. Value stocks are those for which the value signal
is large. Growth stocks are those for which the value signal is small. The value signal
cluster svaluet ≡ (svalue1,t , . . . , svalue

k̄,t
) is the set of value signals from all the k̄ stocks in

a given market.

We now proceed to discuss these categories.

Fundamental signals rely on observable characteristics of the risk drivers in a
given market. Fundamental signals are the archetypal signal, widely discussed in
academia and applied in the industry.

Accounting signals are a class of fundamental signals that are available for each
risk driver and allow for relative comparison across the risk drivers. Works in this
direction include [ZHA 05, CHA 01] and [LEW 04].

EXAMPLE 10.2.– The value signal [10.5] is fundamental. Another fundamental
signal, also considered in [FAM 93], is the size signal, defined as:

ssizet = ln(
1

hmkt
t vt

), [10.6]

where hmkt
t is the number of outstanding shares of the stock. Small capitalization

stocks (“small caps”) are those for which the size signal is large. Large capitalization
stocks (“large caps”) are those for which the size signal is small. The size signal
cluster ssizet ≡ (ssize1,t , . . . , ssize

k̄,t
) is the set of size signals from all the k̄ stocks in a

given market. The value signal [10.5] and the size signal [10.6] have become standard
in the equity industry [INV 15].

Fundamental signals need not be defined in terms of accounting data. Among such
fundamental signals, particularly important are carry, curve and macrosignals.

Carry signals are triggered by the carry of an instrument.
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In the fixed-income carry trade, the manager purchases high-yielding
long-maturity bonds by selling low-yielding short-maturity bonds, rolling down the
curve and cashing in the profits from the positive carry.

In the foreign exchange carry trade, the manager benefits from the interest rate
differential in two currencies.

Using the general definition of carry, we can implement carry signals across all
asset classes, including volatility and commodities trading. Refer to the longer version
at symmys.com/node/3300.

Curve/surface signals are similar in nature to carry signals, though they are pure
heuristics driven by the shape (typically slope or curvature) of the term/smile structure
in a given market.

In fixed-income trading, the curve signal is a linear combination of points on the
interest rate curve. In commodities trading, simple curve signals include the
backwardation [WIK 15c] and contango [WIK 15d] signals (spread of two prices for
different times to maturity).

In volatility trading, the curve has two dimensions: the calendar signal is the
difference of the implied volatility between two reference points with the same
moneyness; the smile signal is the difference of the implied volatility with the ATM
implied volatility with the same tenor; the skew signal is the difference of the in-the
money implied volatility with the out-of-the-money implied volatility with the same
tenor.

Macrosignals are triggered by macroeconomic variables, such as gross domestic
product, inflation, etc.

Carry, curve and macrosignals are better used after filtering the signal.

Pricing signals follow from measuring the dislocation between a driver and the
value of the driver implied by a pricing model. The intuition behind pricing signals is
that the real driver should converge eventually toward its fair value, as provided by the
pricing model.

EXAMPLE 10.3.– In fixed-income trading, a signal can be the difference between the
realized yield with time to maturity τ and the same yield, as implied by the Vasicek
pricing model:

sVas
τ,t ≡ yt(τ)− yVas(τ ;θt). [10.7]
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EXAMPLE 10.4.– In volatility space, a pricing signal can be constructed from the
discrepancy between the actual implied volatility σt(m, τ) and the implied volatility
σHes(m, τ ;θt) consistent with the Heston pricing model, similarly to the fixed-income
case in Example 10.3.

Unlike pricing and fundamental signals, statistical signals are created by
analyzing the time series of financial data by means of statistical techniques, such as
cointegration and spectral theory [WIK 15e].

A cointegration signal is the z-score of a cointegrated, or mean-reverting, time
series. When the z-score is positive, the mean-reverting cointegrated process is
expected to decrease, when the z-score is negative, the mean-reverting cointegrated
process is expected to increase. Cointegration signals generalize pairs-trading
[WIK 15f], see [AVE 10].

EXAMPLE 10.5.– Equity pairs trading is a cointegration strategy between two stocks,
see [ALE 02].

A spectral signal is a signal built on the analysis of time series in the frequency
domain. Key tools for the construction of such signals are Fourier theory [WIK 15g]
and wavelet theory [WIK 15h].

Similarly to cointegration and spectral signals, technical signals process one or
more time series of financial data. Unlike statistical signals, technical signals are rules,
not necessarily rooted in econometrics, spectral analysis or more in general statistical
theory.

The simplest example of technical signal is momentum, studied in [CAR 97] and
later, among others, in [JEG 01, HON 00, BAR 12] and [DAN 13]. A stock displays
momentum if recent positive returns have positive impact on the return over the next
period. A stock displays reversal if recent positive returns have negative impact on the
return over the next period.

To build the momentum signal, let us consider a generic univariate series x ≡
(x0, x1, . . .). The exponentially weighted moving average (EWMA) is defined as:

ewmaν
t {x} ≡ γt

∑
s≤te

−ν(t−s)xs, [10.8]

where γt is a normalizing factor γt ≡ 1/
∑

s≤te
−ν(t−s) ≈ 1 − e−ν and ν > 0

determines the half-life of the moving average τ = (ln 2)/ν.
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Let Δxn ≡ (Δxn,0,Δxn,1, . . .) be the time series of (the increments of) the
generic n-th risk driver. The momentum signal is the EWMA of the time series:

smom
n,t ≡ ewmaν

t {Δxn}. [10.9]

EXAMPLE 10.6.– In equities trading, the risk drivers are the log-prices, or log-values,
of each stock Xn,t = lnVn,t. Thus, the momentum signal [10.9] reads:

smom
n,t = ewmaν

t {ln( vn,1

vn,0
), ln(

vn,2

vn,1
), · · · }. [10.10]

Much more complex signals can be created, using combinations of moving
averages or more general filters. We refer the readers to the specialized literature, see,
for example, [LO 00] or [WIK 15i].

10.3. Fundamental law of active management

Here, we present the fundamental law of active management in its rawest format,
at the level of the risk drivers, rather than at the level of returns. We recall that the risk
drivers for a given market are the variables Xt ≡ (X1,t, . . . , Xn̄,t) which drive the
P&L or the return of the various instruments. For instance, risk drivers are log-prices
for stocks, the term structure of interest rates for bonds, implied volatility surfaces for
options, etc.

In order to be useful, a signal or, more in general, a signal cluster must be
predictive, in that the signal cluster St ≡ (S1,t, . . . , Sk̄,t)

′ and the next-period
risk-drivers Xt+1 ≡ (X1,t+1, . . . , Xn̄,t+1)

′ are not independent:

(
Xt+1

St

)
∼ f(Xt+1,St) �= fXt+1fSt . [10.11]

EXAMPLE 10.7.– In equities trading, the risk drivers are the log-prices, or
log-values, of the stock Xt ≡ lnV t. The value signal cluster Svalue

t from Example
10.1 is predictive if the next-step risk-drivers Xt+1, or equivalently the log-returns
ΔXt+1 ≡ lnV t+1 − lnV t, depend on some extent of Svalue

t .

The fundamental law of asset management quantifies the aggregate predictiveness
of a signal cluster on a market.

More precisely, let us assume that the joint distribution of risk drivers and signals
[10.11], conditioned on all the information available at time t, except for the signal(s),
is normal:

(
Xt+1

St

)
|it ∼ N (

(
μX;t
μS;t

)
,
(

σ2
X;t σX;tpX,S;tσS;t

σS;tp
′
X,S;tσX;t σ2

S;t

)
), [10.12]
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where σX;t = σ′
X;t is the Riccati root of the positive definite covariance matrix

of the risk drivers σ2
X;t ≡ Cvt{Xt+1}; and similar for the signal cluster σ2

S;t ≡
Cvt{St}. The linkage matrix pX,S;t ≡ Crt{X̃t+1, S̃t} is the correlation between the
standardized risk drivers X̃t+1 ≡ σ−1

X;t(Xt+1 − μX;t) and the standardized signals
S̃t ≡ σ−1

S;t(St − μS;t), where μX;t ≡ Et{Xt+1} and μS;t ≡ Et{St}.

EXAMPLE 10.8.– Consider the case of k̄ jointly standard normal driver-signal pairs
(Xk,t+1, Sk,t) with positive correlation λ > 0, where all the pairs (Xk,t+1, Xk′,t+1)
and (Sk,t, Sk′,t) are (conditionally) independent across time. Thus, the joint
distribution [10.12] reads

(
Xt+1

St

)
|it ∼ N (( 00 ) ,

(
Ik̄ λIk̄
λIk̄ Ik̄

)
), [10.13]

and the linkage matrix is pX,S;t = λIk̄.

The linkage matrix pX,S;t is the key to the predictiveness of the signal cluster.

Indeed, let us define the information coefficient ick,t of the k-th signal in the cluster
as the total (square) correlation accumulated by the signal over all the risk drivers:

ick,t ≡
√∑n̄

n=1[pX,S;t]
2
n,k. [10.14]

EXAMPLE 10.9.– Continuing from Example 10.8, the information coefficient [10.14]
is the same across all signals and time:

ick,t ≡ ic = λ. [10.15]

Given a signal occurrence st, let us define the conditional excess signal-to-noise
ratio achieved by a linear combination (identified by a vector v) of the excess-risk
drivers:

snv(st) ≡ Et{Xv|st}
Sdt{Xv|st} , [10.16]

where the excess variable is Xv ≡ v′(Xt+1 − μX;t).

EXAMPLE 10.10.– We continue from Example 10.9. The conditional distribution of
the risk drivers given the signals reads:

Xt+1|st ∼ N (λst, (1− λ2)Ik̄). [10.17]
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Hence, since normal distributions are elliptical [WIK 15j], we have v′(Xt+1|st −
μX) ∼ N (λ(v′st), (1− λ2) ‖v‖2). Therefore, the conditional excess signal-to-noise
ratio [10.16] reads:

snv(st) =
Et{Xv|st}
Sdt{Xv|st} = λ√

1−λ2‖v‖ (v
′st). [10.18]

Thus, we define the maximal conditional signal-to-noise ratio:

max_sn(st) ≡ maxv snv(st), [10.19]

which depends on the realization of the signal st; and the (L2 expected) maximal
conditional signal-to-noise:

‖max_sn‖2 ≡
√
E{[max_sn(St)]2}. [10.20]

EXAMPLE 10.11.– We continue from Example 10.10. The maximal conditional signal-
to-noise [10.19] reads:

max_sn(st) = λ√
1−λ2

‖st‖ . [10.21]

Hence, the (L2 expected) maximal conditional signal-to-noise [10.20] reads:

‖max_sn‖2 =
√
E{ λ2

1−λ2S
′
tSt} = λ√

1−λ2

√
k̄, [10.22]

where we used the fact that E{S′
tSt} = tr(E{StS

′
t}) = tr(Ik̄) = k̄.

The fundamental law of active management states that, when the signal is weak,
i.e. ick,t � 1, the maximal predictability provided by a signal cluster, as represented
by the maximal signal-to-noise ratio achievable, reads:

‖max_sn‖2 ≈
√
ic21,t + · · ·+ ic2k̄,t [10.23]

In particular, if all the signals in the cluster have the same information coefficient
[10.14], or ick,t ≡ ict, then the maximum predictability, and thus ultimately
profitability, is the product of (1) the information coefficient of the signal cluster
[10.14], chosen by the portfolio managers using their skills and (2) the breadth of the
cluster, as represented by the square root of the number of signals in the cluster:

‖max_sn‖2
↑

max-predictability

≈ ict
↑

skill

×
√

k̄
↑

breadth

. [10.24]
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EXAMPLE 10.12.– We continue from Example 10.11. Suppose λ � 1 so that 1−λ2 ≈
1. If we consider one driver (think of a stock) with one related signal (k̄ = 1), we can
achieve a maximum signal-to-noise ratio of the order ‖max_sn‖2 ≈ λ � 1, as
follows from the fundamental law [10.23]. Instead, if we consider a large portfolio
of independent drivers, each with an independent signal, we can achieve a maximum
signal-to-noise ratio ‖max_sn‖2 ≈ λ

√
k̄ > 1, up to consider a large enough market

(k̄ 	 1).

The fundamental law of asset management [10.53] connects the maximum
signal-to-noise (Sharpe) ratio of a portfolio with the strength of a signal. A different,
much simpler result states that a portfolio of uncorrelated bets has larger Sharpe ratio
than any of the individual bets, without any mention of signals or predictiveness. It is
surprising how often the simpler result is mistakenly advertised as the fundamental
law of asset management.

EXAMPLE 10.13.– Consider the case of k̄ independent normal risk drivers with mean
λ and unit variance:

Xt+1 ∼ N (λ1k̄, Ik̄). [10.25]

Thus, the signal-to-noise ratio of each driver Xt,k is λ, whereas the signal-to-noise
ratio of an equally weighted portfolio 1

k̄

∑k̄
k=1 Xt,k is λ

√
k̄.

10.4. Factors construction

In Chapter 9, we have obtained signals such as, say, momentum smom
t , defined in

[10.9]. In this chapter, we use signals for portfolio construction, i.e. to build factors
as in [10.1]. Intuitively, a factor is a strategy constructed from one signal, which gives
rise to stream of P&L’s with positive mean [10.2].

More precisely, a factor is a self-financing strategy, namely a feasible sequence of
portfolio allocations {hsignal

t }t≥0, where each allocation
hsignal
t ≡ (hsignal

1,t , . . . , hsignal
n̄,t )′ is held over the generic period (t, t + 1] and is a

function of information available at time t, as summarized by one cluster of signals
st, or hsignal

t ≡ h(st).

The strategy is rebalanced without transaction costs. The strategy generates the
stream of P&L’s Πsignal

t→t+1 =
∑n̄

n=1 h
signal
n,t Πn,t→t+1, where Πn,t→t+1 is the P&L

generated by one unit of the n-th instrument over the interval (t, t+ 1]:

st︸︷︷︸
signal

→ hsignal
t︸ ︷︷ ︸

factor portfolio

→ Πsignal
t→t+1 = hsignal′

t Πt→t+1︸ ︷︷ ︸
P&L

. [10.26]
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The nomenclature “factor” is justified because the portfolios {hsignal
t }t≥0 are used

to extract the factors of an APT-like linear factor model.

The factor stream of P&L’s {Πsignal
t→t+1t}t in [10.26] is an ergodic process, i.e. a

process whose future realized mean value is the same as the past realized (positive)
mean value.

We emphasize that a factor is a strategy that cannot be implemented. What can
be implemented is a strategy that pays transaction costs and is adversely affected by
market impact [WIK 15k].

In section 10.4.1, we postulate the allocation ht directly from the signal cluster st.

In section 10.4.2, we first associate with the signal cluster st a set of expected
returns for the instruments in the market, and then we compute the factor-replicating
characteristic portfolio.

To overlay constraints to the approach in the previous section, and build more
flexible characteristic portfolios we refer to the longer version of this chapter at
symmys.com/node/3300.

10.4.1. Direct construction

In standard applications, the dimension of the signal cluster is the same as the
dimension of the risk drivers, or k̄ = n̄. In such situations, the signals are called
relative value or cross-sectional.

There exists a simple, effective way to build cross-sectional portfolios from
signals, first pioneered by Rosen [ROS 85] and Fama [FAM 93]. From the definition
of signal st in [10.11], we postulate that a positive signal implies a bullish view on
the respective risk driver, and a negative signal implies a bearish view on the
respective risk driver. Accordingly, let us denote by ht ≡ (h1,t, . . . , hn̄,t)

′ the
holdings (number of shares, notional of bonds, etc.) of a portfolio. The direct
construction proceeds as follows:

hsignal
t :

{
long equal-weight portfolio with large signal entry
short equal-weight portfolio with small signal entry , [10.27]

where long and short legs have the same market value with opposite sign in order to
build a dollar neutral portfolio:

hsignal′
t vt ≡ 0. [10.28]
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EXAMPLE 10.14.– A typical dollar neutral portfolio which is directly built in terms
of signals as in [10.27] is the High Minus Low portfolio hHML

t , where the long leg
is obtained going long on stocks whose value signal svaluen,t [10.5] is larger than the
signal of the first 70% of the ranked stocks, and the short leg going short on stocks
whose value signal svaluen,t [10.5] is smaller than the first 30%. Refer to [FAM 93] for
details.

10.4.2. Characteristic portfolios

Here, we discuss the factor construction based on characteristic portfolios. We
generalize the standard construction discussed, for example, in [GRI 98] to the case
of general instruments, with general risk drivers.

Before proceeding, we introduce some nomenclature.

A characteristic is a vector of features βchar
t ≡ (βchar

1,t , . . . , βchar
n̄,t )′, one for one

unit of each instrument in a given n̄ dimensional market.

The exposure to the characteristics βchar
t of a portfolio defined by the holdings

ht ≡ (h1,t, . . . , hn̄,t)
′ is the sum:

βchar
h,t ≡ h′

tβ
char
t =

∑n̄
n=1hn,tβ

char
n,t , [10.29]

where the holdings can be long (hn,t > 0) or short (hn,t < 0).

The characteristic portfolio hchar
t for arbitrary characteristics βchar

t is the
minimum-variance portfolio with unit exposure to the characteristics
hchar ′
t βchar

t = 1, which reads:

hchar
t ≡ (σ2

Π;t)
−1βchar

t

βchar ′
t (σ2

Π;t)
−1βchar

t

, [10.30]

where σ2
Π;t ≡ Cvt{Πt→t+1} is the ex-ante covariance matrix of the P&L’s

Πt→t+1 ≡ (Π1,t→t+1, . . . ,Πn̄,t→t+1)
′ of the instruments in the market, conditioned

on all the information available at time t, except for the signal(s).

The characteristic portfolio has unit exposure to the characteristic:

hchar ′
t βchar

t = 1, [10.31]
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and its ex-ante conditional variance reads:

Vt{hchar ′
t Πt→t+1} = (βchar ′

t (σ2
Π;t)

−1βchar
t )−1. [10.32]

Now, we are ready to outline the steps of factor construction based on characteristic
portfolios.

Step 1. We estimate the distribution of the risk drivers, and we extract the first and
second moments conditioned on all the information available at time t, except for the
signal(s):

μX;t ≡ Et {Xt+1} , σ2
X;t ≡ Cvt {Xt+1} . [10.33]

Often, but not always, we can assume that the risk drivers are approximately a
martingale, i.e. μX;t ≡ xt.

EXAMPLE 10.15.– Continuing from Example 10.14, in the case of equities, Xt ≡
lnV t, the conditional expectation in [10.33] can be proxied as follows μX;t ≈ lnvt+

rrft→t+11n̄×1.

Step 2. We model the joint distribution of the risk drivers and the predictive signal
[10.11] as a normal, potentially time-dependent distribution with constant correlation
structure:

(
Xt+1

St

)
|it ∼ N (

(
μX;t
μS;t

)
,
(

σ2
X;t σX,S;t

σ′
X,S;t σ2

S;t

)
), [10.34]

where the conditioning information it is all the information available at time t, except
for the signal(s); and:

(
σ2

X;t σX,S;t

σ′
X,S;t σ2

S;t

)
≡ Diag

(
σvol

X;t

σvol
S;t

)(
c2
X;t cX;tpX,S;tcS;t

cS;tp
′
X,S;tcX;t c2

S;t

)

×Diag

(
σvol

X;t

σvol
S;t

)
; [10.35]

and cX;t = c′X;t is the Riccati root of the correlation matrix c2X;t ≡ Crt{Xt+1},
and similar for c2S ; and the matrix pX,S;t is the correlation of the standardized
drivers X̃t+1 ≡ c−1

X;tDiag(σvol
X;t)

−1(Xt+1 − μX;t) ∼ N (0, In̄) with the
standardized signals S̃t ≡ c−1

S;tDiag(σvol
S;t)

−1(St − μS;t) ∼ N (0, In̄).
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We postulate that each normalized driver is equally affected by one and only one
normalized signal, and thus their cross-correlation matrix is a multiple λ of the
identity, as in Example 10.8:

pX,S;t ≡ Crt{X̃t+1, S̃t} = λt × In̄, [10.36]

Note that, by flipping the sign in the signal cluster, we can always assume that the
cross-correlation is positive λt > 0. Furthermore, the information cross-correlation is
small 0 < λt � 1 because the signal is typically weak, see Figure 10.1. The cross-
correlation λt is also the information coefficient [10.14], which is the same for each
signal in the cluster, ict ≡ icn,t = λt.

Also, we postulate that the correlation matrices of the risk drivers and the signals
are the same, i.e. cX;t = cS;t. Finally, we assume that the signals St are filtered as
discussed at symmys.com/node/3300, so that μS;t = 0 and σvol

S;t = 1n̄.

The conditional expectation of the risk drivers given the signal is a function of the
signal:

Et{Xt+1|st} = μX;t + σvol
X;t ◦ st × ict. [10.37]

However, the conditional covariance is almost unaffected by the signal:

Cvt{Xt+1|st} ≈ Cvt{Xt+1} = σ2
X;t. [10.38]

EXAMPLE 10.16.– Continuing from Example 10.15, for equities the expectation
conditioned on the signals st reads:

Et{lnV t+1|st} = lnvt + rrft→t+1 + (σvol
lnV ;t ◦ st)× ict. [10.39]

Step 3. From the Taylor approximation of pricing, over the short run the P&L is
approximately a linear function of the next-period risk-drivers:

Πt→t+1|it ≈ θt +Diag(δt)(Xt+1|it − xt), [10.40]

where θt and δt are the suitable n̄-dimensional vectors.

Thus, the conditional expectation and covariance of the P&L of the market
instruments follow from their counterparts for the risk drivers [10.37]–[10.38] affine
equivariance of the expectation and covariance operators:

μΠ;t ≡ Et{Πt→t+1|st} = θt +Diag(δt)(μX;t + σvol
X;t ◦ st × ict − xt) [10.41]

σ2
Π;t ≡ Cvt{Πt→t+1|st} ≈ Cvt{Πt→t+1} = Diag(δt)σ

2
X,t Diag(δt). [10.42]
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We can write the P&L [10.40] as an APT-like linear factor model:

Πt→t+1|st − rrft→t+1vt = αt + βsignal
t Zsignal

t+1 +U t+1|st. [10.43]

In the above model, the excess drift without the signal is defined as αt ≡ θt +
Diag(δt) (μX;t − xt) − rrft→t+1vt and is assumed null αt ≈ 0, as in the APT (see
symmys.com/node/3300); the loadings are defined as:

βsignal
t ≡ Diag(δt)(σ

vol
X;t ◦ st). [10.44]

The factor’s premium is the information coefficient:

Et{Zsignal
t+1 } = ict, [10.45]

which is positive in accordance to [10.2]; and the residuals U t+1 are assumed to have
zero expectations and satisfy the systematic-idiosyncratic properties, as in the APT.

Furthermore, the information coefficient ict can be computed equivalently as
follows:

ict =
1

γt
tr(Cvt{Πt→t+1,B

signal
t }), [10.46]

where Bsignal
t ≡ Diag(δt)(σ

vol
X;t ◦ St) and γt ≡ tr(Cvt{Bsignal

t }).
EXAMPLE 10.17.– Continuing from Example 10.16, from the P&L pricing function
for equities we have θt = 0 and δt = vt, and thus we can write αt = 0 and
βsignal
t = Diag(vt)(σ

vol
lnV ;t ◦ st).

Step 4. We compute the characteristic portfolio [10.30] arising from the signal-
induced characteristics βsignal

t [10.44]:

hsignal
t ≡ (σ2

Π;t)
−1βsignal

t

βsignal′
t (σ2

Π;t)
−1βsignal

t

. [10.47]

Note that the characteristic portfolio has in general non-zero value:

vsignalt ≡ hsignal′
t vt. [10.48]

To overlay constraints to the characteristic portfolio [10.47], and build more
flexible factors (constant volatility, zero-investment, uncorrelated with stock market,
etc.) we refer to the longer version of this chapter at symmys.com/node/3300.
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EXAMPLE 10.18.– Continuing from Example 10.17 and considering the expression of
the P&L covariance matrix σ2

Π;t [10.42], the characteristic portfolio [10.47] reads:

hsignal
t =

(Diag(1./vt)Diag(1./σvol
lnV ;t)( c

2
lnV ;t )

−1)st

s′t(c2lnV ;t )
−1st

, [10.49]

where c2lnV ;t ≡ Crt{lnV t+1}.

Figure 10.1. Play clip: characteristic portfolio strategy for the stocks of

the S&P500 index based on reversal signals

Given the factor construction rule [10.26], we can go back in time and backtest the
rule:

{ st �→ hsignal
t �→ πsignal

t→t+1 ≡ hsignal′
t πt→t+1

signal factor portfolio realized P&L
}t∈T , [10.50]

where T is the whole available history of observations, or a subset thereof. Thus, we
can study the time series properties of the backtest P&L {πsignal

t→t+1}t∈T .
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Arguably, the most relevant feature is that signal and factor P&L be stationary and
ergodic, in such a way that we can rely on the backtest to infer the future behavior of
the factor.

We define the realized Sharpe ratio of the realized excess performance over the
risk-free investment:

ŝr t ≡
ewmaν

t {πsignal
·→·+1 − rrf·+1v

signal
· }

ewm_sdν
t {πsignal

·→·+1}
, [10.51]

where we used the moving average mean ewmaν
t and the moving average standard

deviation ewm_sdν
t .

Another relevant feature is the realized information coefficient, which is defined
as the moving average “correlation” between the realized P&L in the market and the
ex-ante signal characteristics βsignal

t in [10.44]:

îct ≡ tr(ewm_cvν
t {π·+1,β

signal
· })

tr(ewm_cvν
t {βsignal

· }) , [10.52]

where we used the moving average covariance ewm_cvν
t .

Thus, it becomes possible to test the fundamental law of asset management:

ŝr t ≈ îct ×
√
n̄. [10.53]

EXAMPLE 10.19.– Consider the characteristic portfolio hsignal
t [10.47] invested in

n̄ = 392 stocks of the S&P500 index arising from the signal-induced characteristics
βsignal
t [10.44] based on n̄ = 392 momentum signals [10.10], filtered as described

at symmys.com/node/3300. In the top plot of Figure 10.1, we show the realized daily
portfolio P&L πsignal

t→t+1 and the ex-ante estimated uncertainty band, along with realized
the cumulate P&L πsignal

0→t from 14th October 2009 to 27th July 2011. In the left middle
plot, we display the scatter plot of the realized returns πt→t+1./vt of each stock at
time t + 1 against the “expected returns” βsignal

t ./vt at time t, along with the best
fit regression line. In the three plots on the right, we show the ranked reversal signals
s̃t in increasing order, the dollar weights hsignal

t ◦ vt and the value of the rescaled
signals σvol

X;t ◦ s̃t, i.e. the normalized characteristics βsignal
t [10.44], both ordered

with respect to the signals s̃t. Finally, we show the plot (left bottom) of the realized
information coefficient îct [10.52] of the strategy. Refer to symmys.com/node/3300 for
the code.
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10.5. Conclusions

We presented a practical multi-step recipe to build smart beta, or more in general
systematic strategies, across all types of signals and asset classes.

We provided the theoretical support for such recipe and we showed the connection
with the fundamental law of active management.

We applied the multi-step recipe to a real-life case study. Further refinements and
the code can be found at symmys.com/node/3300.
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11  

Low-Risk Anomaly Everywhere:  
Evidence from Equity Sectors 

We give strong empirical evidence of a risk anomaly in equity sectors in a number of regions 
and countries of developed and emerging markets, with the lowest risk stocks in each activity 
sector generating higher returns than would be expected given their levels of risk, and the 
converse outcome for the riskier stocks. We believe this evidence is a likely consequence of the 
fact that equity analysts and active fund managers tend to specialize in particular sectors and 
mainly select stocks from these sectors. Additionally, constraints restricting the deviation of 
sector weights in active portfolios against their market capitalization benchmarks are often used 
by active fund managers, in particular by quantitative managers who tend to go as far as being 
sector neutral. As a result, we find that sector neutral, low-risk approaches appear more efficient 
at generating alpha than non-sector neutral approaches, with the latter showing strong sector 
allocation toward financials, utilities and consumer staples than sector neutral, at least when 
applied to developed countries in a global universe. We also discuss some properties of low-risk 
investing, such as tail risk, turnover and liquidity. 

11.1. Introduction 

Low-risk investing in equities has been in the spotlight in recent years probably 
due, in particular, to the disappointing performance of equity markets since the start 
of the new millennium and up until the 2008 crisis. The main focus of low-risk  
investing is to reduce portfolio risk, defending the portfolio in equity market  
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downturns, while capturing the positive alpha from low-risk stocks to improve  
risk-adjusted returns. Indeed, the positive alpha found in low-risk stocks explains 
why the Sharpe ratio of strategies invested in these stocks has been larger than that 
for the market capitalization index. Low-risk investing also naturally excludes the 
riskier stocks which have been delivering the poorest risk-adjusted returns and have 
had significant negative alpha. 

Low-risk investing dates back to the seminal paper of Haugen and Heins  
[HAU 72] with empirical evidence that, between 1926 and 1969, portfolios 
systematically investing in U.S. low-volatility stocks would have delivered much 
larger returns than expected from their low level of beta, while portfolios invested in 
high-volatility stocks would have delivered returns much below what should have 
been expected from their high level of beta. Brennan [BRE 71] and Black [BLA 72] 
showed that the violation of one of the assumptions behind the capital asset pricing 
model (CAPM) – that investors have no constraints, e.g. on leverage or borrowing – 
is sufficient to reduce the slope of the relationship between returns and beta. Blitz 
[BLI 14] has recently reviewed the academic literature and summarized the  
different effects that have been proposed by academics to explain the low-risk 
anomaly.   

The low-risk anomaly appears almost universally. Haugen and Baker [HAU 12] 
demonstrated empirically that it can be found in the cross-section of stock returns of 
almost all developed and emerging market countries in the world. The comprehensive 
empirical analysis of De Carvalho et al. [DEC 14] strongly suggests that the low-risk 
anomaly goes beyond equity markets and can also be found in the cross-section of 
bond returns of all major segments of fixed-income markets and regions. Their results 
show that portfolios invested in low-risk bonds with the lowest beta generated the 
largest positive alpha, while portfolios invested in the riskier bonds with the highest 
beta generated the most negative alpha. This result was found for government bonds, 
quasi- and foreign government bonds, securitized and collateralized bonds, corporate 
investment-grade bonds, corporate high-yield bonds, emerging market bonds and 
aggregations of some of these universes, and for bonds in USD, EUR, GBP and JPY. 
Frazzini and Pedersen [FAR 14] suggest that the low-risk anomaly is also observed in 
commodities, currencies and at top-down level in fixed income and equities, i.e. in the 
cross-section of the returns of currency forwards, index futures, equity and treasury 
country indices, portfolios aggregated by ratings and in the cross-section of all these 
put together. Baker et al. [BAK 14] have recently looked at the decomposition of the 
low-risk anomaly into top-down country and industry contributions and bottom-up 
contributions. They found a risk anomaly in the cross-section of country returns and, 
to a lesser extent, in the cross-sectional of industry returns. Asness et al. [ASN 14] 
gave stronger evidence of a low-risk anomaly in the cross-section of industry returns 
by using more granular industry definitions. 
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The low-risk anomaly is not only found in the cross-section of asset classes but 
also in the time series of asset class premiums and in the time series of factor 
premiums. Perchet et al. [PER 14a] showed that the time series of asset class returns 
shows volatility clustering, i.e. the volatility forms two distinct volatility regimes, 
one with low volatility and high average returns and one with high volatility and low 
average returns, or even negative, for most asset classes. In turn, Perchet et al.  
[PER 14b] showed that the time series of value and momentum factor returns in 
equity, government bonds and currency markets also shows volatility clustering, 
with two distinct volatility regimes: higher returns for the low-volatility regime and 
lower returns for the high-volatility regime. 

In this chapter, we aim (1) to investigate the universality of the risk volatility 
anomaly by focusing on the cross-section of stock returns in equity sectors in 
developed countries and emerging market countries, in aggregate and at individual 
country level, and (2) to compare sector neutral low-risk investing with the 
traditional sector-biased low-risk approaches that are typically overexposed to 
defensive sectors. 

We also aim to shed additional light on the results of Baker et al. [BAK 14], who 
found that the risk anomaly is stronger at stock level by neutralizing industry 
exposure than in the cross-section of industry returns, contrary to what should have 
been expected from the suggestion by Samuelson [SAM 98] that stocks are priced 
more efficiently than industries because industries have fewer substitutes than 
stocks, an argument they used to motivate their research. The results of Asness et al. 
[ASN 14] also point in the same direction, i.e. that the risk anomaly can be more 
efficiently captured by neutralizing industry exposures than by investing at top-
down level in low-risk industries and avoiding the riskier industries. Moreover, we 
did not find any explicit effect that could explain these results in the available 
literature. 

In fact, we will argue that one possible explanation comes from the active 
management industry and the way active managers tend to pick stocks for their 
active portfolios. This explanation is thus closely related to what Blitz [BLI 14] calls 
“relative utility” and “agents maximize option value”, but is likely to be a result of 
the practicalities of how fund managers tend to operate and manage portfolios with 
the objective of outperforming a benchmark index. 

11.2. Low volatility or low beta? 

Neither the stock volatility nor the stock beta is constant over time. Hence, low-
risk investing requires periodic rebalancing to take into account that some stocks  
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which have been low risk in the past may no longer be low risk in the future. A 
strategy periodically rebalancing the stock allocation toward the minimum variance 
portfolio is an example of a low-risk strategy that can be shown to have delivered 
higher risk-adjusted returns than expected from its low level of beta. However, as 
shown by De Carvalho et al. [DEC 12], the minimum variance portfolio can be 
replicated by simple portfolio strategies based on equally overweighting low-beta 
stocks and underweighting high-beta stocks. Thus, we prefer to use simpler 
strategies that involve selecting stocks from risk rankings to build low-risk 
portfolios, rather than using minimum variance strategies.  

Research on the low-risk anomaly often relies on building portfolios invested in 
a selection of stocks with the lowest ex ante beta, e.g. [BAK 14] and [ASN 14], and 
often in a selection of stocks with the lowest ex ante volatility, e.g. [BAK 12] and 
[LI 14]. We chose to use ex ante volatility instead of ex ante beta for the reasons 
listed below. 

We built two strategies and applied them to the MSCI World Index1 stock 
universe. In the first strategy, stocks are first ranked every month by their level of  
ex ante beta2 calculated at that point in time from a 2-year rolling regression of the 
stock total returns in excess of cash against the total returns of MSCI World Index in 
excess of cash, with returns in USD. Every month, we built an equally weighted 
portfolio invested in the stocks with the lowest ex ante beta at the start of the month 
holding this portfolio until the next monthly rebalancing. We kept only 10% of the 
stocks in the universe. The historical simulation of this strategy runs from January 
1995 to August 2013 and its results are compared with a similar strategy, which 
differs only in the fact that instead of ex ante beta we used a 2-year rolling standard 
deviation of returns2. 

                         
1 Due to licensing constrains, for data prior to August 2006, we use the global universe of 
stocks of developed countries in the Exshare database for which the market-cap allocation 
minimizes the tracking risk against the total returns of the MSCI World Index in U.S. dollars. 
Therefore, the universe for the period prior to August 2006 may not be exactly the same 
universe that underlies the MSCI World Index. We believe that our universe is likely to 
contain more stocks than those in the MSCI Index in the period January 1995–August 2006. 
In our view, however, the impact of not using exactly the MSCI World index universe on the 
results of this chapter should be minor. 
2 Only stocks with at least 450 days of pricing data in the 2 years used in the estimation of  
ex ante volatility and beta are retained. Otherwise, they are excluded from the selection 
process. The results are not very sensitive to the length of the window used in the estimation 
of the ex ante volatility and beta. But for shorter windows, the error estimation increases 
which generates more turnover in the strategy, while for longer windows more stocks will be 
excluded for not having sufficient pricing data. A 2-year rolling window offers a good 
compromise between these two effects.  
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Low-volatility stocks have low beta because beta is simply the product of the 
stock volatility by the correlation of returns with the market returns divided by the 
market volatility. However, not all low-beta stocks have low volatility. Some higher 
volatility stocks can be low beta due to the low correlation with the market. If we 
look at the average overlap between the portfolios behind the two strategies, we find 
that it is high at 55%. This is in fact high knowing that there are about 1,700 stocks 
on average in the MSCI World index and that we retain only 10% of these stocks in 
each case. But despite being high, the universe of low-volatility stocks is not exactly 
the same as the universe of low-beta stocks. We also observe that the strategy based 
on low beta has a higher turnover at 19% (two-way) per month than the strategy 
based on low volatility at only 13%. This is a significant difference and shows that 
the persistence of beta is less strong than the persistence of volatility, which should 
have been expected since the beta will change in time not only because of changes in 
volatility but also because of changes in correlation with the index. Thus, we have 
included a third strategy whereby the selection is based on a Bayesian estimation of 
the beta, thus following the procedure proposed by Vasicek [VAS 73], which aims 
at improving the estimation of beta. 

The results of the simulations can be found in Table 11.1. We use US  
T-bill 3-month rates obtained via FactSet as the proxy for the risk-free rate and no 
transaction cost or market impact was considered. As we can see, the differences 
among the strategies are not large, in particular if we take into account the length  
of the backtest. Nevertheless, we find that when selecting the lowest beta stocks,  
the strategy delivers a slightly lower beta and alpha than when selecting the  
lowest volatility stocks. In turn, the volatility is slightly lower when selecting  
the lowest volatility stocks than when selecting the lowest beta stocks.  
Not surprisingly, we also find that the results based on a Bayesian estimation of the 
beta are closer to those based on volatility than those based on the standard beta 
estimation. 

 

Table 11.1 Annualized returns, volatility, Sharpe ratio, alpha and beta for monthly 
rebalanced low-risk strategies based on ranking approaches using beta and volatility 
estimators. Selected low-risk stocks are equally weighted. World universe. January 

1995–August 2013 

Low Volatility
CAPM Bayesian

Annualized Excess return over Cash 7.6% 7.9% 8.1%
Volatility 11.4% 11.1% 10.9%
Sharpe Ratio 0.67 0.71 0.74
Annualized alpha 5.7% 6.0% 6.0%
Beta 0.52 0.51 0.55

Low Beta
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Selecting low-volatility stocks generates much lower turnover, creates 
marginally more alpha and results in a beta that is almost as low as when selecting 
by low beta. For these reasons, we will use volatility instead of beta for the selection 
of stocks in the remainder of this chapter. 

An additional reason for using volatility instead of beta is the non-universality of 
beta. From a CAPM point of view, the beta should be based on the market portfolio. 
But for a portfolio manager benchmarked against a segment of the market portfolio, 
what really matters is the beta measured against the market capitalization-weighted 
portfolio for the stocks in that market segment. Thus, the relevant measure of beta is 
not the same for all market participants if we take into account their different 
objectives.  

11.3. Sector-neutral low-risk investing 

11.3.1. Motivation 

The CAPM assumes that investors are risk-averse and maximize the expected 
utility of absolute wealth, caring only about the mean and variance of returns. This is 
a large assumption which does not actually apply to all investors. Professional active 
portfolio managers are appraised on their performance relative to a benchmark 
index, typically a market capitalization portfolio of a given segment of the equity 
market, usually a country or region. Consequently, these professional investors do 
not care about absolute wealth or risk, but only about the relative performance in 
excess of the benchmark and the tracking-error risk. They often have targets and 
constraints on the tracking-error risk they can take.  

As argued by Falkenstein [FAL 09], if CAPM was observed, active portfolio 
managers would then maximize their utility by investing in high-beta stocks instead 
of low-beta stocks. Under CAPM, given two stocks with the same level of tracking-
error risk, one with high beta and one with low beta, the portfolio manager 
preference would necessarily be for the high-beta stock which, with a beta higher 
than one, would be expected to outperform the market capitalization index in the 
medium-to-long term due to its higher exposure to the market risk premium. In turn, 
the low-beta stock, with beta below one, would be expected to underperform the 
market capitalization index due to its low market exposure. 

The higher demand for high-beta stocks created by these investors should push 
up the prices of such stocks and make the low-beta stocks that are less in demand 
cheaper. As shown by Falkenstein [FAL 09], the expected return for each stock is 
then the same in equilibrium. Even if these investors represent just part of the 
universal investor population and other investors maximize the expected utility of 
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absolute wealth, a risk anomaly should still expected, even if less strong, as shown 
by Brennan [BRE 93] and Brennan et al. [BRE 12]. 

A related explanation of the low-risk anomaly was proposed by Haugen and 
Baker [HAU 12]. They focus on the typical compensation structure of professional 
active portfolio managers and show that the incentive structures resemble a call 
option. The value of call options increases with volatility and thus, assuming that 
active portfolio managers seek to maximize the expected value of the call options 
upon which their compensation is based, they are incentivized to take risks and 
should prefer to invest in high-risk stocks rather than low-risk stocks. Falkenstein  
[FAL 09] goes further, arguing that since rewards are typically much larger for top 
quintile portfolio managers than for second quintile portfolio managers, the 
incentive to take risk and invest in risky stocks is heightened. 

Haugen and Baker [HAU 12] also argue that the investment teams responsible for 
selecting the stocks for actively-managed funds are usually incentivized to focus on 
high-risk stocks, mainly due to career pressure. It is those who select stocks with stellar 
performances that are more likely to be promoted, and stocks with stellar performances 
can be more likely found in the universe of riskier stocks, even if the average return of 
the universe of all riskier stocks is shown to be poor. They are also under pressure to 
focus on stocks which are in the spotlight and receive above median coverage, the 
“hottest” stocks in the market, which are typically risky stocks. Discussions with lead 
portfolio managers and clients are much easier when it comes to explaining the decision 
to invest in a given stock if they are also familiar with that particular stock. Finally, 
privately-owned asset management firms selling actively-managed funds have an 
incentive to generate more volatile fund performances, as discussed by Chevalier and 
Ellison  
[CHE 97] and Sirri and Tufano [SIR 98]. This is because the funds with the top 
performance relative to peers, in particular following periods of good market 
performance, tend to receive the largest inflows. The relationship between fund flows 
and performance supports the idea that asset management firms should concentrate their 
efforts on high-beta funds to maximize their profits.  

In conclusion, there is strong evidence that the way in which the active management 
industry operates creates strong demand for riskier stocks. However, none of the authors 
above explores the practicalities of managing active funds. In particular, they do not take 
into account that, in most asset management firms managing active funds based on 
fundamental approaches, the stock selection is typically made by sector specialists who 
pick the stocks with the highest expected returns from their sector. There are reasons for 
this. Stocks from any given sector tend to be exposed to a number of common factors 
and are thus easier to compare. The decision behind stock selection is easier when apples 
are compared with apples. Analysts can also specialize and focus only on more 
manageable universes in terms of the number of stocks to cover. 
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Analysts involved in stock selection at asset management firms are nearly always 
organized by sector, while analysts involved in stock research in brokerage firms, 
providing company research to asset management firms, are also almost invariably 
organized by sector. We asked seven heads of research at large international 
brokerage firms3 with bases in the United States, Europe and Asia, how many of 
their clients operate on this basis and the answers suggested that the vast majority 
do. They also confirmed that the equity analysts at their brokerage firms are indeed 
also organized by sectors, much in line with their client base. When asked about the 
most commonly used sector definition used to delineate sector coverage, we were 
told that even if the 10 sector GICS4 definition is not always strictly used, for the 
most part, some relatively similar definition is employed with occasionally  
one or another sector broken into some of its constituent industries. Only  
one brokerage house highlighted that some clients tend to go down to the  
24 industry GICS definition when managing portfolios benchmarked against broader 
indices. 

Active portfolio managers tend to invest in a limited number of selected stocks 
from the investment universe to which they are assigned. Sector active weights in 
portfolios are often constrained as a crude way of managing tracking-error risk. 
When asked about how many of their clients tend to keep tight-to-moderate sector 
constraints, the brokerage firms gave essentially the same answer. When it comes to 
portfolio construction, quantitative active managers, those who rely on quantitative 
systematic approaches for stock-picking and which have represented a large portion 
of the actively managed funds market in the past, seem to invariably use tighter 
sector constraints than fundamental managers, who follow the process described 
above. When asked to put a number behind their answer, we were given results with 
some level of dispersion. In terms of average, the brokerage firms put at about 40% 
the percentage of fundamental active managers who impose strong-to-moderate  
 
 

                         
3 The persons contacted kindly provided the information on their behalf and based on their 
own experience. The views provided are not based on a rigorous statistical analysis. The 
views expressed do not, by any means, reflect an official view of the firms employing the 
persons contacted and they were never intended to represent official firm views. 
4  The Global Industry Classification Standard (GICS®) is an industry taxonomy developed 
by MSCI and Standard & Poor’s (S&P). The GICS structure consists of 10 sectors, 24 
industry groups, 68 industries and 154 subindustries into which S&P has categorized all major 
public companies. The system is similar to Industry Classification Benchmark (ICB), a 
classification structure maintained by Dow Jones Indexes and FTSE Group. GICS® is a 
registered trademark of McGraw-Hill and MSCI Inc. Due to licensing constraints, we have 
replicated as much as possible the GICS classification prior to August 2006 using the publicly 
available information on the methodology. We believe that differences between the actual 
GICS classification and our classification should be minor and have no relevant impact on the 
results of this chapter. 
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controls on active sector exposures, while for quantitative active managers this 
figure rises to about 70%. Moreover, quantitative managers often seem to add 
constraints on the beta of their portfolios, restricting it to be above one for 
benchmarked funds and above zero for long-short portfolios.  

We believe this evidence is supportive of the results of Baker et al. [BAK 14] 
and Asness et al. [ASN 14] and probably explains why their results are not in line 
with what should have been expected from the reasoning advanced by Samuelson 
[SAM 98], i.e. stocks are priced more efficiently than sectors or industries. The fact 
that the stocks are almost invariably picked using sector-based approaches and that a 
large percentage of portfolio managers apply some level of sector control when 
building their portfolios is consistent with a stronger risk anomaly in the cross-
section of stock returns within each sector rather than in the cross-section of sector 
returns. The evidence collected from heads of research at brokerage firms points 
toward a more widespread use of the 10 sector GICS definition than the more 
granular industry definition used by either Baker et al. [BAK 14] or the 
subindustries definition used by Asness et al. [ASN 14]. For this reason, we 
concentrate our research on sectors rather than industries or subindustries. 

11.3.2. Universality of the low-risk anomaly in equity sectors 

In this section, we present results from historical simulations designed to 
compare the return and risk of systematic strategies invested in the lowest volatility 
stocks of each sector with those from a similar strategy invested in the riskier stocks 
of the same sector. We run the analysis through a number of developed and 
emerging markets. We used the following list of indices: 

– developed countries: MSCI World Index (MSCI Inc.). From 19951; 

– U.S.: S&P 500 Index (U.S. stock exchanges). From 1990; 

– Europe: Stoxx Europe 600 Index (18 countries of the European region which 
today are Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, 
Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, 
Sweden, Switzerland and the United Kingdom). From 1991; 

– Japan: Topix 500 Index (Tokyo stock exchange). From 1993; 

– Canada: S&P/TSX Composite Index (Toronto stock exchange). From 2004; 

– Emerging Markets: MSCI Emerging Markets Index (MSCI Inc.). From 20021; 

– China: CSI 300 Index (Shanghai and Shenzhen stock exchanges). From 2005; 

– Brazil: IBrX Index (São Paulo stock exchange). From 2001; 
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– Taiwan: TWSE Index (Taiwan stock exchange). From 1993; 

– South Korea: Kospi Index (Stock Market Division of South Korea exchange). 
From 2001. 

For each universe of stocks defined by these indices, we used the longest history 
available. Since not all indices have the same starting dates, the results cover 
different periods varying from 9 to 24 years. All data were collected using FactSet 
and the original data providers are indicated adjacent to each index. 

In the historical simulations for each index above, we started by estimating the 
historical volatility of each stock in the index universe at the end of each month from 
the past 2 years2 of total returns in local currencies. The stocks in each sector were 
then ranked by their historical volatility2 into three portfolios with the same number of 
stocks. Stocks in each of these three portfolios were then equally weighted. We used 
the 10 sector definition of GICS4; in cases where the GICS classification was missing 
for a given stock, the FactSet industry classification was used instead. A small number 
of stocks that had neither GICS nor FactSet classification were excluded. Only sectors 
with at least 15 stocks were considered at each point in time, i.e. a minimum of five 
stocks in each tercile portfolio was required. Over the period of the simulation, the 
portfolios were rebalanced once every month at the start of each month to take into 
account changes in the historical volatility.  

In Table 11.2, we show the results from these historical simulations for developed 
markets and emerging markets, respectively. In these tables we include the beta of the 

portfolio strategy invested in the lowest volatility stocks of each sector i, i
Lowest Riskβ , 

and the beta of the portfolio strategy invested in the highest volatility stocks of each 

sector i, i
Highest Riskβ . These two metrics were calculated from a regression over the 

entire period of the monthly returns, in excess of cash, of each portfolio strategy 
against the monthly returns, in excess of cash, of the underlying benchmark index 
which includes all sectors. The alpha generated from the lowest risk portfolio strategy 
for a given sector i can be estimated from the same regression: 

( ) ( )CashIndex Benchmark
i

Risk LowestCash
i

Risk Lowest
i

Risk Lowest RRRR −−−= βα  [11.1] 

with i
Lowest RiskR  the annualized performance of the lowest risk portfolio strategy, 

Benchmark IndexR  the annualized performance of the market capitalization-weighted 

benchmark index and CashR  the annualized return of money market instruments in 

the currency used. A similar equation can be used to estimate the alpha from the  
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highest risk portfolio strategies, i
Highest Riskα . The alpha in each sector, αi, shown in 

these tables, is given by: 
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Here, λ is the constant that is required for the volatility of the returns to be 
exactly 5% annualized over the entire period of the simulations: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−

−
= i

RiskHighest

Casht
i

RiskHighestt
i

RiskLowest

Casht
i

RiskLowestti
t

rrrr
r

 

 ,  ,

 

 ,  ,1

ββλ
 [11.3] 

i
tr  is the time series of monthly returns to a long-short portfolio, long portfolio 

strategy with the lowest risk stocks and monthly returns i
Risk Lowesttr  , , with a weight 

i
LowestRiskβ/1 , and short portfolio strategy with the highest risk stocks and monthly 

returns i
Risk Highesttr  , , with weight i

kHighestRisβ/1 . The weights are such that the final 

beta of the long-short portfolio is exactly zero and the strategy has zero exposure to 
the benchmark index in the period5. We call this long-short portfolio strategy low 
volatility minus high volatility (LVMHV). 

The results in Table 11.2 show that the lowest volatility stocks of each sector in 
developed countries tend to have a beta below one with the exception of those in the 
information technology sector for which the beta is close to one or even higher, as is 
the case for the US and Europe. The highest volatility stocks tend to have a beta 
above one with the exception of those from the defensive sectors, i.e. consumer 
staples, health care and utilities. In Canada, defensive sectors did not have enough 
stock representation for the analysis to be carried out. Here, the lowest risk stocks 
from the material sectors have a beta above one. 

 

                         
5 Asness et al. [ASN 14] use a relatively similar approach, which they call betting-against-
beta (BAB). The key difference is that these authors apply the beta neutralization and risk 
adjustment every month using ex ante beta and ex ante volatility. The returns to this strategy 
are not exactly beta neutral as discussed by De Carvalho et al. [DEC 12] since the ex post beta 
for the lowest risk portfolio strategy tends to be higher than the ex ante beta and the ex post 
beta for the highest risk portfolio strategy tends to be lower than the ex ante beta. The returns 
to the BAB strategy are thus positively exposed to the benchmark index and cannot be 
associated with pure alpha. 
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a) 

 
b)

 

Table 11.2. Alpha from LVMHV for different sectors and countries or regions. The 
beta of the long portfolio, invested in the lowest volatility stocks, and the short 
portfolio, with the highest volatility stocks, are also shown. In a) developed countries 
and in b) emerging countries. T-stat is estimated at 5% significance level. January 
1995–December 2014 

α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

Consumer Discretionary 2.6%
(2.22)

0.83
(30.7)

1.34
(28.5)

1.1%
(1.00)

0.89
(24.7)

1.42
(21.0)

2.0%
(1.75)

0.87
(28.1)

1.38
(25.2)

1.4%
(1.27)

0.71
(24.7)

1.17
(27.6)

1.3%
(0.91)

0.50
(8.35)

1.20
(10.3)

Consumer Staples 4.5%
(3.89)

0.47
(13.4)

0.79
(21.1)

1.9%
(1.81)

0.49
(12.2)

0.80
(20.2)

1.5%
(1.33)

0.50
(13.7)

0.87
(20.4)

3.0%
(2.65)

0.40
(12.0)

0.76
(16.8)

- - -

Energy 2.0%
(1.72)

0.79
(14.0)

1.40
(13.5)

1.9%
(1.77)

0.74
(11.8)

1.18
(11.8)

-0.6%
(-0.5)

0.86
(17.7)

1.19
(12.1)

- - - 3.9%
(2.71)

0.83
(12.3)

1.74
(15.7)

Financials 1.8%
(1.49)

0.82
(24.3)

1.51
(24.9)

-0.1%
(-0.0)

0.88
(19.4)

1.58
(22.7)

2.3%
(2.04)

0.80
(28.4)

1.59
(26.5)

-1.0%
(-0.8)

0.57
(13.5)

1.54
(12.4)

2.9%
(2.03)

0.63
(12.9)

1.05
(14.4)

Health Care 2.0%
(1.70)

0.55
(15.3)

1.02
(15.0)

1.7%
(1.56)

0.68
(15.7)

0.96
(17.1)

3.0%
(2.79)

0.52
(13.6)

0.94
(16.2)

1.5%
(1.36)

0.48
(10.0)

0.69
(13.3)

- - -

Industrials 3.2%
(2.73)

0.75
(26.3)

1.31
(27.9)

2.7%
(2.60)

0.86
(24.4)

1.37
(24.7)

2.0%
(1.82)

0.78
(25.3)

1.37
(28.1)

0.6%
(0.53)

0.64
(23.1)

1.24
(24.6)

4.9%
(3.43)

0.76
(11.9)

1.30
(10.5)

Information Technology 1.0%
(0.80)

1.05
(26.4)

1.89
(16.9)

0.6%
(0.49)

1.24
(28.2)

1.94
(18.1)

-0.3%
(-0.2)

1.23
(21.0)

1.76
(17.8)

2.8%
(2.54)

0.92
(25.8)

1.37
(24.0)

- - -

Materials 1.7%
(1.42)

0.91
(23.8)

1.30
(18.0)

0.9%
(0.78)

0.89
(21.5)

1.31
(16.3)

0.7%
(0.51)

0.88
(24.5)

1.31
(19.0)

0.7%
(0.60)

0.85
(22.7)

1.19
(22.0)

-0.9%
(-0.5)

1.16
(14.5)

1.68
(9.72)

Telecom. Services 2.4%
(2.06)

0.73
(19.0)

1.44
(15.8)

- - - 2.8%
(2.09)

0.73
(11.9)

1.46
(12.1)

- - - - - -

Utilities 2.7%
(2.34)

0.26
(5.89)

0.87
(14.5)

2.3%
(2.22)

0.29
(5.59)

0.72
(8.92)

2.4%
(2.19)

0.41
(10.3)

0.86
(16.2)

- - - - - -

1995-2014 1990-2014 1991-2014 1993-2014 2004-2014

Developed Markets U.S. Europe Japan Canada
MSCI World Index S&P 500 Index Stoxx Europe 600 Index Topix 500 Index S&P/TSX Composite Index

α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk α β Lowest Risk βHighest Risk

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

Consumer Discretionary 3.0%
(2.01)

0.77
(22.5)

1.27
(23.7)

-0.2%
(-0.1)

0.94
(18.4)

1.13
(21.1)

- - - 0.9%
(0.74)

0.78
(21.5)

0.91
(12.5)

4.6%
(3.24)

0.76
(18.6)

1.28
(16.9)

Consumer Staples 3.7%
(2.49)

0.59
(17.8)

0.90
(24.8)

3.6%
(2.08)

0.74
(11.9)

0.80
(13.3)

- - - 0.2%
(0.14)

0.68
(15.7)

0.82
(8.70)

5.8%
(4.01)

0.69
(12.8)

1.21
(12.6)

Energy 3.2%
(2.16)

0.93
(23.8)

1.21
(23.5)

-0.2%
(-0.0)

0.95
(21.0)

1.39
(14.5)

- - - - - - - - -

Financials 2.9%
(1.97)

0.79
(28.3)

1.30
(31.0)

1.2%
(0.70)

0.91
(22.2)

1.19
(22.9)

- - - -0.3%
(-0.1)

0.79
(15.7)

1.31
(13.2)

-0.6%
(-0.4)

0.82
(14.4)

1.58
(11.6)

Health Care 3.1%
(1.88)

0.57
(9.32)

0.74
(8.64)

- - - - - - 2.4%
(2.02)

0.75
(14.5)

0.81
(10.4)

- - -

Industrials 1.3%
(0.89)

0.77
(26.5)

1.32
(23.3)

-2.3%
(-1.3)

0.85
(22.6)

1.09
(24.2)

- - - 1.8%
(1.50)

0.81
(20.2)

0.96
(12.0)

5.4%
(3.72)

0.84
(17.0)

1.23
(16.1)

Information Technology 3.4%
(2.30)

0.85
(18.1)

1.10
(15.8)

- - - - - - 1.8%
(1.51)

0.99
(23.5)

1.08
(11.4)

4.4%
(3.02)

0.99
(19.1)

1.37
(16.3)

Materials 2.1%
(1.43)

0.87
(30.2)

1.40
(28.8)

-1.4%
(-0.7)

1.07
(23.9)

1.30
(23.7)

-0.1%
(-0.0)

0.76
(11.4)

1.15
(12.7)

1.2%
(0.96)

0.80
(21.4)

0.94
(12.4)

4.8%
(3.28)

0.83
(14.5)

1.37
(12.1)

Telecom. Services 1.9%
(1.31)

0.52
(16.5)

1.01
(16.4)

- - - - - - - - - - - -

Utilities 1.6%
(1.07)

0.53
(16.1)

1.06
(16.8)

1.1%
(0.47)

0.88
(15.4)

1.10
(12.9)

1.6%
(0.94)

0.60
(9.94)

0.73
(6.82)

- - - - - -

2002-2014 2005-2014 2001-2014 1994-2014 2001-2014
MSCI Emerging Market Index

Emerging Markets China Brazil South Korea Taiwan
Csi 300 Index IBrX Index Kospi Index TWSE Index



Low-Risk Anomaly Everywhere: Evidence from Equity Sectors     277 

The alpha from the LVMHV strategy is positive for all sectors in the MSCI 
World index, the index with the largest number of stocks. In the other universes, 
with smaller number of stocks, the alpha is positive with a few exceptions such as 
financials in the US and Japan, energy and information technology in Europe and 
materials in Canada. All these levels of alpha are for exactly 5% annualized 
volatility. They are significant more often than not. 

The results for the MSCI Emerging Markets index in Table 11.2(b) are 
comparable to those for the MSCI World index in Table 11.2(a), with the alpha also 
positive for all sectors in emerging markets. However, we find that the riskier  
stocks in each sector are more likely to have a beta above one than in developed 
markets, since now only high-risk consumer staples have a beta below one. And 
similarly, low-risk stocks from all sectors seem more likely to have a beta below 
one. 

Carrying out the analysis in each individual emerging market country was not as 
easy as for developed countries because of the smaller number of stocks in each 
sector, in particular in Brazil, and because of shorter history of returns, in particular 
in China. The evidence of a low-risk anomaly seems stronger for South Korea and 
Taiwan than for China or Brazil. In the latter, only two sectors had enough stocks to 
perform the analysis and only in utilities is there evidence of positive alpha, despite 
the fact that the beta of high-risk utilities is below one. In China, stronger evidence 
of a positive alpha is found only in consumer staples, along with some weak 
evidence in financials and utilities. However, the history of returns is relatively 
short. In Taiwan, the evidence is stronger and only financials do not have a strong 
positive alpha. Evidence is less strong for South Korea than for Taiwan, with two 
sectors in seven no showing significant alpha. 

11.3.3. Diversification in sector-neutral low-volatility investing 

In Table 11.3, we show the pair-wise correlation of the time series of return for 
the LVMHV strategies defined in [11.3] for any two pairs of sectors, for the MSCI 
World Index and the MSCI Emerging Markets Index.  

The correlation of LVMHV returns for any two sectors is always positive with 
the exception of the correlation between the LVMHV returns for the energy sector 
and the LVMHV returns for the health care sector in emerging markets. 
Nevertheless, the average correlation of LVMHV returns from sectors in the MSCI 
World Index is low, at 34%, and from the MSCI Emerging Markets Index is only 
20%. These results show a potential diversification gain from investing in low-
volatility stocks from different sectors. We will discuss this point later. 
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a)

 
b)

 

Table 11.3. Correlation of LVMHV returns for any two sectors from  
a) the MSCI World Index and b) the MSCI Emerging Markets Index.  

January 1995–December 2014 

In Table 11.4, we show the correlation of the returns to LVMHV strategies 
applied to the different sectors of the MSCI World Index and MSCI Emerging 
Markets Index with the returns to equivalent strategies positively exposed to small 
capitalization, value and momentum. What we call small minus big (SMB) is a long-
short strategy that invests in the one-third of stocks in the universe with the smallest 
capitalization in the MSCI indices and sells short the one-third of stocks with the 
largest capitalization. The stocks are equally weighted in the long and short legs of 
the portfolio. The beta is neutralized as before by allocating a weight 

i
CapMarketSmallest   /1 β  to the long leg and i

Cap  MarketLargestβ/1 to the short leg, fully 

neutralizing the beta, with i
CapMarketSmallest   β and i

Cap  MarketLargestβ the ex post beta for 

each leg over the entire period. The final leverage is adjusted so that the ex post 
volatility is exactly 5% over the period. A similar strategy is built, this time ranking 
stocks every month by price-to-book and investing in the stocks with the lowest 
price-to-book while selling short the stocks with the largest price-to-book. We call 
this strategy high minus low (HML) in analogy to the HML strategy as defined by  
 

Consumer Health Information Telecom.
Staples Care Technology Services

Consumer Discretionary 45% 31% 42% 41% 58% 43% 31% 37% 39%
Consumer Staples 28% 45% 39% 51% 20% 20% 35% 41%
Energy 31% 33% 23% 33% 11% 45% 26%
Financials 20% 38% 22% 15% 31% 47%
Health Care 45% 52% 8% 51% 26%
Industrials 34% 48% 42% 46%
Information Technology 13% 40% 25%
Materials 21% 17%
Telecom. Services 33%

Developed countries

Financials Materials UtilitiesIndustrialsEnergy

Consumer Health Information Telecom.
Staples Care Technology Services

Consumer Discretionary 41% 20% 50% 8% 51% 17% 34% 14% 19%
Consumer Staples 9% 38% 16% 17% -3% 22% 10% 16%
Energy 12% -10% 23% 1% 18% 7% 10%
Financials 17% 52% 13% 52% 22% 39%
Health Care 4% 4% 12% 4% 21%
Industrials 20% 52% 11% 24%
Information Technology 11% 12% 11%
Materials 15% 21%
Telecom. Services 24%

Emerging countries

Energy Financials Industrials Materials Utilities
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Fama and French [FAM 92], although we follow a somewhat different approach. 
Finally, we construct another similar strategy but with stocks now ranked by 
momentum defined as the past 11-month return of each stock measure done month 
before portfolio formation. We call this portfolio Mom in analogy to what was 
defined by Carhart [CAR 97], although again our strategy is not exactly the same. 

a)

 
b)

 

Table 11.4.Correlations between the returns to LVMHV strategies applied to the 
sectors in (a) MSCI World Index and (b) MSCI Emerging Markets Index with the 

returns to SMB, HML and Mom returns applied to the same universes, respectively. 
In (a), the period is from January 1995 to August 2014 and in (b) the period is from 

January 2002 to August 2014 markets. Monthly USD total returns 

The average correlation of the returns to LVMHV strategies with the returns to small 
minus big (SMB), high minus low (HML) and Mom is only 5% when formed using 
stocks from the MSCI World Index and –3% when formed with stocks from the MSCI 
Emerging Markets Index. This shows clearly that the returns to LVMHV strategies are 
uncorrelated from the returns of these other strategies such as SMB, HML and Mom. 

11.3.4. Tail risk in sector-neutral low-volatility investing 

We will now show that low-risk investing has only a small or no exposure to 
stocks with future poor performances. In a simple exercise, each month we ranked 
stocks in each sector of the MSCI World Index1 by historical volatility2 and formed 
decile portfolios in each sector. We then put together the corresponding decile 
portfolios from each sector to form 10 portfolios, from 1, the lowest volatility in 
each sector, to 10, the highest volatility in each sector. We then checked the future 
returns of the stocks in each of these portfolios and asked the question of how many 
had monthly returns below – 50%, or less than –70%, in subsequent months. The 
results can be found in Table 11.5, where we show the probability that a stock with a 

Consumer Consumer Health Information Telecom.
Disc. Staples Care Technology Services

SMB 50% -45% -4% -13% -13% -12% -7% -3% -7% -2% -7% 2%
HML -69% 11% 12% 20% -7% 43% 21% 28% 1% 21% 19%
Mom 16% 3% 10% 18% -6% 0% 1% 3% 11% 5%

HML Mom
LVMHV

Developed countries

Energy Financials Industrials Materials Utilities

Consumer Consumer Health Information Telecom.
Disc. Staples Care Technology Services

SMB 51% -57% -26% -9% -20% -6% -6% 1% -5% 8% -1% 11%
HML -57% -19% -18% -22% -15% 1% -18% 3% -7% -11% -2%
Mom 22% 1% 16% 12% 15% 4% 7% -13% 13% -5%

Emerging countries

HML Mom
LVMHV

Energy Financials Industrials Materials Utilities



280     Risk-Based and Factor Investing 

monthly return less than –50% in (a) or less than –70% in (b) was found in a given 
decile portfolio up to 3 months before that month and up to 3 months after that 
month.  

The period of the analysis is January 1995–March 2014. This corresponds to 231 
months with a total of 390,380 monthly stock returns observed, i.e. 1,689 stocks on 
average per month. Of these, we find 53 monthly returns observed to be less than  
–70% from 46 unique stocks and 356 observations less than –50% with 275 unique 
stocks. In Table 11.5, we show the results of our analysis: we found no stock with a 
monthly return less than –70% in a given month ranking in the lowest volatility 
decile in the preceding month, or in the preceding 2 or 3 months. These stocks are 
found with an increasing frequency in most volatility deciles. Only 10% of these 
observations come from stocks ranking in the half of the universe with the lowest 
volatility stocks in the preceding month, 16% 2 months before and 17% 3 months 
before. If we put the threshold at –50%, then there is the largest percentage found in 
the lowest volatility universe but most stocks with the poorest performances still 
come from the risker half of the universe. Only 18, 21 and 23% of these 
observations were from stocks ranking in the lowest volatility half of the universe 1, 
2 and 3 months before the event, respectively. 

a)

 
b)

 

Table 11.5. Percentage of the stocks with an absolute monthly return less than –50% 
a) or less than –70% b) found in each decile portfolio before and after that  

event. USD returns. Stocks from the MSCI World Index universe1.  
January 1995–March 2014 

Lowest volatility Highest volatility
1 2 3 4 5 6 7 8 9 10

3 2% 2% 6% 5% 8% 6% 6% 17% 17% 31%
2 2% 1% 6% 5% 7% 4% 8% 15% 16% 36%
1 1% 2% 4% 5% 6% 5% 6% 16% 19% 36%

Month of observation 1% 1% 5% 4% 5% 5% 7% 16% 17% 39%
1 1% 0% 3% 5% 5% 5% 5% 13% 22% 41%
2 0% 0% 1% 3% 3% 4% 2% 11% 23% 53%
3 0% 0% 1% 3% 2% 3% 2% 10% 19% 61%

Probability that a stock with monthly return < -50% is observed in one given decile

Volatility decile

Months 
before

Months 
after

Low volatility High volatility
1 2 3 4 5 6 7 8 9 10

3 0% 2% 5% 5% 5% 2% 2% 14% 14% 51%
2 0% 0% 7% 2% 7% 0% 5% 9% 16% 55%
1 0% 2% 2% 4% 2% 7% 2% 9% 17% 54%

Month of observation 0% 0% 4% 2% 2% 4% 0% 11% 20% 57%
1 0% 0% 2% 0% 2% 2% 2% 5% 21% 65%
2 0% 0% 0% 0% 0% 0% 0% 0% 9% 91%
3 0% 0% 0% 0% 0% 0% 0% 0% 4% 96%

Probability that a stock with monthly return < -70% is observed in one given decile

Volatility decile

Months 
before

Months 
after
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11.4. Sector-neutral versus non-sector neutral low-risk investing 

In this section, we compare traditional low-risk investing based on investing in 
the lowest risk stocks and strongly biased toward defensive sectors with sector-
neutral low-risk investing. We focus only on the MSCI World index universe for 
developed countries with the larger number of stocks and sufficiently long history, 
from January 1995 to May 20131. 

11.4.1. Performance and sector exposures 

In Table 11.6, we compare the alpha of two beta-neutral strategies, both with 
exactly 5% annualized volatility. The first strategy, which we call sector neutral, is 
an aggregation of LVMHV sector long-short portfolios, one for each sector, as 
defined before but using deciles instead of terciles. Each sector of LVMHV is 
allocated an equal weight over the entire period, and the leverage of aggregation of 
these 10 sector LVMHVs is such that the ex-post volatility is exactly 5%. 

The second strategy, which we call non-sector neutral, is based on an LVHMV 
long-short portfolio which does not take into account sectors. The stocks are ranked 
by historical volatility once a month and the portfolio is rebalanced once at the start 
of each month. Stocks are equally weighted just as before. However, this portfolio 
invests in the decile of stocks with the lowest historical volatility and short sells the 
decile of stocks with the highest historical volatility, irrespective of their sectors. As 
before, the weight of the long and short legs is equal to the inverse of each observed 
beta, LowestRiskβ/1  and RiskHighest /1 β , respectively, and the allocation is rescaled by 

λ as in [11.2] so that the ex post volatility is 5%. In Table 11.6, we also consider the 
same strategies but now implemented with a 6-month lag, i.e. the portfolio is 
implemented 6 month after formation. 

 

Table 11.6. Alpha and information ratio for two LVMHV strategies, one based on 
equally weighting individual LVMHV sector strategies, which we call sector-neutral, 
and one applying the LVMHV across the entire stock universe ignoring sectors, 
which we call non-sector neutral. The beta of both strategies is zero and the volatility 
is 5% by construction. We also consider the same strategies implemented with 6 
months lag 

1 month 6 months 1 month 6 months
Alpha 3.7% 3.8% 3.2% 3.2%
Information ratio 0.73 0.77 0.65 0.64

MSCI World Index
Jan-1995 - May-2013

Sector neutral Non-sector neutral
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The results in Table 11.6 show an improvement of 14% in the information ratio 
of the sector-neutral strategy when compared to that of the non-sector neutral. It is 
also interesting to see that the strategies with lower turnover reach the same levels of 
alpha as those rebalanced more frequently. This seems to indicate that the rotation of 
stocks in the portfolios is low, something we will investigate in the next section. 

In Figure 11.1, we show the average net sector weights in each of these two 
strategies. The net sector weight is the sum of the weights allocated to each stock in 
a given sector. The sector-neutral strategy has a positive weight in all sectors. This is 
because, in order to neutralize the market exposure and reach a beta equal to zero, 
the strategy allocates a larger weight to the low-volatility stocks it buys than to the 
high-volatility stocks it sells short. The size of the net sector weights is a function of 
the dispersion of beta, i.e. the larger the difference between the beta of low-volatility 
stocks and high-volatility stocks, the larger the net sector weight. The main 
difference between the sector-neutral strategy and non-sector neutral strategy is the 
much larger weight allocated to consumer staples, financials and utilities and the 
much smaller weight allocated to information technology, consumer discretionary 
and energy found in the non-sector neutral strategy. The non-sector neutral strategy 
has always been strongly biased toward financials except for a few months in the 
aftermath of the 2008 crisis. 

 

Figure 11.1. Average net sector weights for sector-neutral and  
non-sector neutral LVMHV strategies for stocks from the MSCI World  

index1. January 1995–May 2014 
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11.4.2. Persistence of volatility 

We now focus on the reasons why, in Table 11.6, the turnover could be reduced 
significantly without a reduction in the alpha of the LVHMV strategies. This is in fact 
due to the persistence of volatility. Perchet et al. [PER 14] have recently investigated 
the persistence of volatility at aggregate market level, for different asset classes, and 
Perchet et al. [PER 14] have done the same for value and momentum factor premium. 
They found that the persistency of volatility is strong at the aggregate level, which 
explains why volatility can to some extent be predicted at an aggregate level. 

a)

 

b)

 

Table 11.7. Probabilities that a stock ranking in a given tercile of volatility in a given 
month is still found in the same tercile of volatility in the following month. The table 
also shows the probability of that stock being found in the same tercile of volatility in 
the following 6 months. Results for sector-neutral and non-sector neutral portfolios 
are included. In a), the universe is defined from the MSCI World index1 and the 
period is from January 1995 to May 2014. In b), the universe is defined from the 
MSCI Emerging Markets index1 and the period is from January 2002 to May 2014 

Low Mid High Out Low Mid High Out
Volatility Low 95% 5% 0% 0% 96% 4% 0% 0%

tercile Mid 5% 90% 4% 1% 4% 92% 4% 1%
today High 0% 4% 94% 1% 0% 4% 95% 1%

Low Mid High Out Low Mid High Out
Volatility Low 83% 14% 1% 2% 85% 12% 1% 2%

tercile Mid 14% 69% 14% 3% 12% 72% 13% 3%
today High 0% 13% 80% 6% 0% 12% 82% 6%

1-month transition probability matrix

MSCI World Index
Jan-1995 - May-2014

Volatility tercile next month

Volatility tercile next month

Volatility tercile next month

Volatility tercile next month
6-month transition probability matrix

Sector Neutral Non-Sector neutral

Low Mid High Out Low Mid High Out
Volatility Low 94% 5% 0% 2% 95% 4% 0% 2%

tercile Mid 5% 89% 5% 1% 4% 91% 4% 1%
today High 0% 5% 93% 2% 0% 4% 94% 2%

Low Mid High Out Low Mid High Out
Volatility Low 80% 13% 1% 6% 81% 12% 0% 6%

tercile Mid 14% 67% 13% 6% 13% 69% 13% 6%
today High 1% 15% 77% 8% 0% 15% 78% 8%

MSCI Emerging Markets Index
Jan-2002 - May-2014

Sector Neutral Non-Sector neutral

1-month transition probability matrix
Volatility tercile next month Volatility tercile next month

6-month transition probability matrix
Volatility tercile next month Volatility tercile next month
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In Table 11.7, we show transition probability matrices for stocks in the MSCI 
World Index and MSCI Emerging Markets Index, respectively. With the sector-
neutral portfolio, stocks in each sector are ranked by historical volatility2 every 
month and then, in each sector, the universe of stocks is ranked by historical 
volatility and divided into terciles. For the non-sector neutral portfolio, this is done 
across the universe defined by the index rather than on a sector-by-sector basis. 

This exercise was repeated each month. We then calculated the average number of 
stocks which ranked as being of low volatility in a given month and also in the 
immediately following month. We repeated the exercise for stocks that ranked as mid-
volatility and high-volatility. The probabilities are the average percentage of stocks 
staying in the same tercile of volatility from one month to another. Similarly, we also 
estimated the probability that a stock remains in the same tercile of volatility 6 months 
after being ranked. We also included the probability that a stock leaves the index in the 
following month or within the following 6 months; these are indicated as out.  

The results in Table 11.7 show a strong persistency in the volatility of stocks. 
For the sector-neutral strategy, 95% of the stocks ranked the lowest volatility in the 
MSCI World Index in a given month then remained ranked the lowest volatility in 
the following month and the other 5% ranked mid-volatility. The results are 
comparable for the non-sector neutral strategy, with 96 and 4%, respectively. The 
results are also comparable for the stocks in the MSCI Emerging Markets Index, 
with 94% of stocks ranked the lowest volatility still remaining the lowest volatility 1 
month later for the sector-neutral approach and 95% for the non-sector neutral 
approach. Six months after being ranked, 83% of the lowest volatility stocks in the 
MSCI World Index still rank the lowest volatility for the sector-neutral approach and 
85% for the non-sector neutral approach. For the MSCI Emerging Markets Index, 
this is just slightly lower at 80 and 81%, respectively. It is also interesting to note 
that the probability of stocks leaving the index is higher for the highest volatility 
stocks than for the lowest volatility stocks. 

11.4.3. Liquidity of low-volatility strategies 

Low-volatility investing is an active strategy that invests away from the market 
capitalization portfolio and requires rebalancing. Thus, liquidity is an important 
issue. Here, we give some crude idea of the liquidity of simple low-volatility 
strategies and compare this liquidity with other simple style strategies for small 
capitalization, value and momentum. We consider both sector-neutral and non-
sector neutral low-volatility strategies. 

In Table 11.8, we show the average number of days needed to liquidate a 100 
million USD portfolio invested in the decile of stocks with the lowest volatility, 
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sector-neutral and non-sector neutral, and compare this with the average number of 
days to liquidate a portfolio of a similar size invested in the decile of stocks with the 
smallest market capitalization, the stocks with the lowest price-to-book ratio and 
momentum stocks with the highest 11-month return measured 1 month before 
portfolio construction. The averages are based on the allocation at the start of each 
month. The number of days required to liquidate the portfolio assumes that a 
maximum of 30% of the monthly volume of each stock can be traded every day. We 
ran the analysis between 2008 and 2013. Stock volume data are provided from 
MSCI. The results are for stocks in the MSCI World Index. 

Not surprisingly, the market capitalization index has the greatest liquidity and 
can be liquidated with the least difficulty. There is not a large difference between the 
sector-neutral and the non-sector neutral low-volatility portfolios, with perhaps no 
significant advantage for the non-sector neutral portfolio seen at the level of full 
liquidation only. Liquidity of the low-volatility portfolios is large at this level and 
comparable to that of momentum portfolios. Not surprisingly, the small 
capitalization portfolio has the poorest liquidity. Value also shows poor liquidity 
because we did not remove the small capitalization bias that a selection based on the 
lowest price-to-book ratios tends to create. 

At 50 and 70% levels of liquidation of the portfolio, low volatility fares better 
than the other strategies and even in 2008 the portfolio could still be liquidated with 
less difficulty than both the sector-neutral and the non-sector neutral low-volatility 
portfolios. 

 

Table 11.8. Average number of days in each year needed to liquidate 50, 70 and 
100% of a USD 100 million sector-neutral and non-sector neutral low-volatility 
portfolios compared to equally weighted, non-sector neutral portfolios invested in the 
10% top ranked stocks by the lowest market capitalization, value as measured by the 
lowest price-to-earnings ratio and momentum as measured by the highest 11-month 
returns measured 1 month before portfolio formation. Stocks are from the MSCI 
World index 

11.5. Conclusions 

In this chapter, we give empirical evidence of risk anomalies in the sector of 
activity at a global level, in developed and emerging markets. Positive returns to 

2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013 2008 2009 2010 2011 2012 2013
Low volatility non-sector neutral 3 4 6 4 4 4 6 14 14 10 10 9 52 94 70 49 74 92
Low volatility sector neutral 3 4 5 8 10 4 7 12 14 63 109 8 165 139 97 9 10 67
Small capitalization 32 44 37 33 37 40 49 71 59 52 60 64 4890 779 1070 791 280 239
Value 10 13 15 13 12 14 21 26 30 26 25 31 1222 451 118 645 280 99
Momentum 5 9 7 6 7 7 12 16 15 15 13 15 55 104 61 65 67 134
Market Capitalization 0 0 0 0 0 0 0 1 1 1 1 1 41 111 15 15 11 4

50% 70% 100%
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beta sector-neutral long-short portfolios invested in the lowest-volatility stocks of a 
given sector and short the highest volatility stocks of the same sector cannot be 
explained by market exposure. Portfolios invested in the lowest volatility stocks of a 
given sector have been returning more than expected from their level of risk, 
whereas portfolios invested in the highest volatility stocks of the same sector have 
been returning less than expected from their level of risk. This risk anomaly had 
been reported in the cross-section of stock returns of almost all countries and regions 
in the world by Haugen and Baker [HAU 12] and also in the cross-section of 
country returns by Baker et al. [BAK 14]. However, evidence of such a risk 
anomaly is much weaker in the cross-section of industry returns as shown by Baker 
et al. [BAK 14] and Asness et al. [ASN 14], with the latter suggesting that it is in 
fact more efficient to capture low-risk alpha using industry-neutral approaches.  
Indeed, they give evidence of the risk anomaly in the cross-section of stock  
returns in industries without advancing any explanation or analyzing each industry 
in detail.  

To our knowledge, this chapter is the first to provide evidence of the risk 
anomaly in the cross-section of stock returns in each sector of activity using the 10 
sector GICS definitions and to put forward an explanation for why there are good 
reasons to expect the anomaly to be stronger in the cross-section of stock returns in 
sectors than in the cross-section of sector returns. Indeed, we believe that active 
managers benchmarked against market capitalization indices are most likely behind 
the anomaly in the cross-section of stock returns in sectors. Evidence that active 
managers have a preference for risky stocks was given by Falkenstein [FAL 09], 
Brennan [BRE 93], Brennan et al. [BRE 12], Haugen and Baker [HAU 12], 
Chevalier and Ellison [CHE 97] and Sirri and Tufano [SIR 98]. However, we argue 
that because equity analysts and fund managers select stocks almost invariably from 
within sectors and because a number of these fund managers, in particular 
quantitative active managers, tend to impose constraints on the level of sector 
deviation of their portfolios against the market capitalization index, it is then 
reasonable to expect the risk anomaly to be stronger in sectors and to show in all 
sectors. Our empirical results for stocks of developed countries at global level do 
suggest that the risk anomaly is stronger when some level of sector neutrality is 
imposed, thus corroborating the results from Asness et al. [ASN 14], who reached a 
similar conclusion when imposing industry neutrality. For the period considered, we 
found 14% more risk-adjusted alpha in the sector-neutral strategy than in the non-
sector neutral strategy. Imposing sector neutrality in the portfolios tilted in favor of 
low-volatility stocks leads to much smaller exposures in particular to the financials, 
utilities and consumer staples sectors and to a much larger exposure to the 
information technology, consumer discretionary and energy sectors than when sector 
neutrality is not imposed. 
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The higher risk-adjusted alpha found in the sector-neutral strategy is explained 
by the diversification gain arising from the low correlation of the returns generated 
from beta-neutral long-short portfolios invested in the lowest volatility stocks in a 
given sector and selling short the highest volatility stocks from the same sector. We 
also found a low correlation of the returns to these portfolios with the returns to 
beta-neutral long-short portfolios invested in value stocks and selling short 
expensive stocks, to beta-neutral long-short portfolios invested in the smaller 
capitalization stocks and selling short the largest capitalization stocks and to beta-
neutral long-short portfolios invested in the stocks with the strongest momentum and 
selling short the stocks with the poorest momentum. 

Finally, we have shown that low-volatility investing offers a level of liquidity 
higher than that found in other styles such as momentum, value and in particular 
small capitalization. We have also shown that the level of turnover required for low-
volatility investing can be reduced without a significant impact on the risk-adjusted 
alpha due to the persistency of the volatility of individual stocks. As demonstrated, 
stocks which ranked among the lowest volatility show a very low probability of 
becoming higher volatility in the near future. A consequence of this low probability 
is the fact that in the history used in our analysis, we also find that low-risk investing 
naturally filters out the stocks more likely to deliver extremely poor performances in 
the near future. 
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12 

The Low Volatility Anomaly and  
the Preference for Gambling  

Previous literature has established that low volatility stocks outperform high volatility stocks on a 
risk-adjusted basis. In this Chapter, we show that this low volatility anomaly is linked to the 
preference for lottery stocks, which have experienced a high daily return in the previous month. 
Not all high volatility stocks underperform. The underperformance of high volatility stocks arises 
largely from the underperformance of high volatility lottery stocks. High volatility lottery stocks 
underperform high volatility stocks in 31 out of 32 countries. 

12.1. Introduction 

Low volatility strategies have been one of the most successful and popular smart 
beta and quant active strategies in the recent years. The risk reduction for low 
volatility strategies is easily understood and has been highly desirable post the 
global financial crisis where risk awareness has become high. Low volatility equity 
strategies generally run a beta of 0.7 with respect to a cap-weighted market factor. 
Unsurprisingly, these strategies usually have 30% less volatility than a traditional 
cap-weighted market index. However, the driver of excess return over the market 
benchmark is a not well understood, given the traditional CAPM-type asset pricing 
intuition. To understand the excess return more clearly, we perform a simple factor 
attribution exercise (see Table 12.1). We show that representative variants of the low 
volatility strategy have earned their historical excess return primarily from exposure 
to low price stocks (positive loading on the value high-minus-low (HML) factor)  
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and low beta stocks (positive loading on the low beta betting against beta (BAB) 
factor).  

 

Table 12.1. Return attribution of low volatility strategies 

The value exposure is a well-known source for excess return. We simply note that 
low volatility (beta) stocks have historically been low price as well–exploring the 
plausible reasons is outside the scope of this chapter. Moreover, this chapter does not 
explore the robustness and persistence of the value premium as a source for low 
volatility strategy outperformance. Instead, we focus on the excess return derived from 
overweighting low volatility (beta) stocks and underweighting high volatility (beta) 
stocks, or what is now more commonly referred to as exposure to BAB1. The 
outperformance of low volatility stocks versus high volatility stocks is one of the most 
persistent and perhaps most counterintuitive issues in finance. While a number of 
rational and quasi-rational hypotheses have been put forth as potential explanations for 
the anomaly, we explore the behavioral channel in this chapter.  

Using global equity data, we find strong evidence that the outperformance of low 
volatility stocks over high volatility stocks is driven meaningfully by investors’ 
willingness to pay high prices for “lottery stocks” or stocks with high positive skew. 
In essence, high volatility serves as a proxy for high positive skew2. Empirically, 
investors’ willingness to overpay is so high that expected returns for these lottery 
stocks can be extremely low relative to other stocks. It thus seems entirely 
appropriate to refer to these stocks with high skew and high prices as “lotteries” as 
their expected premiums are generally negative but can at times produce large 
upside returns. It also seems reasonable to label the investors’ demand for these 
lottery stocks with negative premiums as a preference for gambling instead of 
rational investment behavior. In section 12.6, we illustrate that the preference for 
positive skew appears to be an irrational demand rather than rational risk sharing. 

Note that in the above “mechanism”, the variable of primary importance is 
positive skew rather than beta or volatility. What this means is that sorting stocks by 
volatility or beta would not fully capture the anomalous return associated with this 

                         
1 See [FRA 14]. 
2 See [BAL 14]. 

alpha alpha
(T-stat) Mkt-RF SMB HML WML BAB DUR R2

U.S. (1967-2012)
Minimum Variance (PCA) 0.42% 0.50 0.61* 0.22* 0.12* 0.01% 0.27* 0.08* 78%

Low Volatility (1/Vol) 0.06% 0.09 0.69* 0.13* 0.16* -0.04* 0.35* 0.15* 88%

Low Beta (1/β) -0.22% -0.29 0.66* 0.31* 0.14* -0.03* 0.39* 0.12* 85%

Factor Sharpe Ratio 0.35 0.26 0.44 0.54 0.41 0.30

*Significant at the 95% confidence level
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preference for gambling. This has significant implications for the construction of 
low volatility portfolios, which have traditionally focused only on the second 
moments but not on the higher moments. 

Empirically, on average, high volatility stocks (highest quintile) underperform 
the market by roughly 5.2% per annum using historical U.S. data. However, when 
we examine the quintile of stocks with the highest past positive skew in the cross-
section, we find that the high skew + high volatility stocks underperform the market 
by 15.3%. When we examine the international data, we find that the high skew + 
high volatility stocks underperform the high volatility stocks substantially in 31 out 
of 32 countries. Interestingly, within the cohort of stocks with low skew (roughly 
40% of all stocks), on average, the low volatility stocks underperform the high 
volatility stocks. That is the low volatility anomaly appears to live only within high 
positive-skewed stocks. The above empirical observations suggest that skewness has 
an almost dominant impact on the performance of low volatility strategies and 
should be incorporated into any low volatility portfolio construction. 

12.2. A brief review of the literature 

Contrary to modern portfolio theory, low beta stocks tend to outperform high 
beta stocks on a risk-adjusted basis and, often, on an absolute basis. Merton’s 
consumption CAPM [MER 73] argues that expected excess return ought to scale 
linearly with the beta exposure to the equity market3. The fact that the opposite holds 
at all is an enigma. A long and deep literature has emerged on the anomaly starting 
with Bob Haugen and his co-authors in the early 1970s.  

First, as it turns out, this paradoxical risk-return relationship appears to exist in 
many other asset classes in addition to equities [FRA 14]. Chow et al. [CHO 14] 
showed that this effect is remarkably robust to definitions of risk and portfolio 
construction methodologies. These two papers suggest that lowly correlated low 
volatility portfolios all appear to benefit from the same anomaly. This suggests that 
covariance with some hidden macrorisk factor(s) cannot explain the puzzle. This 
then argues in favor of an interpretation that is more behavioral in nature as opposed 
to the one that originates from a more classical risk-based framework. 

Several competing theories have arisen to explain this unexpected phenomenon. 
Black [BLA 72] and Asness et al. [ASN 12] posited that the outperformance of low 
risk securities is driven by leverage aversion or constraints. They argue that, in 
practice, many institutions are barred from taking leverage. Additionally, many 
investors, especially on the retail side, have a very high cost of borrowing. Still 

                         
3 We contrast this to Sharpe’s CAPM where the beta is measured relative to the unobservable 
global portfolio of all risk assets. 
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others may simply have psychological aversion to leverage. Under this theory, 
investors who desire higher expected returns do not borrow to lever up their risky 
bets; instead, they buy higher beta securities, bidding them up and ultimately 
pushing down their expected return. 

Without leverage, the only avenue for earning greater returns is to load up on 
higher expected return securities. According to Merton [MER 73], these securities 
should be higher market beta securities. This causes a higher demand for higher beta 
securities, pushing their prices up and their expected returns down. For example, if 
the market has an expected excess return over the risk-free rate of 5%, then a 
security with a beta of 2 might have an expected excess return of 8% instead of the 
10% as predicted by Merton’s consumption CAPM. 

However, leverage aversion theory cannot explain the outperformance of low 
beta stocks in absolute terms, which is what is documented in the data. It can only 
partially account for the higher than “rational” price paid for high beta stocks. If 
investors buy high risk stocks to gain a higher expected return, they cannot bid up 
the stocks to such an extent that the high beta stocks have a lower return than low 
beta stocks. Thus, to fully explain the anomaly, a theory must ascribe to high beta 
stocks some other characteristics for which the investors overpay.  

One interesting explanation is that sell-side analysts tend to hype high beta 
stocks more aggressively. Using I/B/E/S data, Hsu et al. [HSU 13] found that 
analysts’ bias earnings estimates and price targets upward more aggressively for 
high volatility stocks. Potentially, unsuspecting investors do not realize this analyst 
behavior, are fooled and consequently overpay for volatile stocks. 

We will argue in this chapter that high skewness in payoff is valued by many 
investors, who are not the standard power utility optimizers but who have a 
preference for lottery-like payoffs − a small probability of a very high return4. We 
argue our theory by demonstrating that the low beta stocks’ return advantage over 
high beta stocks is present mostly among lottery stocks only; we illustrate that this is 
robust across a large number of developed and emerging markets. Contrary to the 
standard low volatility literature, we find that low volatility stocks with high positive 
skew can have lower returns relative to high volatility stocks. 

Investors’ preference for lottery is not a new or previously undocumented 
phenomenon, though much of the literature has emerged more recently. Kraus and 
Litzenberger [KRA 76] first demonstrated this preference for skewness empirically. 
They showed that incorporating this preference into the capital asset pricing model 
creates a security market line that is more in line with data. Selling out-of-the-money 

                         
4 This could alternatively be interpreted as someone who has an unreasonably large subjective 
probability attached to positive outlier events. 
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options is well known for producing high-risk-adjusted excess returns; this is due in 
part to their high positive skewness (see [HE 15] for a summary); Boyer and 
Vorkink [BOY 14] also find that options with high expected skew experience lower 
expected returns. Other papers looked directly at stocks with high expected 
skewness − that is they have a chance of a large payoff5. Bali et al. [BAL 11] found, 
using U.S. equities data, a high maximum daily return in the previous month − a 
proxy for high positive skewness or lottery-like payoff − predicts lower return in the 
subsequent month, presumably as investors overpay for the positive skew. Blau  
et al. [BLA 15] extended these results internationally and found that in countries that 
are more accepting of gambling, the phenomenon is stronger. In line with this 
theory, Eraker and Ready [ERA 15] documented a microcap anomaly, where very 
risky over-the-counter stocks, which they argue are more similar to lotteries, 
experience low mean returns (relative to liquid large cap stocks). Bali et al. [BAL 14] 
are the first to argue that in the U.S. equity market, lottery stocks drive much of the 
measured low volatility effect. In this chapter, we extend Bali, Brown, Murray and 
Tang’s work and demonstrate that this phenomenon is robust in most developed and 
emerging markets. The implication is that the low volatility effect is perhaps primarily 
a lottery gambling phenomenon manifested in the equity market. However, we also 
find that the past skew information does not fully subsume the volatility information, 
suggesting that both variables should be used in portfolio construction.  

There are several justifications for using a high previous month’s maximum daily 
return as a proxy for high expected skewness or lottery-like behavior. The first 
involves the inability to predict future skewness with historical skewness. Expected 
skewness is difficult to measure directly since skewness is a measure of rare jumps in 
price in a particular direction. It is this rareness that makes using historical skewness a 
weak measure of future skewness. More importantly, it may be the case that a high 
maximum daily return creates the perception of high skewness, whether or not such a 
perception is justified. A large jump in prices may create the belief that such a jump 
can happen again. This latter point cannot be directly tested. Instead, the growing 
literature on the lottery effect suggests that having a high previous month’s maximum 
daily return suggests that the firm will be overpriced. The conjecture that this anomaly 
arises from a desire for lottery-like payoffs is ultimately a behavioral hypothesis. 

To argue for persistency of the low volatility/lottery stock anomaly, we invoke 
Brennan, Cheng, and Li [BRE 12] and Baker et al. [BAK 11], who argued that the 
low volatility anomaly persists due to a limit to arbitrage. Namely institutional 
investors are incentivized to maximize information ratio − and not Sharpe ratio. 
Overweighting low beta and underweighting high beta stocks creates very large 
tracking errors thus making low volatility strategies inherently low information ratio 

                         
5 We will often use the terms “high skewness” and “lottery” interchangeably. 
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strategies (despite their high Sharpe ratios); as a result, most institutional investors 
are unwilling to invest in low beta-based strategies. 

12.3. Lottery and volatility double sort 

First, we motivate our definition of lottery stocks. Lottery stocks are stocks with 
a high expected skewness. As with Bali et al. [BAL 11] and Bali et al. [BAL 14], we 
sort stocks based on the previous month’s maximum daily return, which we will 
simply call MaxRet, and define lottery stocks as those with a high maximum return 
in the previous month. The rationale for this definition is that investors may perceive 
stocks that have experienced a high daily return in the previous month as a stock that 
could again experience such high returns. It is worth noting that whether MaxRet 
perfectly captures the true skewness of the distribution is less important than 
whether it captures the investor’s perception of “lottery-like” payoff. Indeed, these 
high MaxRet stocks do tend to experience higher skewness and they also appear to 
have lower expected returns. 

We are not just concerned with the difference in returns between low volatility 
and high volatility stocks, which we will call the low volatility premium. This has 
been more than well studied. Nor are we just concerned with the difference in 
returns between lottery stocks and non-lottery stocks. Instead, we are interested in 
stocks that are simultaneously high volatility and lottery stocks. We claim that not 
all high volatility stocks are overvalued. Only high volatility lottery stocks are 
overvalued. This observation adds to the low volatility literature. 

We capture this effect by sorting first on 5-year trailing volatility. We break 
these stocks into quintiles ensuring that stocks within each quintile roughly share the 
same volatility. Within each volatility quintile, we sort stocks on ex ante skewness − 
as measured by the maximum daily return in the previous month − and break those 
stocks into quintiles based on skewness. This is the oft-used double sort to determine 
interactions between factors. While we do not exhaustively reject all competing 
hypotheses to argue explicitly that the irrational pursuit of lottery-like returns causes 
the documented low volatility effect, our empirical result does provide support for 
this hypothesis. 

To reiterate, we first sort stocks on volatility and break those stocks into quintiles. 
Within the volatility quintiles, we sort stocks on previous month’s maximum return 
and break these stocks into subquintiles. We use Center for Research in Security Prices 
(CRSP) data for U.S. stocks and Datastream data for non-U.S. data. We first restrict 
stocks to those that are higher than median market capitalization to ensure liquidity 
and investability. We calculate volatility using daily data. We weigh constituents 
within each portfolio by market capitalization and reconstitute portfolios every month; 
we note that equally weighing the constituents results in qualitatively similar outcome. 
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We only use countries for which we can compute at least a decade of returns ending 
December 2014. We report our results in Table 12.2. 

Volatile Quintiles 
Lottery Quintiles 

Non-Lottery 2 3 4 Lottery 

Stable 12.4% 10.7% 11.1% 10.5% 11.4% 

2 12.8% 11.9% 11.9% 10.4% 9.7% 

3 14.2% 12.2% 10.3% 11.0% 6.8% 

4 12.3% 10.2% 11.9% 8.7% 7.7% 

Volatile 9.6% 12.5% 5.9% 3.4% -4.7% 

Table 12.2. Annualized return of monthly rebalanced United States  
volatility-lottery double-sorted quintiles (January 1967−December 2014) 

In Table 12.2, the columns show the lottery quintiles from the lowest maximum 
return on the left to highest maximum return on the right. The rows show the 
volatility quintiles from the lowest volatility on the top to highest volatility on the 
bottom. We will refer to the highest maximum return quintile as the lottery quintile 
and the lowest maximum return quintile as the non-lottery quintile. Note this is a 
conditional sort where we sort on volatility first; we cannot compare across the rows 
in Table 12.2 meaningfully. What we can conclude is that for stocks with 
comparable volatility (in the same volatility quintile) the ones with lottery 
characteristics have meaningfully poorer returns. In fact, we see that many high 
volatility stocks with low lottery characteristics have high returns; screening out 
these high volatility stocks would not improve portfolio returns but could 
meaningfully reduce portfolio diversity. The return patterns observed in Table 12.2 
suggest that there is expected return information that is captured by the lottery 
characteristic which is not captured by the traditional volatility measure. 

In Table 12.3, we perform the opposite sort. First, we sort by the previous 
month’s maximum return (lottery characteristic). Then, we sort by volatility. 
Returns increase with volatility for the low lottery characteristic quintiles (1 and 2), 
corresponding to stocks with low positive skewness. This means that for stocks with 
comparable skew or lottery characteristics, the intuitive relationship between 
volatility (and thus beta) and return is generally observed. There is no low volatility 
anomaly for non-lottery stocks. However, for the high lottery quintiles, especially 
quintile 5, high volatility stocks significantly underperform low volatility stocks. 
This suggests that there is also information contained in volatility that is not 
captured by the MaxRet variable, which proxies lottery characteristic. This contrasts 
against Bali et al. [BAL 14] where they argue that volatility is subsumed by MaxRet 
for the purpose of capturing the traditional low volatility anomaly. Our evidence 
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suggests that the preference for lottery is a meaningful part of the explanation but 
not the complete explanation. This should not be surprising as low volatility (beta) 
does also capture leverage aversion and analyst bias as reviewed before. 

Lottery Quintiles 
Volatility Quintile 

Stable 2 3 4 Volatile 

Non-Lottery 11.4% 9.1% 11.4% 13.3% 13.8% 

2 11.5% 10.9% 11.9% 11.4% 12.2% 

3 11.1% 10.8% 9.4% 13.2% 7.8% 

4 9.3% 9.7% 10.6% 9.6% 7.2% 

Lottery 8.0% 6.6% 8.3% 1.9% -5.4% 

Table 12.3. Annualized return of United States lottery-volatility  
double-sorted quintiles (January 1967 –Dec 2014) 

Our primary findings are twofold: (1) using MaxRet to capture lottery 
characteristic, we find support that high lottery characteristic stocks tend to have 
poor returns adjusted for volatility – this suggests that the traditional low volatility 
strategy does not fully exploit the preference for lottery behavioral bias; (2) there is 
a meaningful intersection between MaxRet and volatility as portfolio sort signals, 
however they do not subsume each other. There is an interaction that makes the 
intersection of high volatility and high MaxRet extremely undesirable. Our results 
are useful for portfolio construction where investors can eliminate high volatility + 
high MaxRet stocks from their benchmarks to meaningfully improve returns. This 
approach is likely to create a more efficient portfolio which captures the various 
behavioral biases targeted by the traditional low volatility strategies. 

12.4. International evidence 

In this section, we use international data to verify our claims in the previous 
section. However, showing two-by-two double sorts for every country is both 
distracting and intractable from a space management perspective. Instead, we 
compare the annualized return for the high volatility + lottery intersection quintile 
with the annualized return of the high volatility quintile6. Our goal is to demonstrate 
that high volatility lottery stocks perform substantially worse than plain vanilla high 
volatility stocks. The high volatility + lottery intersection is constructed by first 
sorting on volatility and then on lottery. The reverse sort gives similar results. 

                         
6 In this case, the return of the high volatility quintile is measured as the average of all five 
lottery subquintiles within the volatility quintile. This method ensures that all lottery quintiles 
are given equal weight. 
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High volatility lottery High volatility t-stat of difference Start date 

Australia –13.3% –2.1% –2.50 01–1987 

Belgium –23.9% –4.8% –2.38 07–1999 

Brazil –6.3% 14.7% –2.16 01–1999 

Canada –14.7% –0.9% –3.49 01–1987 

Chile 5.6% 15.7% –1.23 01–1999 

Denmark –10.7% –1.4% –1.24 08–1990 

Finland –16.2% –0.4% –2.02 06–1998 

France 0.7% 1.6% –0.25 01–1987 

Germany –12.3% 0.3% –2.80 01–1987 

Greece –32.7% –11.4% –2.95 07–1993 

Hong Kong –16.8% –4.7% –2.48 04–1989 

India 0.0% 13.5% –2.01 01–1999 

Indonesia –22.9% 6.1% –3.30 01–1999 

Italy –10.3% –1.1% –2.08 01–1987 

Japan -9.1% –3.4% –2.10 01–1987 

Malaysia –6.7% 2.3% –1.97 01–1999 

Netherlands –4.2% 6.8% –2.38 04–1987 

New Zealand 8.9% 15.0% –0.75 01–2002 

Norway –9.1% 2.9% –1.37 07–1995 

Philippines –10.0% 7.0% –1.43 01–1999 

Poland 12.3% 5.7% 0.53 09–2001 

Singapore 0.5% 6.3% –0.92 03–1989 

South Africa –2.9% 11.3% –1.99 01–1999 

South Korea –26.0% –9.0% –2.75 01–1999 

Spain –19.2% –4.1% –2.56 10–1999 

Sweden –1.9% 4.4% –0.85 04–1992 

Switzerland 1.5% 7.2% –1.08 01–1987 

Taiwan –1.7% –1.0% –0.16 01–1999 

Thailand –1.2% 9.7% –1.43 01–1999 

Turkey –2.1% 24.6% –2.75 01–1999 

UK –4.7% 3.1% –2.24 01–1987 

US –4.7% 5.7% –5.97 01–1967 

Table 12.4. Monthly rebalanced high volatility lottery stock returns  
versus monthly rebalanced high volatility stocks returns 
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Table 12.4 shows that in 31 out of 32 countries, high volatility lottery stocks 
underperformed the high volatility stocks in that country. The differences are 
significant at a 0.01 level in seven countries and a 0.05 level in an additional 13 
countries. This provides support to our assertion that the high volatility lottery 
stocks are meaningfully more overpriced relative to other high volatility stocks. 
Indeed, the puzzling historical observation that high volatility (high beta) stocks 
have low returns is not observed when controlling for positive skewness.  

12.5. Conclusion 

In this chapter, we argue in favor of the preference for lottery as the significant 
explanation for the low volatility anomaly. While the low volatility (beta) effect may 
also be driven by investor aversion to leverage and higher analyst bias for high 
volatility stocks, the preference for positive skew seems to dominate the low 
volatility effect empirically. Using global country data, we find that high volatility 
(beta) stocks only underperform substantially if they are also lottery stocks − that is 
they appear to have high past positive skew. Since large recent positive jumps in 
returns can also meaningfully increase the volatility measurement, volatility can 
often be a noisy proxy for positive skewness. Thus, the low volatility effect and the 
preference for lottery effect are intimately related. Disjoining the effect, we find that 
observed return advantage for low volatility stocks over high volatility stocks is 
substantially, though not entirely, driven by the overpricing of high positive skew 
stocks − or lottery stocks. Indeed, when controlling for skewness, we find many high 
volatility stocks to offer high returns, which confirm the traditional CAPM intuition. 
All of these have meaningful portfolio construction implications. The results suggest 
that traditional minimum variance and low volatility portfolio constructions may 
eliminate too many of the reasonably priced high volatility stocks, which hurts 
portfolio returns and portfolio diversity. 

12.6. Appendix 

Differences in skewness are hard to interpret. Comparatively, mean and volatility 
are ubiquitous and intuitive. The skewness of a strategy is rarely mentioned and 
describes the asymmetry of a distribution, a rather abstract concept. 

We attempt to reframe the notion of skewness in a way that is more concrete. We 
want to answer the following question: how does skewness affect the highest 
returning month in 20 months? In other words, given a particular skewness, what is 
the mean of over 95th percentile monthly returns? 
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In order to analyze the effect of skewness, we must first fix the mean and 
volatility of the distribution. We assume a monthly mean return of 0.80% with a 
monthly volatility of 1.67%, both similar to the S&P 500 since 1926. We use a skew 
normal distribution and adjust a parameter that shifts both the skew and the excess 
kurtosis. Due to the nature of the skew normal distribution, we cannot fix the  
excess kurtosis. Note that these skewness values use the traditional calculation of 
skewness (Pearson’s moment coefficient of skewness). 

Skewness Excess kurtosis >95%ile monthly mean 

–0.72 0.56 3.50% 

–0.67 0.52 3.57% 

–0.62 0.45 3.63% 

–0.56 0.41 3.71% 

–0.49 0.33 3.78% 

–0.42 0.28 3.85% 

–0.34 0.21 3.93% 

–0.28 0.16 4.00% 

–0.21 0.11 4.06% 

–0.14 0.07 4.11% 

–0.09 0.03 4.15% 

–0.04 0.01 4.20% 

0.00 0.00 4.24% 

0.03 0.01 4.27% 

0.10 0.05 4.34% 

0.14 0.06 4.38% 

0.20 0.11 4.44% 

0.27 0.15 4.50% 

0.35 0.21 4.57% 

0.41 0.27 4.63% 

0.50 0.36 4.70% 

0.55 0.39 4.74% 

0.61 0.44 4.79% 

0.67 0.52 4.84% 

0.72 0.58 4.87% 

Table 12.5. 95%ile Monthly mean return conditional on skew and kurtosis 
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Increasing skewness from −0.72 to 0.72 only increases the mean return of the 
best month in 20 from 3.50 to 4.87%. In this particular distribution and for this range 
of skewness and kurtosis, an increase in 1.00 of skewness translates to a 94 bp 
increase in 95th percentile mean monthly returns. 

To apply this knowledge, we consider the skewness of high volatility lottery 
stocks and low volatility non-lottery stocks. High volatility, high ex ante skewness 
portfolios experience a 1.26 higher skewness and a 0.16% lower monthly return than 
low volatility, low ex ante skewness portfolios. A 1.26 higher skewness roughly 
translates to a 1.18% increase in 95th percentile returns but at a 0.16% lower 
average monthly return (2.0% lower annualized return). It would require an 
implausibly high desire for lottery-like payoffs to justify the lower return and higher 
volatility for such a small increase in skewness. 
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The Low Beta Anomaly  
and Interest Rates  

The reasons for outperformance in smart beta portfolios remains a mystery. We 
extend previous literature on the link between portfolio performance and 
macroeconomic factors by exploring the response of a low beta portfolio to 
interest rate movements. The implications for fund managers heavily invested in 
low-risk strategies where the immediate risk lies in the future rise in interest rates 
are worth considering. In particular, low beta funds appear to go up when interest 
rates fall more than when interest rates rise. We focus on the case of  
US equity investment based on the capital asset pricing model (CAPM). We find 
that the anomaly is partially explained by interest sign changes due to 
macroeconomic events, and observe heterogeneous impacts for low and high beta 
portfolios. 

One of the observations over the cross-section of stocks is that the historical risk-
return trade-off is flat or inverted: within the CAPM, we would expect that stocks 
with high systemic risk would outperform their low risk counterparts, but results 
have shown otherwise. It is an empirical fact that interest rates have been declining 
over the recent decades, and there is evidence that interest rate movements affect 
portfolio choice. The question then arises whether there are heterogeneous impacts 
to the interest rate for high and low beta portfolios, as the anomaly arises from the 
observation that low beta portfolios outperform their high beta counterparts.  
We want to find the origin of this so-called “anomaly”, which we believe is linked to 
the behavior of portfolios to interest rates. 

                         
Chapter written by Cherry MUIJSSON*, Ed FISHWICK° and Steve SATCHELL†. 
* Cambridge University °Blackrock  Trinity College †Cambridge University & Sydney 
University 
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There is some evidence that in the context of Sharpe’s market model [SHA 64] 
the differing exposures to interest rate movements are not captured by systematic 
risk, but by an alpha effect that is heterogeneous over portfolios. We observe that 
low beta portfolios outperform high beta portfolios at times of low interest rates: we 
saw a steady decrease in interest rates over 1980−2010, which matches the period of 
low beta outperformance. However, a model that estimates the interest rate effect as 
a structural break would fail to take the one period nature of the CAPM into account, 
and the resulting effect on the ex ante expectations set by the model. This relates 
directly to the setting of the interest rate target by the Federal Open Market 
Committee (FOMC); movements in the target rate are gradual, almost constant in 
magnitude, and highly persistent.  

Hence, we propose a method where we use sign changes in interest rates to 
capture the underlying macroeconomic policy implications for actual reactions of 
investors. The heterogeneous impact can be quantified through the effect on the 
intercept of the CAPM, indicating a violation of the CAPM assumptions and 
suggesting a change in behavior around a zero change. We validate the  
threshold with a grid search along the likelihood function of our data, and  
link the asymmetry in the portfolio returns to the persistence of interest rate sign 
changes. 

At the source is the trade-off between being implicitly long or short bonds in 
times of interest rate changes, and the mismeasurement that occurs if we do not 
account for the term structure. This is at the heart of the argument in this chapter, 
which is that the type of interest rate used is dependent on the composition of 
investors in the market. Investors differ in their degree of risk aversion, and we 
argue that this is pronounced through either a spread between a borrowing and 
lending rate, or investing on different parts of the yield curve. The argument follows 
from the observation of inverted yield curves in times of recession, and suggests that 
the anomaly arises from exogenous macroeconomic influences.  

There are two lines of argument as to why low and high beta portfolios react 
differently: first, the opportunity cost when the interest rate decreases makes safer 
investments more attractive, and second, the interest rate is a reflection of real 
economic conditions and economic health, which particularly impacts firms that 
have more gearing. We do not see a similar switch in high beta portfolios as  
of the heterogeneous gearing across firms in a high beta portfolio: firms that are 
riskier are generally more equity financed in absolute terms rather than leveraged on 
debt.  

As firms with a lower market beta usually have a higher gearing ratio, we expect 
that increases in the interest rate affect their performance more than firms with a  
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higher market beta; low beta portfolios will have a lower return when interest rates 
increase, but see a higher return when the interest rate is decreasing. Thus, interest 
rate changes affect low beta portfolios asymmetrically because of the underlying 
composition of debt.  

We combine the literature on leverage constraints with macroeconomic factors 
and studies relating to the term structure of interest rates (see [EST 96] and  
[BAL 10]), where we distinguish portfolios as heterogeneous investors as in  
[BRE 93]. We argue that the term structure of interest rates and the impact of 
heterogeneous risk aversion across investors lead to a discrepancy between portfolio 
returns, and that the anomaly arises for a failure to account for this effect. The 
chapter focuses on two potential explanations of the low beta anomaly, namely 
interest rate sign changes and failure to account for the interest rate term structure. 

13.1. Literature review 

The anomaly has been recognized empirically in many applications (see, for 
instance, [BLA 72a, BLA 72b, FAM 92, HAU 75]). Baker and Wurgler  
[BAK 11] provide an extensive review in favor of the low beta anomaly. Also, see 
Ang et al. [ANG 06], who find that stocks with higher idiosyncratic risk earn lower 
returns in all cases considered. 

The causes of the anomaly and how to quantify them are at the heart of the 
literature: for instance, approaches using mismeasurement and volatility premiums 
on high risk stocks [DIB 12, KLE 13], the impact of unobservables and leverage on 
the returns [FAM 96, COC 13, FRA 11], approaches using cumulative prospect 
theory from [KAH 92] to model lottery preferences and different preferences in the 
loss domain [COR 08, BAR 08, BHO 11, LEV 12, KUM 09] and manager behavior 
perspectives [CHE 97, SRI 98, ASN 12]. 

We focus on the literature relating to unobservables and underlying leverage, and 
combine it with macroeconomic factors and studies relating to the term structure of 
interest rates [EST 96, BAE 10], where we distinguish portfolios as heterogeneous 
investors as in [BRE 93]. We argue that the different portfolio return distributions 
for interest sign changes lead to a discrepancy between low and high beta portfolio 
returns. 

Di Bartolomeo [DIB 12] and Klepfish [KLE 13] argue that high-frequency 
arithmetic rates of returns are mistakenly compared to the geometric rates  
of return over longer period, leading to a volatility premium. For instance, we can 
show that a discrete return adjusted for a volatility premium can be expanded as a 
Taylor series: 
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௧(ሺ௧ାଵሻሺ௧ሻܧ ݐ௧ሺln൫ܲሺܧ-(1–   1ሻ൯ െ ln൫ܲሺݐሻ൯ =   
ଵଶ ሺߤଶ െ ଶሻߪ    ଷሻߤሺ

The symbol ሺߤଷሻ means that the remainder is of order three in the instantaneous 
mean. We note too that under these assumptions, as long as the instantaneous mean 
is small, we require that ߤ be greater than ߪ in absolute value for arithmetic  
expected returns to be greater than geometric ones. Not accounting for this  
factor causes substantial differences between arithmetic and geometric returns, 
particularly in their average volatility. Hence, portfolios with a higher beta would 
underestimate the expected return if the volatility bias is not taken into  
account. Related is the work by Haugen and Wichem [HAU 74] who explore the 
impact of holding duration of risky versus riskless assets on their relative price 
volatility. 

Mispricing can also occur through the effect of unobservable factors, as in the 
three factor model by Fama and French [FAM 96]. This model uses three stock 
specific factors that offer potentially orthogonal dimensions of risk and a return 
[SCH 11] premium for investors willing to take the risk with these factors  
[COC 13]. The factor premiums capture effects formerly incorporated in a CAPM 
intercept, which implies that the higher low risk return is not an anomaly but a 
mismeasurement of missing factors. 

This is related to leverage constraints on portfolio choice. Frazzini and 
Pedersen’s [FRA 11] explanation of this phenomenon follows from the preference 
of investors to carry more risk than the market can provide, but leverage is costly to 
obtain. In turn, these investors buy high beta stocks instead of leveraging,  
driving up the cost for high beta stocks relative to low beta counterparts. An 
extension using option theory is provided by Cowan and Wilderman [COW 11]. In 
the context of our simple model, explicitly levering low beta simply gives the high 
beta portfolio due to two fund money separation so we will not pursue this 
explanation.  

The riskiness of leverage strategies is determined by the underlying risk-free 
rate: interest rates can affect the portfolios through the effect of maturity premia and 
the borrowing constraints of investors. The yield curve shows the range of interest 
rates across bonds of the same risk and liquidity but with differing maturities. It is 
argued in previous work by Estrella and Mishkin [EST 96] that the slope of the yield 
curve is a good predictor of recessions in the US as the sign gives an indication of 
whether the economy is slowing down or the money supply is tightening. In 
economic turmoil, it is possible that the yield inverts: as the long-term  
interest rate represents the risk-adjusted average of the expected future short-term  
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interest rates and the long-term interest rates will fall, but by a smaller amount than 
the short-term interest rates. Others confirming this result are Adrian et al.  
[ADR 10], Bernanke and Blinder [BER 92], Bernard and Gerlach [BER 98] and 
Rudebusch and Wu [RUD 04], who find evidence in favor of the prediction power 
of the term structure. 

Furthermore, the magnitude of changes in the target interest rate has been 
remarkably constant, regardless of the sign of the respective change (see, for 
instance, [COI 11, GOO 05, GUR 05]). Also, Coibion and Gorodnichenko show that 
there is substantial persistence in the target rate set by the FOMC, which implies that 
there are cumulative, non-independent expectations of interest rate changes. The 
leverage argument provides substantial insight as to how portfolio returns may differ 
with regard to their interest sensitivity, with more importance to the gearing on debt 
of the firms underlying the portfolio that causes the anomaly. As the gearing ratio is 
an indicator of the debt structure of a firm, there are heterogeneous responses to 
interest rate movements over high and low beta firms. We reconcile the above 
approaches to argue that failure to account for interest rate movements leads to 
substantial mispricing which causes the low beta anomaly. 

13.2. The anomaly and interest rates 

Let ߤ, ߤ be the expected arithmetic rates of return on asset i and the market m, 
respectively. Let ߚ, ݎbe the population beta of asset i with respect to the market m 
and the riskless rate of return, respectively. The CAPM states:  ߤ െ ݎ ൌ ߤ൫ߚ െ  ൯ [13.1]ݎ

We will look at this relationship to see how changing conditions influence the price 
of the asset. We can conceive of this as being the following things within the model 
framework: (1) multiple changes, (2) changes in the risk premium, (3) changes in 
expectations of future earnings and (4) changes in aggregate risk aversion. 

Noting that at time t, 	ߤ ൌ ாሺ,శభሻ, െ 1, where ܧ௧ሺ ܲ,௧ାଵሻ is the expectation held 

at time t of the price of asset i at time t+1, an amount that would take into account 
expected capital gains and dividends: 

ܲ,௧ ൌ ாሺ,శభሻଵାାఉ	൫ఓି	൯ [13.2] 

Suppose, we were to consider a change in the market expected rate of return and 
a simultaneous change in the riskless rate of return. We denote these changes by ݀ߤ and ݀ݎ, respectively. Let the change in the price be ݀௧. Thus:  
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݀ ܲ௧ ൌ ௗௗ ݎ݀  ௗௗఓ   ߤ݀

݀ ܲ௧ ൌ 	 ିா൫,శభ൯ሺଵାାఉሺఓିሻሻమ ቀ݀ݎ  ߤ൫݀ߚ െ  ൯ቁ [13.3]ݎ݀

Since the terms to the left of the brackets are unambiguously negative, we can 
see that a total change in the risk premium ൫݀ߤ െ  ൯ that is positive, say 2%ݎ݀
with an asset with a beta of 0.5 will decrease prices as long as the associated interest 
rate fall is less than 1%. There is a difference in the response across portfolio types: 
as high beta portfolios are linked to being short bonds while low beta ones are long 
bonds, the latter carry a different sensitivity to the interest rate. By going long on the 
riskless bond, low beta portfolios see an increase in their relative return in times of 
interest decreases, while high beta portfolios see a decrease under similar conditions. 

Ross [ROS 71, ROS 76] developed a theory of asset pricing following the attack 
on the conclusions reached by the CAPM as equity returns are not normally 
distributed and the model is not empirically validated. Arbitrage pricing theory 
(APT) follows from the notion that, for any financial asset, there is no single 
systematic risk factor but rather a combination of many. One of the main 
implications of the APT is the principle of diversification, meaning that 
idiosyncratic risk is not present for well-diversified portfolios.  ߤ െ ݎ ൌ ଵߤଵ൫ߚ െ ൯ݎ  ⋯ ߤ൫ߚ െ   ൯ݎ

Burmeister et al. [BUR 03] provide an overview of the methods in which risk 
factors can be included in the empirical justification of the APT. Again, empirical 
specifications of the APT are subject to the critique of Fama and French [FAM 96] 
as we can think of an infinite set of factors that might have an influence on the 
expected returns: hence, there is a need for a proper theoretical foundation of the 
factors. For instance, interest rate risk is identified as a strong potential risk factor. 
We write the CAPM as follows: ߤ ൌ ߤߚ  ሺ1 െ   ݎ	ሻߚ

Inspecting the CAPM above, it is clear that, if we are in equilibrium, a fall in the 
interest rate will lower the expected rate of return for a low beta asset and raise the 
expected rate of return for a high beta asset. A possible explanation of a failure of 
modeling this in the CAPM lies in the difficulties of using a one period model with a 
time series of data, and the failure to provide insights into disequilibria. 

By decomposing the CAPM to incorporate the risk-free rate directly, we see that 
macroeconomic interest rate movements have a direct impact on the portfolio 
returns. Our contribution is empirical but has a theoretical basis: interest rate 
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movements follow from the CAPM as a subcase of the APT and we estimate  
the potential difference in impacts for low and high beta portfolios. Following from 
the observation that the magnitude of interest rate changes is fairly constant, we 
argue that interest rate sensitivity is captured by the sign changes and cumulative 
persistence of the target rate. 

A rise in the interest rate is equivalent to a fall in the price of “cash” and shorting 
such an asset will increase the value of the portfolio, the high beta stock. We argue 
that the cost of taking on gearing is related to interest rate movements: when the 
relative cost of borrowing increases, firms underlying a low beta portfolio which 
generally take on more debt are more affected than firms that are mostly equity 
financed: investment moves toward (away) high (low) beta portfolios, driving up 
(down) the price and return of these products. 

13.3. Model specification 

In keeping with an APT interpretation, we extend the traditional CAPM analysis 
by including a term that captures the relative leverage of portfolios to the risk-free 
rate. In order to test for heterogeneous impacts for high and low beta portfolios, we 
study two portfolios with differing beta exposures.  ݎ௧ ൌ ߙ 	ߚ ௧ݎ  ௧ܸ [13.4] 

For a time series regression on a single portfolio, the ordinary least squares 
estimator (OLS) will be unbiased and efficient if the characteristics of our error term 
and estimator follow the Gauss−Markov assumptions. Under a correct CAPM 
specification, we should find that the intercept term ߙ is insignificant in the 
specification. However, many attempts at CAPM modeling have concluded that this 
is not the case, particularly for low beta stocks. To capture why we would see a  
non-zero intercept, we estimate the CAPM again but model the changes in the 
interest rate directly as an extra factor: ݎ௧ ൌ ߙ  ߚ ௧ݎ  ௧ݎ∆ߛ  ௧ܸ [13.5] 

We expect that portfolios with different degrees of systematic risk are affected 
asymmetrically: low beta portfolios are expected to be negatively affected  
by the positive changes in the interest rate, while high beta returns are expected to 
increase. 

Rather than modeling the magnitude of interest rate changes, we are more 
interested in the effect of interest sign changes on the portfolio intercept and market 
beta as the magnitudes of changes in the rate are constant over time. A structural 
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break analysis at the point of major change in interest rate movements only gives us 
information on the effect on different samples rather than the actual change in 
expectations. We propose a threshold analysis where we estimate the CAPM based 
on the sign of the interest rate change around a reference point c: 

݅௧ ൌ 	 ൜1	݂݅	∆ݎ௧  ௧ݎ∆	݂݅	0ܿ 	 ܿ  

The reference point takes a natural value of zero when we are interested in the 
sign of interest rate changes. We estimate the threshold using a grid search  
upon the likelihood function with refined tolerances as a robustness check. We 
estimate the model with interaction terms with the market premium to test whether 
interest rate changes also affect systemic risk of a portfolio. ݎ௧ ൌ ଵߙ  ଵߚ ௧ݎ  ଶ݅௧ߙ  ଶ݅௧ߚ ∗ ௧ݎ  ௧ܸ [13.6] 

13.4. Empirical analysis and results 

As the CAPM is a one period theory of portfolio choice of a representative agent, 
we need to be clear on which interest rate would correspond to the dominating 
factor. We estimate the model using the 10-year bond rate as well as a mixed 
equilibrium rate. We argue that there is no distinct difference between the monthly  
T-bill rate and the 10-year bond rate when it comes to their general movements over 
the time period, but in terms of changes and volatility there is a major difference. 
The short-term rate is much less volatile than the long-term rate, which can have 
substantial differences in a one period model such as the CAPM. Hence, even 
though interest rates in general may have been declining over the recent decades, 
what matters is the change over the time frequency which explains our preference 
for a sign change indicator rather than a structural break analysis. 

We use long run industry level data to analyze beta effects. The source of the 
data is the monthly industry level Fama−French industry level returns from Kenneth 
French’s Website. We use 43 industry groupings from 1953.01 to 2012.12 to 
calculate full sample betas. Some initial rolling calculations on the data found five 
industries that had betas less that 1 (defensive) and nine with betas greater than 1 
(aggressive). The defensive industries are food products, tobacco, oil, utilities and 
telecoms. The aggressive industries are building materials, fun and entertainment, 
construction, steel, machinery, electrical equipment, chips, lab equipment and 
financials. Then, we build market capitalization-weighted portfolios of the high beta 
and low beta industries.  
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The rationale for this methodology could also be construed in Bayesian terms. 
We could argue that we have prior beliefs about the nature of certain sectors, for 
example, we think of utilities as defensive and computers as aggressive. The reason 
for taking this approach is that it avoids the high degrees of uncertainty in estimated 
beta. Our empirical approach simply supports what could be justified by prior 
beliefs. Summary statistics are available upon request, where the numbers reported 
show noticeable differences between arithmetic and geometric returns. We also 
report the medians and standard deviations of geometric returns. In all periods, and 
overall, the standard deviations of high-beta portfolios are higher than those of low-
beta portfolios. 

We estimated the CAPM by regressing portfolio excess returns on an intercept 
and market excess returns, and present our results in the first panel of Table 13.2. 
We would expect the intercept to be zero if the CAPM holds; interestingly, the low 
beta portfolio has a positive intercept, while the high beta portfolio does not. This 
demonstration shows the returns to low risk portfolios based on a CAPM theory of 
risk. Investing in low beta portfolios gives us an extra 3.68% per annum relative to 
what the CAPM suggests. 

 

Table 13.1. Moments of 10-year rate, HIB and LOB  
conditional on interest changes 
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Table 13.2. CAPM results per specification1 

By including the change in the interest rate (10-year bond rate) as in equation 
[13.5], we see an increase in the explanatory power for the low beta model and 
significance for both specifications. The estimates are of opposite signs, which 

                         
1 Numbers are estimates of coefficients of variables, including constant and market risk, and 
the 10-year rate, respectively. Values of the t-statistic above 1.645 indicate significance above 
the 5% level, while values above 2.326 indicate significance above the 1% level. 
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confirms our hypothesis that the low beta portfolio is negatively affected by positive 
changes in the risk-free rate, while the opposite holds for high beta portfolios. We 
expect alpha to be significantly different from zero and negative for a portfolio with 
low beta, and insignificant for high beta portfolios. Table 13.2 shows that alpha is a 
significant factor for low beta portfolios, albeit not negative. The negative sign is 
captured by the estimate on the changes in the interest rate. 

In the second panel of Table 13.2, we allow for a structural break in 1983 when 
interest rates started to decrease. From the results, we see that there is no significant 
difference in the two samples2, and no evidence of an increase in systematic risk for 
either portfolios in the different interest rate regimes. There is some significance on 
the 15% level for low beta portfolios, but this only results in a double alpha effect 
rather than a systematic change. Table 13.1. shows the moments for the interest sign 
changes (Panel 1) and interest magnitude changes (Panel 2); clearly, a structural 
break is unable to pick up the asymmetry in mean returns in the way a sign change 
does. The moments for interest rate changes are remarkably similar across positive 
and negative times for both the sign and magnitude specification. The abnormal 
return for low beta portfolios for negative interest changes is more visible with sign 
changes, where we see a positive return of 1.354 for negative changes and 0.003 for 
positive changes. 

Next, we turn to the model specification in equation [13.6]. Using the indicator 
setup, we are able to pinpoint the impact of the sign of interest rate changes from a 
reference point, and absorb these changes in double alpha and/or double beta effects. 
It is clear from Table 13.1 that the distribution of positive and negative changes is 
quite different over the two sample periods: before 1983, there were significantly 
more positive interest rate changes than from 1984 onward, which can be explained 
by the rise of monetarism and the focus on inflation fighting by the chairman of the 
Federal Reserve under Reagan’s administration. Furthermore, the number of “ups” 
and “downs” is remarkably similar in structure in that the proportion of decreases 
prior to 1983 is approximately the same as the proportions of increases post-1983. 
This also suggests that our data set represents a fairly complete epoch of history as 
the overall proportion of ups, taken over both periods, is very close to 50%. 
Together with the relatively constant magnitude of the changes in the target interest 
rate set by the FOMC, this provides evidence that the sign of the change is more 
important for the expected return. 

Panel 3 of Table 13.2 presents our results for interest sign changes. We observe 
that the impact of the sign of interest rate changes is not captured by a two beta 
model for both low and high beta portfolios. Instead, the impact is captured by a two 

                         
2 Structural break within equation [13.5] around 1983–1. Estimates are the coefficients of the 
constant, market risk and changes in the 10-year rate, respectively. 
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alpha model for both portfolios3. Focusing on the alpha effect-only models, we see 
that alpha becomes a significant factor in the high beta portfolio if we include the 
sign of interest rate changes (see Panel 4). The estimates for beta in both portfolios 
hardly change when we include the sign changes, suggesting that systemic risk itself 
is not affected. 

Continuing with our discussion of Panel 4, we demonstrate the impact on low 
beta portfolios as an example of the total effect on the intercept when including sign 
changes. We see that the intercept is positive (0.770) whenever we have a negative 
change in the interest rate as alpha is positive and the indicator takes value zero. 
This result is in line with the observation that returns of low beta portfolios are 
positively affected by negative changes in the interest rate. Whenever we see 
positive changes in the rate (and the indicator takes value unity), alpha for low beta 
portfolios is negative (–0.159) which confirms our hypothesis that low beta 
portfolios are asymmetrically affected. 

The opposite mechanism holds for high beta portfolios: a decrease in the rate 
leads to a decrease in the return (–0.282) and an increase leads to a positive change 
(0.269). Again, this confirms our hypothesis that low beta portfolios outperform 
high beta counterparts in times of interest rate declines. We found some evidence for 
a lower alpha in the period leading up to 1983 for low beta than in the period after 
1983 and thus gives support to the argument listing interest rates as a factor in low 
beta outperformance. Interest rates are a significant factor in low beta 
outperformance and extend the result to the one period CAPM model. 

We checked our estimates of our preferred model, the double alpha specification 
from equation [13.6], for robustness by estimating the reference point using a 
refined grid search over the likelihood function to find the global minimum. We find 
the possible minimum and maximum value of the threshold and start by estimating 
the model for each step starting from the minimum, and computing the sum of 
squared residuals at each point. Then, we find the optimal threshold by minimizing 
the Residual Sum of Squares (RSS) function4.  

                         
3 Estimates of the double alpha model in equation [13.6], rewritten to reveal the underlying 
significance of the alpha parameters. We test whether alpha 1 and alpha 2 are statistically 
different, and we find that a Wald test rejects equality for both high (15.394) and low (39.967) 
beta portfolios. 
4 The distribution of the estimates is non-standard and can be estimated using bootstrapping 
methods. We use three refinement scales (steps of 0.01, 0.001 and 0.0001 which we denote by 
c1, c2 and c3). We find that the points are not significantly different from zero for the largest 
refinement scales, but they are for the finest scale (minimum at 0.0034, 95% confidence 
interval of 0.0648, 0.1021). But, this distance is so close to zero that we do not change our 
results. 
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The results are presented in Panel 5. We see that there is not a significant 
difference from zero, and the estimates are robust to the refinement level. The results 
support our original model. We find that there is strong evidence that the alphas are 
for both portfolios, but with opposite signs depending on the interest rate changes. 
Figure 13.1 shows the behavior of the RSS function for the low beta portfolio, and 
shows a clear minimum at, or very near, the reference point. We obtain a similar 
result for the high beta portfolio. 

 

Figure 13.1. Residual sum of squares (RSS) to the threshold  
level for the low-beta portfolio 

Hence, the preferred specification is equation [13.6] where we only allow for a 
double alpha effect. We see that the sign of the interest rate change is the most 
significant in distinguishing the effects for both portfolios: whenever we see an 
increase in the interest rate from the reference point, low beta portfolios will be 
negatively affected while the opposite holds for high beta portfolios. The strategy 
with low beta portfolios means being implicitly long on the riskless asset. 
Empirically, whenever we see a shift in the risk-free asset, low beta portfolios are 
more affected than high beta portfolios. The estimates show that there is a 
significant alpha impact in this specification for high beta portfolios, which can be 
explained by portfolio rebalancing after underlying interest rate movements.  

As a robustness check, we estimate model [13.6] including positive changes in 
the interest rate (dyield+) and negative changes in the rate (dyield-). Positive 
changes are collected in dyield+ as their actual value, where negative or null values 
are set to zero (similarly for negative changes). A Wald test testing for the 
equivalence of the effects and bringing us back to [13.5] shows that the 
parsimonious model is equivalent, suggesting that there is no difference in upward 
or downward movements of interest rates for this particular model. 
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Time-varying estimates are computed over a rolling window without overlap 
(Figure 13.2). We see, unsurprisingly given the construction methodology, that the 
result for beta is stable and shows that low beta portfolios indeed see a lower 
systematic risk than high beta portfolios, except for very specific periods. We see 
that low betas spiked above high beta portfolios in 1994 during the bond price crash: 
after a long recession with falling inflation, the cycle turned aggressively in this year 
after economic recovery and a rise in the federal interest rate. The estimates for 
alpha are less consistent, but show a clear distinction between high beta and low 
beta portfolios and mean changes over specific periods. We see that the behavior of 
the low beta alpha mirrors that of high beta and observe similar implications for the 
interest indicator variable. 

 

Figure 13.2. Time-varying estimates of equation [13.6] 

13.5. The anomaly and interest maturity mismatch 

One immediate difficulty with the CAPM is that, in its static form, it is not 
especially informative about what interest rate we should be using. The CAPM, as 
discussed above, is a one period theory and the interest rate used would correspond 
to the holding period of the representative agent. This chapter presents an 
explanation as to why we might find significant interest rate returns within a CAPM 
framework. The motivation comes from a traditional theory of interest rate demand 
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often known as the preferred habitat hypothesis. In this model, investors have at 
their disposal a bond of a particular maturity, reflecting, perhaps the duration of their 
liabilities or other considerations. We will capture this by building a CAPM-type 
model which assumes that there are two agents, both of whom are mean variance 
optimizers, both confronted by the same set of risky assets, both believing in the 
same asset price distribution with identical means and variances but having as 
choice of riskless asset a short-rate bond in one instance and a long-rate bond in the 
other. 

The optimization problem they face is: ܷ ൌ ሻݎሺܧ’߱ െ	ఒଶ߱’	߱ߑ െ ሺ߱’ίߠ െ 1ሻ  

where ߠ is the Lagrange multiplier and ߣ is the coefficient of absolute risk 
aversion,	߱ is a vector of portfolio weights chosen to maximize [13.1] and i is a 
vector of ones. The vector of expected rate of return of the risky assets is E(r) = 	ߤ, 
and the covariance matrix of returns is given by ߑ. We note the following result. The 
optimal mean-variance weights in the presence of a budget constraint with known 
parameters are given by: ߱	 ൌ ଵఒ ߤଵିߑ െ ሺఉିఒሻఒఊ   ଵ݅ିߑ

We define ߙ ൌ ߚ , ߤଵିߑ’ߤ ൌ ߛ , ଵ݅ିߑ’ߤ ൌ ί′ିߑଵί. The expected utility associated 
with this case is given by, substituting the first into the second equation and 
simplifying. The maximized value, V, is given by:  ܸ ൌ ఈఊିሺఉିఒሻమଶఒఊ   

If we ignore the budget constraint in the optimization, then the optimal portfolio 

becomes ߱	 ൌ ଵఒ and E(r)ൌ ߤଵିߑ ఈଶఒ . Formally, the optimal portfolios where i = 1,2 

for short and long rates (ݎଵ and ݎଶare the short and long rates, respectively) are 
given by: ݓ ൌ ଵௐబ ିߣ ଵΣିଵ൫ܧሺݎሻ െ   .൯ݎ

This is the same result as given above except that individuals differ in terms of 
initial wealth, absolute risk aversion and riskless rates of return. Defining societal 
wealth as ܹ:  

ܹ ൌ ܹଵ  ܹଶ  
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Thus, societal investment in the different assets (i.e. the market portfolio) is 
equal to ݓ, and where ߣ ൌ ሺሺߣଵሻିଵ  ሺߣଶሻିଵሻିଵ is societal risk aversion.  

We can distinguish two types of agents, with a different risk aversion ߣ. Both 
agents would choose the same market portfolio, but have a different slope of the 
riskless rate. The interest rate for investor (1) is lower than the rate for investor  
(2): in normal economic conditions, this would imply that investor (2) invests on the 
longer part of the yield curve. Therefore, we can see that it is far from trivial which 
interest rate we should be using when we depart from the assumption of 
homogeneous risk aversion. 

Therefore, the optimal portfolio weights are: 

ݓ ൌ ଵௐబ Σିଵܧሺݎሻ ቆቀ ଵఒభ  ଵఒమቁቇ- ଵௐబ Σିଵሺ݅ሻ ቆቀభఒభ  మఒమ ቁቇ  

Now,  

Cov (r,w’r)=Σݓ ൌ 	 ଵௐబ ൭ܧሺݎሻ ቆቀ ଵఒభ  ଵఒమቁቇ െ ሺ݅ሻ ቆቀభఒభ  మఒమ ቁቇ൱ ൌ ሻݎሺܧܽ  ܾ݅ 
ሻݎᇱݓሺݎܸܽ ൌ ݓᇱΣݓ ൌ aߤ  ܾ.  

Therefore,	ߚ ൌ ୟሺ୰ሻାୠ୧ୟఓା .  

Thus, aEሺrሻ  bi ൌ ߤሺaߚ  ܾሻ. 
Dividing both sides by a, we arrive at: 

ሻݎሺܧ െ ൬ೝభഊభ ାೝమഊమ ൰ቀ భഊభା భഊమቁ ݅ ൌ ߚ ൭ߤ െ ൬ೝభഊభ ାೝమഊమ ൰ቀ భഊభା భഊమቁ ൱  

This we call the heterogeneous interest rate CAPM. Defining the relative risk 
tolerance of the short-rate investors as	ߜଵ with the relative risk tolerance of long-rate 
investors being 	ߜଶ, it follows immediately that 	ߜଵ   ଶ=1. The interest rate term inߜ	
the heterogeneous interest rate CAPM now becomes 	ߜଵݎଵ+	ߜଶݎଶ and we can write 
our CAPM as: 

E(r) - ሺ	ߜଵݎଵ+ߜଶݎଶሻ݅=ߚሺߤ-ሺߜଵݎଵ+ߜଶݎଶሻ)   

The question that naturally arises is: would we expect the long-rate investors to 
be more risk averse than the short-rate investors? We would think this to be the case 
so that the short-rate investors would tend to dominate; that is 	ߜଵ  50%. 
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Suppose, we now run a conventional short-rate CAPM. We would assume the 
constraint:  ܧሺݎሻ െ ଵ݅ݎ ൌ ߤሺߚ െ   ଵሻݎ

instead of the true model [13.1]. This misspecification would lead to additional 
terms: 

E(r)- ݎଵ݅ = ߚሺߤ-ݎଵ) + ߚሺݎଵ-ሺߜଵݎଵ + ߜଶݎଶሻ) -ݎଵ݅ + i(ߜଵݎଵ + ߜଶݎଶሻ 
E(r)- ݎଵ݅ = ߚሺߤ-ݎଵ)+ߚሺሺ1-ߜଵ	ሻݎଵ+ߜଶݎଶሻ) + i((ߜଵ െ 1ሻݎଵ+ߜଶݎଶሻ 
E(r)- ݎଵ݅	= ߚሺߤ-ݎଵ)+	ሺߚ െ ݅ሻሺ1-ߜଵ	ሻݎଵ+ሺߚ  ݅ሻߜଶݎଶ.    

This equation gives us the misspecified CAPM and shows how interest rates can 
occur as a result of the misspecification. If 	ߜଵ is near 1, and ߚ is near i, we might 
expect the short rate to have a coefficient close to zero, while the long rate should be 
typically much larger.  

Of course, reality is much more complex and the precise nature of the 
misspecification could involve almost any point in the term structure. It is worth 
noting that the equilibrium discussed above generalizes to K different rates  
where each one will be weighted by the relative risk tolerance of the investors who 
use the particular discount factor. Furthermore, these relatives’ weights will a 
dd to 1. 

13.6. Model specification 

While the interest rate impact will be very difficult to estimate with any degree 
of conviction, we can consider two polar cases, the monthly T-bill rate and the  
10-year bond rate. In a world of nominal prices, rather than real prices, these 
correspond to holding periods of 1 month, consistent with the rebalancing interval of 
institutional investors, and a holding period of 10 years which would correspond to 
medium-to-long-term investment. Incorrectly assuming one rate or the other to be 
correct throws up additional terms in the regression. In our analysis, we make use of 
the mixed equilibrium riskless rate, which is in line with the use of possible bond 
yield curve effects.  

To further analyze the impact of specific investing horizons, we use a weighted 
average of the rates based on the ratio of a particular type of investor to the total 
investors. It is an established fact in the literature that large institutional investors 
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and professionally managed funds trade on higher frequency (the short end of the 
yield curve) than smaller, independent investors [SHA 00, DIA 91, COH 75]).  ߤ௧ െ ൫ߜଶݎଵ,௧  ሺ1 െ ଶ,௧൯ൌݎଶሻߜ ߙ  ߚ ቀߤ௧ െ ൫ߜଶݎଵ,௧  ሺ1 െ ଶ,௧൯ቁݎଶሻߜ ଵ,௧ݎଶߜ൫ߛ  ሺ1 െ ଶ,௧൯ݎଶሻߜ   ௧ݑ

Here, ߜଶ represents the share of smaller investors who invest mostly on the long rate ݎଶ,௧ as described earlier. We assume that 70% of the agents invest on the short rate, 
representing a large share of professional traders. We test whether there are changes to 
the market beta in this specification, as well as to the interest rate exposure ߛ. 

Next, we go deeper into the potential misspecification. The case is as follows: if 
we estimate the traditional CAPM using the short rate, we create a misspecification 
that could lead to potential bias. We want to test whether this bias is indeed present, 
and whether wrongly assuming a short rate is a potential cause of the low beta 
anomaly. We can rewrite the misspecification as: 

E(r)- ݎଵ݅ = ߚሺߤ-ݎଵ)+ߜଶሺ	ሺߚ െ ݅ሻݎଵ  ሺߚ  ݅ሻݎଶሻ 
E(r)- ݎଵ݅ = ߤߚ+ሺߜଶ െ 1ሻݎߚଵ െ ଵݎଶߜ  ߚଶሺߜ  1ሻݎଶ 

Now, imagine the case for a low beta portfolio with 0.67 = ߚ and a high beta 
portfolio with 1.25 = ߚ. The equations are formed as follows: Eሺr୪୭୵ሻ െ ଶߜ+ሺߤଵ݅ = 0.67ݎ െ 1ሻ0.67ݎଵ െ ଵݎଶߜ  ଶ E൫r୦୧୦൯ݎଶሺ1.67ሻߜ െ ଶߜ+ሺߤ1.25	 ଵ݅ =ݎ െ 1ሻ1.25ݎଵ െ ଵݎଶߜ   ଶݎଶሺ2.25ሻߜ

The effect on the returns is dependent on the composition of traders. If ߜଶ is small, 
e.g. the composition of short rate, traders is high and the long rate effect is negligible. 
When ߜଶ is large and the proportion of long rate investors is high, the long rate is 
significantly affecting the portfolio returns and creating the misspecification effect. 
Denoting ߠଵ ൌ ሺߜଶ െ 1ሻߚ െ ଶߠ ଶ andߜ ൌ ሺߚ  1ሻߜଶ, we test whether ߠଶ is 
insignificant to ensure no misspecification is present. We estimate the model as follows: ݎ െ ଵ௧ݎ ൌ ߙ  ௧ߤߚ  ଵ௧ݎଵߠ  ଶ௧ݎଶߠ   ௧ [13.7]ݒ

We expect that larger investors tend to be more sensitive to the short-term rate, 
while smaller investors are more affected by the long-term rate. The result for 
portfolios is dependent on the main investors in the market: given also that large 
investors are generally less risk averse, their presence in the market would lead to a 
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higher demand for portfolios with a higher beta. In our specification, we assume that 
70% of the market is dominated by large institutional investors. 

13.7. Results 

First, we estimate the model for the yield curve specification for both the low 
and high beta portfolios. After that, we turn to the estimates of the misspecification 
equation [13.7]. As a robustness check, we allow for multiple values for ߜଶ to see 
whether the misspecification occurs for other investor proportions.  

We find that using the 1 month T-bill rate gives insignificant results for the 
change in the interest rate, which is explained by the frequency of rebalancing of 
portfolios by institutional investors. In a correct specification of the CAPM, the 
market premium is the only risk factor. In Panel 1 of Table 13.3, we use the 
contemporaneous slope of the yield curve as our interest rate variable. In the first 
specification, we test for the change in the yield curve directly, and we show that 
there is no significant impact on either the low beta or high beta portfolios. Given 
that 70% of the investors are assumed to invest on the short rate, this result is not 
remarkable. When we include the sign change specification, we observe that the sign 
changes are not as significant any more for high beta portfolios, but still very 
significant for the low beta set. This confirms our hypothesis that portfolios with low 
beta are negatively affected by positive interest rate movements, but the impact does 
not reverse when interest rates decline as we saw with the long rate estimations in 
the previous section. 

 

Table 13.3. CAPM results for different interest rate specifications 
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Panel 2 of Table 13.3 presents results for the mixed interest rate return case. To 
remind the readers, the excess returns and market premium are based on the mixed 
interest rate as in equation [13.7], and we use the 1 month rate (coefficient ߠଵ) and 
the 10-year bond (ߠଶሻ. To explain the anomaly, we would require the long rate to 
have a significant impact, while the short rate should have a coefficient close to zero 
(particularly when the share of high-frequency investors is high and beta is near 1). 
We observe this is false and that the expected return of low beta portfolios is 
actually smaller when we include the long rate: for this period and market, the 
anomaly cannot be explained by the misspecification of interest rates at least under 
the assumption that we have made for investor relative shares. 

It is possible that the share of short rate investors is not close to 70%, but 
actually higher or lower. As a robustness check, we repeat the analysis of the 
misspecification for different values of ߜଶ. We can rewrite ߠଵ and ߠଶ of Panel 2 of 
Table 13.3 into the direct “impacts” of the rates: 

ఏభାఋమఋమିଵ ൌ and	ଵߛ ఏమିఋమఋమ ൌ   ଶߛ

In our case, ߠଶ is insignificant so we focus on the effect of ߠଵ instead. In our 
specification of a share of 30% of investors on the long rate, we see that ߛଵ is 27.16 
for low beta and –17.06 for high beta. When we assume that the proportion of 
investors on the short rate is zero, we see a sign change in the interest rate effect: 
low beta portfolios are positively affected by the short rate (17.28), while high beta 
is negatively affected (–10.58). When we increase the share to 50%, low beta is 
negatively affected (–55.32) while high beta is positively affected (33.13). The 
misspecification is not present for any value of ߜଶ, as it is fully dependent on the 
significance of ߠଶ, the coefficient on the long rate. In our case, the long rate is not 
significant and therefore the effect diminishes.  

In this section, we explored the alternative explanation that the low beta anomaly 
is caused by the composition of interest rate maturities. We find that there is not 
enough evidence of misspecification in the CAPM to suggest that the anomaly is 
caused by the proportion of investors on different parts of the yield curve, and that 
the yield curve specification actually removes the double alpha effect we observed 
in the previous section. Additionally, the outperformance of low beta is no longer 
observed in the sign change specification. However, agents only differ in the  
risk-free rate and still invest in the same market portfolio in the framework 
presented in this section. The next section provides an extension where we allow for 
different lending and borrowing portfolios, and where the agents are distributed as 
combinations of these two portfolios. The implication of this framework is that we 
do not have a single defined market, which might provide additional insights to the 
investor composition effect. 
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13.8. Concluding remarks 

This chapter compares different specifications with macroeconomic factors by 
allowing for threshold CAPMs driven by interest rate movements. From the 
structural break results, we see that the differing exposures to interest rate 
movements are not captured by a heterogeneous beta model, but by a double alpha 
effect for low beta portfolios. However, this method fails to find the impact of actual 
interest rate changes on the slope and intercept of the two models when there are 
different changes in the same period.  

In our proposed specification, using the sign of the interest rate change (validated 
by a reference point check using a grid search upon the likelihood function of our 
specification) rather than the actual change, we find that alpha is negative for low 
beta portfolios whenever the interest rate is rising and that it is positive whenever the 
rate is decreasing. In line with the previous results, we find significant evidence of 
outperformance of low beta portfolios based on interest rate movements and 
underperformance of high beta portfolios. There is no systematic effect of the 
interest rate on beta itself. This is evidence that the outperformance of low beta 
portfolios is not related to their systematic market risk but to interest rate factors that 
influence the intercept of the CAPM.  

We show that the opaque nature of the definition of the riskless asset is a 
complicating factor. We find evidence that the slope of the yield curve has  
a significant and differentiating impact on low and high beta portfolios by using a 
simple general equilibrium model. We consider 1 month, 10-year rates and an 
equilibrium combination of the two based on an estimated relative share of 
investors. We might expect that the appropriate rate for the CAPM is the 1-month 
rate as this would reflect the rebalancing period of institutional investors. What we 
find empirically is that we see similar results for the slope of the yield curve and the 
long-term rate.  

When we test a misspecified version of the CAPM based on a mismatch in 
maturity levels and investor preferences, we observe that the short-term interest rate 
does not have a significant impact on the excess returns of the portfolios, in line with 
theory. However, we expect the sign of the long-term rate to be positive in both 
cases. We find that the coefficient for the low beta portfolio is of the opposite sign, 
resulting in a rejection of the hypothesis that the anomaly arises from this particular 
form of mismeasurement. However, the analysis might differ if we include more 
securities of different maturities. 

The main force behind the anomaly is likely to be attributed to exogenous 
macroeconomic factors influencing the risk-free rate. Monetary policy over the last  
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30 years has favored low beta strategies by increasing the price of bonds and it is 
fair to say that these macroeconomic factors shape our results, and are the main 
drivers behind off-equilibrium movements of returns. Hence, our model provides a 
link between macroeconomic (yield curve related) factors and the origin of the low 
beta anomaly. It seems that the underlying exposure to the risk-free asset has to be 
considered for a model consistent with the CAPM implications. To call out of 
equilibrium movements, an anomaly in the social sciences seems unwarranted. 
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14  

Factoring Profitability1 

Recent studies in financial economics posit a connection between a gross-
profitability strategy and quality investing. We explore this connection with two 
widely used factor models. The first is the four-factor Fama–French–Carhart model, 
which is a mainstay of empirical research in academia. The second is the Barra 
USE4 multi-factor model, which is a standard for practitioners. Our findings are: 

– consistent with results reported by other researchers, the Fama–French–Carhart 
model does not provide a satisfactory replication of the gross-profitability strategy 
over the period July 1995–December 2012; 

– over the same period, the Barra USE4 multi-factor model, which is a standard 
for practitioners, replicates a substantial portion of the gross-profitability strategy 
with quality and momentum factors; 

– the book-to-market factor, which is one of the three value factors in the Barra 
USE4 model and the only value factor in the Fama–French–Carhart model, does not 
make a significant contribution to the gross-profitability strategy; 

– however, the Barra USE4 earnings-yield factor, which is another measure of 
value, does make a significant contribution to the gross-profitability strategy. 

It is important to note that our results rely on relatively short data histories. We 
will not be able to determine the long-term efficacy until the data history itself is 
longer. 

                         
Chapter written by Lisa R. GOLDBERG*, Ran LESHEM° and Michael BRANCH°. 
*University of Berkeley & Aperio Group °Aperio Group 
1 The authors are grateful to Robert Anderson, Patrick Geddes, Liz Michaels and Paul Solli 
for their contributions to this chapter. 
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14.1. Quality is an active investment strategy with a long and 
distinguished history 

Quality, such as value, momentum and size, is a popular investment style or 
factor tilt that draws some investors away from market capitalization-weighted 
indexes2. The idea of quality investing is generally attributed to Graham (1949)3, 
who characterized quality firms in terms of attractive features such as positive and 
stable earnings, low volatility and low leverage. However, there is no single 
definition of quality just as there is no single definition of value. 

Recent studies in financial economics connect quality investing to gross 
profitability, which is the difference between revenue and cost of goods divided by 
firm assets. The relationship between gross profitability and quality investing is 
developed in [NOV 13a]: 

Gross profit is the cleanest accounting measure of true economic profitability. 
The farther down the income statement one goes, the more polluted profitability 
measures become, and the less related they are to true economic profitability. 

The relationship is further developed in [NOV 13b]. Using a technique that is 
well established in the empirical finance literature, Novy-Marx [NOV 13a] builds an 
idealized strategy based on the ranking of firms by gross profitability4. The word 
“idealized” is important here: turnover, impediments to short selling and other 
market frictions may render the gross-profitability strategy uninvestable. 
Nevertheless, the gross-profitability strategy can provide insight into the drivers of 
risk and return, and it serves as an element in the construction of the investable 
factor-tilted strategies mentioned above5,6. 

According to Novy-Marx [NOV 13a], the gross-profitability strategy earned a 
significant positive excess return between July 1963 and December 2010 over and  
 
 

                         
2 A factor tilt is an active bet that requires frequent rebalancing versus a capitalization-
weighted index. 
3 [GRA 49] has been reprinted numerous times, most recently in 2006. 
4 The idealized strategy is long top-quintile profitably firms and short bottom-quintile firms. 
In practice, these quintiles are often constructed within size or industry cohorts and then 
averaged. 
5 For this reason, idealized strategies of this type are often called “factors” in the literature. 
6 Table 1 in [NOV 13b] reports the performance of the long and short sides of the factor 
separately over the period from July 1963 to December 2012. The long side, which 
corresponds to high-gross-profitability securities, had a Sharpe ratio of 0.47 driven by a net 
excess return of 6.7% and a volatility of 14.3%. This is inconsistent with quality investing, 
which typically includes low risk as a distinguishing feature. 
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above the product of its beta with the excess return of the market. This qualifies the 
gross-profitability strategy as a capital asset pricing model (CAPM) anomaly7. There 
are numerous candidate explanations for gross-profitability and other CAPM 
anomalies. For example, it may be that high-gross-profitability stocks were 
underpriced in July 1963 and overpriced in December 2010. If this is the case, high-
gross-profitability stocks might be a poor investment at this point. It is also possible 
that the abnormal returns to high-gross-profitability stocks were a statistical fluke, in 
which case there is no compelling reason to buy them or not to buy them. The 
abnormal returns may be compensation for risk, in which case each investor needs to 
evaluate the tradeoff between risk and expected return that is represented by a bet on 
profitable stocks. It seems beyond the reach of current scientific practice to determine 
with conviction the explanation for gross-profitability or other CAPM anomalies. 

14.2. Replicating gross profitability with style factors 

Even though we cannot determine the explanation for the abnormal returns 
delivered by complex or opaque investment strategies, it is sometimes possible to 
replicate these returns using simpler and more transparent elements. For example, 
Hasanhodzic and Lo [HAS 07] replicate the returns to a variety of hedge fund 
strategies with liquid, exchange-traded instruments. They find that a significant 
fraction of the risk and return of hedge funds can be captured by well-chosen linear 
combinations of these liquid and low-cost instruments. 

 

Table 14.1. Monthly regression coefficients, t-statistics and R-squared values  
for the replication of the gross-profitability strategy with the Fama–French– 

Carhart model. Left panel: long history. Right panel: recent period  

                         
7 There is an enormous amount of literature on CAPM anomalies. The best known CAPM 
anomalies are size and book-to-market, which were popularized in [FAM 92] and [FAM 93], 
and momentum, which is documented in [CAR 97]. Other important anomalies include 
accruals, whose investigation is pioneered in [SLO 96]; low risk, which was documented in 
[BLA 72] and is reviewed in [GOL 14]; and asset growth, which is documented in [LI 13]. 

R-Squared

Factor Name Coefficient t-Statistic Coefficient t-Statistic
Intercept 0.00 7.43 0.01 6.21
MKT -0.08 -6.59 -0.16 -7.79
SMB -0.12 -7.14 -0.14 -5.23
HML -0.10 -5.62 0.00 -0.05
MOM 0.08 7.14 0.09 5.09

1963 to 2012 1995 to 2012
0.27 0.47

1963 to 2012 1995 to 2012
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We carry out an analogous exercise by replicating gross profitability with factor 
models, which are important extensions of the CAPM. Factor models provide 
insight into the risk and return drivers of investment strategies. First, we attempt to 
replicate the gross-profitability strategy using the Fama–French–Carhart four-factor 
model, which includes the excess return to the market (MKT), size (SMB) and 
book-to-market (HML) factors developed in [FAM 92] and [FAM 93], and the 
momentum (MOM) factor developed in [CAR 97]. Next, we replicate a substantial 
component of the gross-profitability strategy with the Barra USE4 model8. 

14.3. The four-factor Fama–French–Carhart model does not explain 
gross profitability 

The replication of the gross-profitability strategy with the four-factor Fama–
French–Carhart model was carried out over along horizon, June 1963–December 
2012, and also over a shorter, more recent period, July 1995–December 2012. The 
model coefficients and their t-statistics are shown in Table 14.1. Over both periods 
that we examined, the intercept and the market (MKT) made small but significant 
contributions9 to the return of the gross-profitability strategy. The significant 
intercept indicates that alpha may be present in the strategy or that one or more 
factors may be missing from the model. The intercept can be interpreted as an 
estimate of monthly return. This translates to an alpha of 4.6 basis points per year 
for the long horizon and 6.7 basis points per year for the recent period. The small but 
significant negative coefficient of MKT suggests that the gross-profitability strategy 
may be slightly anticorrelated with the market. The size factor, SMB, made a 
significant negative contribution during both periods, indicating a bias toward large-
capitalization companies. The book-to-market factor, HML, made a significant 
negative contribution over the longer period but not over the more recent period. 
The difference can be explained by the high volatility of the book-to-market factor 
around the turn of the millennium: over the shorter period, the high volatility 
overwhelmed any signal that may have been present in the factor. The gross-
profitability strategy exhibited small but significant contributions from momentum 
(MOM) over both horizons we considered. 

An important diagnostic on the replication is the R-squared, which indicates 
what fraction of the strategy’s variation over time is picked up by the model. In the 

                         
8 We focus on style factors in both replications since we are using an industry-neutral version 
of the gross-profitability strategy. A strategy is industry-neutral if its industry exposures 
match the industry exposures of the market. 
9 In keeping with standard protocol, we call a replication factor significant if the t-statistic of 
its coefficient exceeds 1.96 in magnitude. However, the standard connection between the 
likelihood that a coefficient is different from zero and the t-statistic depends on strict 
assumptions that are rarely satisfied in practice. A sensational example is in [AND 15]. 
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example under consideration, a relatively small portion of the time variation of the 
gross-profitability strategy is explained by the Fama–French–Carhart model. The 
Fama–French–Carhart model explained the time variation in the gross-profitability 
strategy with an R-squared of 27% over the long horizon, and 47% over the recent 
period. For this reason, and in light of the incompatibilities described above, we 
conclude that the Fama–French–Carhart model does not provide a satisfactory 
representation of the gross-profitability strategy10. However, there may be a broader 
collection of style factors that do a better job of replicating the gross-profitability 
strategy. We explore this below. 

14.4. The Barra USE4 model explains a substantial portion of gross 
profitability over the past two decades 

While the Fama–French–Carhart model may not provide a great deal of 
explanatory insight into gross profitability, a broader set of style factors can explain 
much more. We replicate a substantial component of the gross-profitability strategy 
with the Barra USE4 style factors. The full set of Barra USE4 style factors is shown 
in the first column of Table 14.2, and it includes familiar investment drivers such as 
size, leverage and liquidity. The Barra USE4 model has three value factors: book-to-
market, earnings yield and dividend yield. Only the first of these factors, book-to-
market is part of the Fama–French–Carhart model11. 

Between July 1995 and December 2012, five significant style factors explained 
time variation in the gross-profitability strategy with an R-squared of 69%. The 
strategy had a positive weight on earnings yield, which is one of the three Barra 
USE4 value factors, and negative weights on beta, residual volatility and leverage 
factors. This profile is consistent with quality investing. Notably, there is a 
substantial positive loading on momentum, which is not part of a quality profile. 
Book-to-market, which is the only value factor in the Fama–French–Carhart model, 
did not play an important role in explaining the return to the gross-profitability 
strategy11. Similarly, the contribution of the intercept to the gross-profitability 
strategy was negligible between July 1995 and December 2012. The model 
coefficients and their t-statistics are shown in the full model columns of Table 14.2. 

                         
10 It is also possible that there is a mismatch between the gross-profitability strategy, which 
has been adjusted to have the same industry exposures as the market, and the four-factor 
Fama–French–Carhart model, which is not industry-adjusted. 
11 The book-to-price factor in the Barra USE4 model is based on the same accounting ratio as 
the book-to-market factor (HML) in the Fama–French–Carhart model. However, returns to 
the two factors differ due to different model estimation processes. For example, the estimation 
of the Fama–French–Carhart book-to-market factor does not control for industry effects, but 
the estimation of the Barra USE4 book-to-market factor does. 
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Table 14.2. Monthly regression coefficients, t-statistics and R-squared values for the 
replication of the gross-profitability strategy with Barra USE4 style factors. The entire 
data set is used to fit coefficients. In the even model, only even-numbered months 
are used to fit the coefficients. Factors with t-statistics of magnitude greater than 1.96 
are shaded. July 1995–December 2012 

A strategy replication is far more credible if its in-sample characteristics persist 
out-of-sample12. To analyze the persistence of the replication of gross profitability 
by Barra USE4 factors, we re-estimated the replication with half the data: the returns 
from even-numbered months. The linear combination of significant factors from this 
exercise is called the even model13. The coefficients (betas) and their t-statistics are 
shown in the even model columns of Table 14.2. Note that while there are 
differences between the full model and even model coefficients, the same set of 
factors is significant and the factor coefficients have the same signs. In other words, 
the two sets of coefficients are qualitatively similar. 

                         
12 The full model is in-sample because its goodness of fit to the gross-profitability strategy is 
evaluated using the same data used to estimate the model. In an out-of-sample test, the 
evaluation is based on complementary data. Out-of-sample tests can indicate whether an in-
sample fit is a statistical fluke. However, an out-of-sample test is not a panacea; see, for 
example, [MAR 94]. 

13 Specifically, the even model forecast return for time t is ˆ i ir ri tt β= ∑  where ˆ iβ  is the  

estimated coefficient of (significant) factor i in the even model fit and irt  is the return to  

factor i at time t. 

R-Squared

Factor Name Coefficient t-Statistic Coefficient t-Statistic
Intercept 0.00 0.92 0.00 1.10

Beta -0.30 -5.69 -0.27 -3.12
Book to Price -0.25 -1.70 -0.29 -1.36
Earning Yield 0.38 4.90 0.32 2.41

Leverage -0.81 -6.36 -0.69 -3.14
Momentum 0.19 4.01 0.31 3.91

Residual Volatility -0.35 -4.27 -0.30 -2.25
Beta Non-Linear 0.04 0.26 -0.29 -1.27

Dividend Yield 0.16 1.25 0.35 1.75
Growth 0.18 1.40 -0.21 -0.91
Liquidity -0.18 -1.58 0.11 0.53

Size 0.09 1.00 0.10 0.71
Size Non-Linear 0.01 0.07 0.21 1.41

Full Model Even Model
0.69 0.68

Full Model Even Model
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Figure 14.1. Scatterplot of (out-of-sample) odd-numbered month returns  
to the gross-profitability strategy against even model forecasts.  

July 1995–December 2012 

We use the even model to forecast returns in odd-numbered months, and we 
compare those forecasts to the returns of the gross-profitability strategy out-of-
sample in the odd-numbered months14. The best out-of-sample line describing the 
gross-profitability strategy in terms of the even model is shown in Figure 14.1. The 
line has a significant slope of 0.98 and an intercept that is insignificant. Out-of-
sample in odd months, the even model explained the time variation in the gross-
profitability strategy with an R-squared of 68%. The remaining 32% is not explained 
by the even model15. 

Table 14.3 shows the return, risk and Sharpe ratios for gross profitability and its 
replication with the Barra USE4 model. We consider both the full model and out-of-

                         
14 A disadvantage of this test is that it has look-ahead bias. However, to the extent that the 
strategy returns are independent, this is not an issue, and an advantage of this test is that it 
uses data from different economic climates in both the fit and the forecast. 
15 This is consistent with a missing factor or a violation of the axioms of OLS regression, 
which was used to fit the model. A deeper inquiry is required to determine the source of the 
lost R-squared. 
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sample performance by the even model in odd months16. In both examples, the 
replication outperforms the gross-profitability strategy. Of course, it is often the case 
that a strategy will outperform its replication. 

 

Table 14.3. Performance statistics for the gross-profitability strategy and  
its replication using Barra USE4 style factors. Statistics for the even  

model are taken out-of-sample in odd months. July 1995–December 2012 

14.5. Conclusion 

Recent research has posited a connection between the accounting-ratio-based 
gross-profitability strategy and quality investing. We found that the Fama–French–
Carhart four-factor model does not shed light on this assertion because it does not 
provide a satisfactory representation of the gross-profitability strategy during the 
period July 1995 to December 2012. However, during this period, a substantial 
portion of gross profitability can be explained by five style factors from the Barra 
USE4 model. Four of the five explanatory factors indicate a quality investment. 
However, the momentum tilt that was highlighted by our analysis is not part of the 
standard quality profile and may warrant further investigation. Importantly, these 
results rely on relatively short data histories17. More time is required to determine 
their efficacy in the long term. 

14.6. Disclosure 

The information contained within this chapter was carefully compiled from 
sources Aperio that believes to be reliable, but we cannot guarantee accuracy. We 
provide this information with the understanding that we are not engaged in rendering 
legal, accounting or tax services. In particular, none of the examples should be 
considered advice tailored to the needs of any specific investor. We recommend that 
all investors seek out the services of competent professionals in any of the 
aforementioned areas. 

                         
16 The out-of-sample results for the even model in odd months are not achievable through 
investment due to trading costs associated with liquidation at the end of each odd month and 
reinvestment at the start of each odd month. 
17 Ideally, we would like to assess the factor replication of the gross-profitability strategy in 
as many different economic climates as possible. 

Gross Profitability Replication Gross Profitability Replication S&P 500 Index
Arithmetic Annual Return 5.52% 5.52% 5.24% 7.25% 8.98%
Annual Standard Deviation 6.00% 4.99% 5.82% 4.93% 15.80%
Sharpe Ratio 0.43 0.52 0.40 0.87 0.37

Full Model Even Model
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With respect to the description of any investment strategies, simulations or 
investment recommendations, we cannot provide any assurances that they will 
perform as expected and as described in our materials. Every investment program 
has the potential for loss as well as gain. 
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Deploying Multi-Factor Index  
Allocations in Institutional Portfolios  

15.1. Introduction 

Bender et al. [BEN 13] discussed six factors − value, low size, low volatility, 
high yield, quality and momentum − that historically have earned a premium over 
long periods, represent exposure to systematic sources of risk and have strong 
theoretical foundations. They also discussed how these factors could be captured 
through indexation. In this chapter, we turn to the question of how institutional 
investors interested in factor investing may allocate to and across factors. 

In particular, we introduce a new framework for how institutional investors 
might consider implementing factor allocations through a passive mandate 
replicating a single multi-factor index. We call this type of allocation a multi-factor 
index allocation. Multi-factor indexes combine select factor indexes into single 
mixes created and controlled by the investor. Multi-factor indexes historically have 
demonstrated four key benefits: diversification, transparency, cost-efficiency via 
reduced turnover and flexibility.   

Most importantly, regarding diversification, combining factors historically could 
have helped offset the cyclicality in single factor performance. When multiple factor 
indexes are combined into a single multi-factor index, diversification across factors 
has historically lead to: 

– lower volatility and higher Sharpe ratio; 
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– higher information ratios and lower tracking errors; 

– less regime dependency over business cycles. 

Next, we look at how factor allocations fit in the traditional institutional portfolio 
setting. Factor allocations have the potential to change the landscape of mandate 
structures by offering a new way to achieve exposure to systematic factors that 
formerly could only be captured through active mandates. Factor index-based 
investing can be viewed as active decisions implemented through passive 
replication. As such, factor allocations should be tailored to each institution.  

The first step is to assess the role of factor investing in the institution’s portfolio. 
The two main dimensions that drive factor investing are the institution’s objectives 
and constraints (governance structure, horizon, risk budget, etc.). For example, those 
seeking to enhance risk-adjusted returns may be looking for a dynamic allocation 
(higher return and higher risk), a defensive allocation (moderate return and lower 
risk) or a balanced allocation (something in between).  

Once the institution has established its investment objectives and identified factors 
that might contribute to these objectives, it must also decide how to structure and 
implement the factor allocation. The main criteria for deciding which combination of 
indexes to deploy depend on the institution’s assessment of the trade-off between 
investability and factor exposure (which is tied to performance). Indexes with greater 
investability generally have lower factor exposure and vice versa. In this 
implementation phase, there can also be significant turnover reduction benefits to 
combining multiple factors in a multi-factor index. In particular, “natural crossing” 
effects may reduce turnover, provided that the allocation is structured around a single 
passive mandate (or multiple mandates structured to replicate passively the same 
index) with synchronized rebalancing dates. Since there are different index alternatives 
with varying levels of exposure versus investability, the appropriate index 
implementation depends on the institution’s objectives and constraints. 

15.2. Implementing factors through multi-factor index allocations 

15.2.1. Multi-factor indexes: a new approach for institutional mandates 

Bender et al. [BEN 13] discussed why some institutional investors seek exposure 
to systematic factors and introduced the notion of factor indexes that represent factor 
returns. They focused on six factors (value, low size, low volatility, high yield, 
quality and momentum) that historically have earned a premium over long periods 
and have strong theoretical foundations. In this chapter, we now discuss a new 
framework for how institutional investors might consider implementing factor 
allocations through a passive mandate replicating a single multi-factor index. We 
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call this type of allocation a multi-factor index allocation. Multi-factor indexes 
combine select factor indexes into single mixes created and controlled by the 
investor. 

Traditionally, institutional investors structured their allocations around two main 
sources of return: 

– (Passive) Beta: based on modern portfolio theory, beta is the return the 
institution gets from broad exposure to the market, or the full equity investment 
opportunity set. It is achievable through a portfolio that passively tracks the market, 
represented typically by a market capitalization-weighted index. For instance, in a 
global portfolio, global equity beta is represented by a broad market capitalization-
weighted index such as the MSCI ACWI Investable Market Index (IMI). 

– (Active) Alpha: alpha is the additional return that active management can 
provide. It is excess return (or value-added) over the market capitalization-weighted 
index. Traditionally, active managers have sought to identify and capture two types 
of alpha: market inefficiencies and systematic factors associated with excess risk-
adjusted returns. 

Factor allocations have the potential to change the landscape of mandate 
structures by offering a new way to achieve exposure to systematic factors that 
formerly could only be captured through active mandates. Figure 15.1 shows how 
we can view these allocations as part of a new category in between traditional 
passive mandates, which replicate market cap-weighted portfolios, and active 
mandates. Factor index-based investing can be viewed as active decisions 
implemented through passive replication1. 

Multi-factor index allocations offer a new approach for institutional investors to 
seek factor returns2. Their four key potential benefits are3: 

– Flexibility: institutions have full control over the selection and the weights of 
individual factor indexes within a multi-factor index and can adjust the strategic 

                         
1 Note that in Figure 15.1, and throughout the chapter, we generally refer to factor index 
allocations through a multi-factor index but a factor index allocation could also consist of 
only one single-factor index.  In this case, the benefits of indexation (transparency and 
simplicity) would apply but not the diversification and natural crossing effects. 
2 Historically, active managers would have provided institutions with exposure to multiple 
factors.  For instance, quantitative active funds can use optimizers to create portfolios with 
targeted factor exposures.  But, there are significant potential benefits to an index-based 
approach (transparency, cost-effectiveness and flexibility). 
3 Note that the benefits of “Transparency” and “Cost Efficiency” would be potentially 
applicable for single-factor index allocations as well. 
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factor allocation dynamically through time. The most appropriate combination of 
individual factor indexes can be customized to account for institutional constraints 
(e.g. environmental, social, governance (ESG) policies, plan rules, etc.). 
Operationally, the multi-factor approach provides flexibility as it can be created and 
managed easily within the passive mandate and without having to change the 
structure or the terms of the mandate. Because the multi-factor allocation relies on 
standardized indexes, it allows for the flexibility of employing existing passive 
instruments such as exchange traded funds (ETFs) for tactical overlays. We view 
this as a “building block” approach. 

– Transparency: multi-factor index allocations provide full transparency 
regarding the strategy’s underlying building blocks. They allow for easy and 
consistent analysis not only of the aggregate positions, exposures and risks of the 
portfolio but also of the individual indexes, all with the same level of granularity. 

– Cost efficiency: because multi-factor indexes can be replicated passively, 
multi-factor index allocations can provide a potentially cost-effective alternative to 
active funds. Moreover, blending multiple factor indexes in a multi-factor index may 
create natural crossing opportunities, which can reduce turnover and hence 
potentially reduce transaction costs at rebalancing. 

– Diversification: factor returns have been highly cyclical historically, with 
sensitivity to macroeconomic and market forces. They also have underperformed the 
overall market for long periods. However, they do not all react to the same drivers 
and, hence, can have low correlations between each other. Consequently, multi-
factor index allocations historically have demonstrated similar premiums over the 
long run to the individual factors but with milder fluctuations. 

 

Figure 15.1. Factor allocations within institutional mandates 
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In Figure 15.1, the category “Factor Investing” contains both “Strategic Factor 
Tilts” and “Tactical Factor Tilts and Overlay Strategies”. The former refers to 
strategic static tilts deployed as a long-term strategy, while the latter refers to 
dynamic allocations in which investors overweight/underweight factor allocations 
based on their forward-looking expectations.  

Also in Figure 15.1, “Pure Alpha” can still be provided by active management, 
which comprises value-adding activities that are not captured by passive factor 
allocations to indexes. “Pure Alpha” includes stock selection and sector rotation 
strategies, as well as top-down asset allocation strategies where factor tilts are not 
driving excess return. 

15.2.2. Deploying factor allocations 

Many institutions have struggled to determine the appropriateness of factors for 
their own plan, what role these allocations might play, which factors should be 
adopted and how factor indexes can be used4. 

There are generally three main parts to the process for an institution deploying 
factor allocations: 

– assess the institution’s objectives and constraints; 

– select candidate factors;  

– decide how to structure the implementation. 

In this framework, the institution must first assess the role of factor investing and 
what it hopes to achieve. This includes setting the investment objectives, assessing 
the internal governance structure and establishing key constraints such as the risk 
tolerance. Once the role of factor investing has been established, the institution can 
then evaluate candidate factors. As discussed in “Foundations of Factor Investing”, 
certain factors have strong theoretical foundations and have earned a persistent 
premium over long periods. The institution must form a belief about whether a 
factor’s long-term historical premium will persist as part of this step.   

The third part of the deployment decision process in this framework is the 
implementation. Among the available options for implementation (including via 
active managers), we focus here on passive implementation based on indexes. 
Figure 15.2 illustrates the process for an institution to evaluate its objectives, the 

                         
4 To add to the difficulty, there has been a rapid proliferation of factor indexes and investment 
products.  Even the breadth of names alone − factor indexes, strategy indexes, smart beta, 
alternative beta, to name just a few − have challenged even the most sophisticated investors. 
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section 15.4, we look at investability, which is a key in determining how to structure 
the factor index allocation. There are different index alternatives with varying levels 
of exposure versus investability. Therefore, the appropriate index implementation 
depends on how the institution prioritizes exposure versus investability, which in 
turn is based on the institution’s objectives and constraints. 

15.3. Selecting the right blend of factors  

As an institution seeks the right blend of factors, the starting point is the 
institution’s own profile. Factor allocations should be driven first and foremost by 
the institution’s investment objectives and constraints (governance structure, 
horizon, risk budget, etc.): 

– Objectives: different investors have different objectives for factor investing, or 
said another way, different problems for which factor investing is meant to address. 
One institution may seek to enhance risk-adjusted returns, limit downside risk or 
improve returns by holding the current level (or market level) of risk or beta 
constant. Another institution might be trying to replicate the performance of certain 
style managers, for instance, existing value and small cap managers. Different 
investors will also have different beliefs regarding the persistence of factors. 

– Constraints: constraints can also vary among investors. Key constraints are 
associated with the institution’s governance structure which is tied to its investment 
horizon and risk tolerance. Often, the stronger the governance structure an 
institution has, the longer the horizon and the higher the risk tolerance it has. 
Institutions with very strong governance structures and long horizons are better able 
to withstand long periods of underperformance, and perhaps be compensated for 
bearing this risk. Funding ratios and the size of assets managed can also affect 
investability constraints. 

Before selecting factors, the institution should begin by screening out any 
candidate factors which it does not expect to persist in the future. In other words, all 
candidate factors should be those the institution believe will persist in the future. 
Thus, the institution’s objectives and constraints together drive the choice of factors 
among these candidates. For example, an institution seeking to enhance risk-
adjusted returns may be looking for a somewhat more aggressive allocation (higher 
return and higher risk), a defensive allocation (moderate return and lower risk) or a 
balanced allocation (something in between). 

Figure 15.3 shows the historical return and risk characteristics (June 1988−June 
2013) of seven MSCI Factor Indexes capturing “risk premia” factors introduced in 
“Foundations of Factor Investing.” These are factors that have earned a premium 
over long periods and which have solid theoretical foundations (factor indexes based 
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on the MSCI World Index are shown). The low volatility factor, represented by the 
MSCI World Minimum Volatility and World Risk Weighted Indexes, and the 
quality factor, represented by the MSCI World Quality Index, both have lower risk 
than the MSCI World Index. The value and yield factors represented by the MSCI 
World Value Weighted and MSCI High Dividend Yield Indexes had risk levels 
close to the market. The low size factor and momentum factors, represented by the 
MSCI World Equal Weighted, and MSCI Momentum Indexes, respectively, have 
had higher returns. All seven indexes have historically shown higher Sharpe ratios 
than the MSCI World Index. Determining the appropriate factors to allocate to 
might depend on the institution’s return, risk or Sharpe ratio objectives.  

 

Figure 15.3. Factors have historically exhibited different performance characteristics 

15.3.1. Correlations matter when selecting factors: the diversification 
effects of multi-factor index allocations 

Factor selection should also take into account the correlations between factors, 
which affect portfolio-level risk. Factor returns have historically been highly 
cyclical. Figure 15.4 shows the cumulative returns relative to the market cap-
weighted index (MSCI World Index). Each of the factor indexes shown has 
undergone at a minimum 2−3 consecutive year periods of underperformance. Some 
factors historically underwent even longer periods; the small cap or low size factor 
(captured by the MSCI World Equal Weighted Index in the figure) went through a 
6-year period of underperformance in the 1990s.  
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Figure 15.4. All systematic factors are cyclical (cumulative relative returns,  
June 1988−June 2013). For a color version of the figure,  

see www.iste.co.uk/jurczenko/risk.zip 

But while individual factor returns have all been cyclical, their periods of 
underperformance have not been identical. Systematic factors have historically been 
sensitive to macroeconomic and market forces but not in the same way. For 
instance, during the period between 2001 and 2007, the momentum, value, low 
volatility and low size factors experienced positive excess returns over the market, 
but the quality factor experienced negative returns. In contrast, from 2007 onwards, 
quality fared well while momentum and value did not. Combining quality with 
momentum and value, for instance, historically achieved smoother returns over time 
and diversified across multi-year cycles.  

There is also strong empirical evidence that factors performed differently over 
various parts of the business cycle. Some factors such as value, momentum and size 
have historically been pro-cyclical, performing well when economy growth, 
inflation and interest rates are rising. Other factors such as quality and low volatility 
have historically been defensive, performing well when the macroenvironment was 
falling or weak. Similar to macrobusiness cycles, investors may seek factors that 
perform well under different types of market cycles such as high/low market 
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volatility. Measuring the sensitivity of factors to macroeconomic  
cycles is an area that still requires further research. For recent research in this area, 
see [WIN 13]. 

The historical diversification effects can further be seen in the correlations 
between monthly active returns shown in Table 15.1. Notably, the active returns of 
the MSCI World Quality and MSCI Momentum Indexes have been very low or 
negatively correlated with the other factor indexes shown. However, the majority of 
the correlations range from about 0.30 to −0.30. 

 

Table 15.1. Correlations of relative monthly returns (June  
1988−June 2013, USD Gross Returns) 

When multiple factor indexes are combined into a single multi-factor index, 
diversification across factors has historically lead to: 

– lower volatility and higher Sharpe ratio; 

– higher information ratios and lower tracking errors; 

– less regime dependency over business cycles. 

For illustration, Table 15.2 shows a multi-factor index where four individual 
indexes are combined: the MSCI World Quality Index, MSCI World Value 
Weighted Index, MSCI World Momentum Index and MSCI World Risk-Weighted 
Index6. While the returns are a linear combination of the individual indexes,  
the risk metrics are not. The high information ratio of 0.83, substantially higher than 
the four individual indexes, reflects how well they diversified each other during this 
period. 

                         
6 The multiple-index combination is rebalanced semi-annually at the same time as the 
underlying indexes in May and November.   

MSCI 
World Risk 
Weighted

MSCI World 
Va lue 

Weighted

MSCI World 
Minimum 
Vola ti l i ty

MSCI World 
Equa l  

Weighted

MSCI 
World 

Qual i ty

MSCI World 
Momentum

MSCI World 
High Div. 

Yield

MSCI World Risk Weighted 1.00

MSCI World Value Weighted 0.61 1.00

MSCI World Minimum Volati l i ty 0.65 0.14 1.00

MSCI World Equal  Weighted 0.75 0.63 0.12 1.00

MSCI World Qual i ty 0.07 0.00 0.24 -0.26 1.00

MSCI World Momentum 0.04 -0.26 0.16 -0.20 0.38 1.00

MSCI World �High Div. Yield 0.62 0.71 0.51 0.26 0.35 0.04 1.00
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Table 15.2. Combining multiple factors offers substantial  
diversification effects (May 1999−September 2013) 

Table 15.2 also includes maximum drawdown, relative to the MSCI World 
Index, and the maximum relative drawdown period in months. Both measures 
capture prolonged periods of underperformance. This measure of risk is equally if 
not more important than traditional measures of risk like standard deviation of 
returns because it arguably captures “career risk.” Even for institutions  
with long stated horizons, the investment staff will often be forced to reassess 
allocations if the portfolio underperforms for too long. The multi-factor  
index historically has significantly lower drawdown measures than the individual 
indexes. 

In sum, historically there are important diversification effects in combining 
multiple factors. Multi-factor indexes achieved the same historical premium over the 
long run as the individual factors but with milder fluctuations. Actual use cases 
include a Canadian pension plan which adopted a combination of MSCI Risk 
Weighted, MSCI Quality, MSCI Value-Weighted Indexes and a US pension plan 
which chose a combination of MSCI High-Dividend Yield, MSCI Quality and 
MSCI Value-Weighted Indexes. These and other use cases presented later in section 
15.4 further illustrate the benefits of multi-factor indexes. 

15.3.2. Considerations for combining factor indexes 

Tying all this together, we arrive at the main considerations for selecting the 
right blend of factors. It starts with the institution’s objectives and constraints, its 
beliefs regarding which factors are likely to persist, and in some cases, return 
expectations for the factors. When choosing an appropriate factor combination, the 
key criteria are risk, correlations with other factors and performance in different 
business cycles, as shown in Table 15.3.  

World 
Standard

MSCI World 
Quality 
Index

MSCI World 
Risk 

Weighted 
Index

MSCI World 
Value 

Weighted 
Index

MSCI World 
Momentum 

Index

Multi Factor 
Index

Total Return* (%) 4.2 5.3 8.6 5.5 6.9 6.7
Total Risk* (%) 16.3 14.3 14.6 17.2 16.7 14.9
Sharpe Ratio 0.18 0.26 0.47 0.25 0.33 0.34
Annualized Active Return (bps) 110 440 120 270 250
Tracking Error* (%) 4.5 5.6 3.6 9.0 3.0
Information Ratio 0.25 0.79 0.35 0.30 0.83
Max Rel. Drawdown (Active Returns) (%) 20.5 16.0 10.7 21.6 5.7
Max Rel. Drawdown Period (Active Returns) (in Months) 52 10 9 19 2
* Annualized in USD for the 05/31/1999 to 09/30/2013 period
** Annualized one-way index turnover for the 05/31/1999 to 09/30/2013 period
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Factor Historical risk  Historical correlation Historical business 
cycle 

Value Comparable to 
market  

Low with momentum and 
quality  

Pro-cyclical  

Momentum  Comparable to 
market 

Low with value, yield and 
quality  

Pro-cyclical  

Low size Higher than market Low with min volatility, 
yield and quality  

Pro-cyclical  

Quality  Lower than market  Low with value, size, 
yield and momentum 

Defensive  

Low volatility  Lower than market  Low with value and 
momentum 

Defensive  

Yield Lower than market Low with size, quality 
and momentum 

Defensive 

Table 15.3. Considerations for combining factor indexes 

Other criteria that can affect factor selection include sources of return as well as 
return patterns. For example, an institution may prefer income to capital 
appreciation or prefer factors which imply higher yields. In addition, an institution 
may be particularly sensitive to the possibility of a prolonged drawdown and seek 
factors that are less likely to go through multi-year periods of underperformance or, 
as illustrated earlier in Table 15.2, blends of factors that minimize prolonged 
underperformance. Thus, the criteria for choosing factors and combinations of 
factors could include a variety of characteristics such as return (including forward-
looking expectations), risk, Sharpe ratio, diversification effects, yield levels, beta, 
general liquidity characteristics, downside risk and risk of prolonged periods of 
underperformance.  

Table 15.4 provides examples of how factor allocations can be tailored by the 
institution to its objectives7. 

In sum, there is no universal factor solution, either in the form of a single factor 
or a combination of factors, which is right for all institutions. Actual use cases are 
helpful in understanding different types of allocations. Several examples are shown 
in section 15.4. 

                         
7 Some institutions may not have explicit performance goals. Rather, they may be seeking 
ways to make explicit the tilts that the plan’s active managers already take.   
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Sample 
objective 

Example allocation (pure factors) Example index allocation  

Diversified 
balanced mix 

– Value, low volatility, 
momentum and quality 

– MSCI Multi-Factor 
Index: value weighted, 
risk weighted, 
momentum and 
quality 

Diversified 
dynamic mix  

– Low size, momentum 
and value 

– MSCI Multi-Factor 
Index: equal weighted, 
momentum and value 
weighted 

Diversified 
defensive 
mix 

– Low volatility, value and 
quality 

– MSCI Multi-Factor 
Index (MSCI Quality 
Mix): minimum 
volatility, value and 
quality 

De-risking 
with yield-
enhancement 

– Low volatility and high 
dividend yield 

– MSCI Multi-Factor 
Index: minimum 
volatility and high 
dividend yield 

Table 15.4. Factor allocations are based on the institution’s  
objectives and constraints 

15.4. Implementation considerations 

In this section, we discuss in more detail critical aspects of implementation. We 
focus, in particular, on a potential framework for how to incorporate the investability 
dimension in the selection of the individual factor indexes. We also discuss how 
factor indexes can be combined in a multi-factor index to reduce trading cost by 
benefitting from potential natural crossing. This last element requires the allocation 
to be structured around a single passive mandate (or multiple mandates structured to 
replicate passively the same index) with synchronized rebalancing dates. 

15.4.1. Understanding the exposure versus investability trade–off 

In selecting the individual factor indexes that make up a multi-factor index or in 
selecting a single-factor index, the most critical point we stress here is that there is a 
tradeoff between the strength of the exposure to a factor and the investability of the 
strategy that reflects it. There is a range of index alternatives that have varying levels 
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of investability and exposure to a specific factor. Figure 15.5 shows a general 
framework which visually displays the different index options.  

 

Figure 15.5. Capturing factors through indexation 

The most investable index, by definition, is the one whose weights are 
proportional to free float-adjusted market capitalization, the bottom part of  
the pyramid. The factors at the top (e.g. the Fama–French or Barra factors) are the 
theoretical or pure factors that the institution may wish to capture, but that are 
research rather than investability oriented. The closest factor indexes to market 
capitalization-weighted indexes are high capacity factor indexes. These are indexes 
that hold all the stocks in the parent index but tilt the market cap weights toward the 
desired factor. As we move up, high exposure indexes hold a subset of names in the 
parent index and can employ more aggressive weighting mechanisms. The investor 
who seeks to control active country or industry weights or exposures to other style 
factors, or who desires to limit turnover, tracking error or concentration, can use 
high exposure indexes that employ optimization or systematic stock screening. Next, 
long/short factor indexes add leverage (e.g. 150/50 and 130/30) primarily to hedge 
out residual exposure to other factors, and finally market-neutral factor indexes are 
pure long/short indexes that have zero market exposure8. The leveraged index 
categories typically employ optimization. 

Moving up the pyramid yields lower investability and greater exposure to the 
pure factor. 

                         
8 Active country and sector weights will be zero and exposures to all other style factors will 
be zero. 
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15.4.1.1. Factor exposure 

What do we mean by “factor exposure”? Factor exposure captures the degree to 
which the index captures the pure non-investable factor. To assess the strength of the 
factor exposure of a particular index, we can use a factor model (which can be used 
to calculate any portfolio or index’s exposure to the factors in that model). Factor 
exposure is typically expressed as standard deviations away from the cap-weighted 
average of the market9. Note that for most factor models, which typically employ 
linear exposures and regressions, the exposure of an index to an underlying factor is 
just the weighted exposure of the individual stocks’ exposures to the factor in 
question. (Factor exposure is also often called signal strength in the language of 
quantitative equity managers.) 

As we move up the pyramid, typically higher levels of factor exposure are 
achieved which translates into higher returns if factor returns scale with exposure 
and as long as incidental bets are controlled for10. This last point is important 
because more concentrated portfolios often have larger sector and country active 
weights, or even unintended exposures to factors other than the factor of interest. If 
these are not controlled, they can incidentally negatively affect returns, detracting 
from the intended factor return. 

In Figure 15.6, we illustrate factor exposures using the Barra multi-factor models 
which estimate factor portfolios using multivariate regressions and have the 
advantage of specifying factors with little co-linearity. As an example, Figure 15.6 
shows the active exposures (relative to the MSCI World Index) of four of the factor 
indexes. In all cases, the indexes have significant exposure, with the expected sign, 
to the most relevant pure factors. The MSCI World Value-Weighted Index has an 
exposure of 0.28 to the Barra GEM2 Value Factor, which is above the usual 
0.20−0.25 rule of thumb for statistically significant exposures. In some cases, an 
index may have significant exposure to factors other than the intended factor. For 
instance, the MSCI World Risk-Weighted Index has a significant small cap bias as 
seen by the large negative exposure to the GEM2 Size factor. In this case, the small 
cap bias contributes to the excess return of the World Risk-Weighted Index. 
Institutional investors should be aware of these potential secondary exposures and 
understand/manage them appropriately. 

                         
9 An active/relative exposure of 0.25 to the Barra value factor can be interpreted as the 
portfolio or stock’s value characteristics being 0.25 standard deviations higher than the market 
cap-weighted benchmark. 
10 We can have higher exposure to the desired factor but the positive impact on returns may 
be negated by other exposures (either to other factors or countries or sectors).  Controlling 
exposures to other factors is possible through optimization.  For example, in a value factor 
index, e might want to neutralize exposures to other factors such as low size and momentum.  
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Figure 15.6. Factor exposures (factor exposures for Select World  
Factor Indexes using the Barra GEM2 Model, Average and  

Current Exposures, June 1999−June2013) 
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15.4.1.2. Investability 

What do we mean by “investability”? Investability refers to how liquid and 
tradable the index is. It also refers to how scalable the allocation to an index 
replicating vehicle might be. There are multiple dimensions to investability. As 
shown in Figure 15.7, they include tradability/liquidity, turnover/cost of replication 
and capacity − for a given degree of active tilt11. Tradability/liquidity quantifies how 
liquid the stocks are in the index replicating portfolio and how tradable the portfolio 
is. Metrics include days to trade individual stocks at rebalancings and during the 
initial construction, and days to trade a certain portion of the portfolio (given a 
certain size portfolio and a set limit to the amount traded on a single day). 
Turnover/cost of replication measures the turnover of the index at rebalancing which 
scales with trading costs. The higher the turnover, generally the higher the cost of 
trading. Capacity quantifies (for a given size portfolio) the percentage of a stock’s 
free float or full market capitalization the portfolio would own. The degree to which 
a portfolio is “active” relative to the index has been traditionally used by many 
active asset managers to characterize their active strategies’ performance. Metrics 
like active share and maximum strategy weight capture this.  

Figure 15.7. Dimensions for investability  

Note that some indexes may score well on all four dimensions; the MSCI Value-
Weighted Indexes, for instance, historically have exhibited low turnover, high 

                         
11 These dimensions were first discussed in [BAM 13].  

    

Investability 
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capacity and good tradability. Others may have good capacity and tradability but 
incur high turnover (e.g. momentum). 

15.4.1.3. Investability versus exposure 

Since, as we have seen, indexes nearer the top of the pyramid are less investable 
and less liquid but have greater factor exposure, there is an unavoidable tradeoff 
between the purity or exposure of a factor index and the investability of a factor 
index. We can generally only achieve purer factor exposure by sacrificing 
investability and being willing to take on greater amounts of active risk and 
complexity. The appropriate index thus depends on the institutional investor’s own 
preferences for factor exposure and investability. Institutions must make a self-
assessment of where they desire to be on the pyramid. 

It is also important to note that institutions typically care about tracking error, or 
risk relative to the market cap-weighted parent index. In particular, many plans have 
active risk budgets at the plan level12. As we move up the pyramid, tracking error 
generally increases. Plans with low tracking error targets may want to limit the 
discussion to the lower end of the pyramid, while those with higher tracking error 
limits may consider options further up the pyramid. 

Table 15.5 shows the characteristics of the MSCI Factor Indexes over the period 
June 1988−June 2013. Higher capacity indexes typically hold a broad set of names 
(e.g. all the names in the broad market parent index) and are weighted with 
investability in mind. As previously discussed in [BAM 13], the MSCI Value-
Weighted Indexes effectively employ a weighting scheme that combines a score 
based on value characteristics and market capitalization, and are an example of a 
high capacity index. 

As illustrated in Table 15.5, the MSCI World Value-Weighted Index has the 
lowest active risk (tracking error) and very low turnover among the indexes shown. 
Other “Weighted” indexes (all of which hold all the names in the parent index) also 
exhibit relatively low tracking errors and turnover. The other indexes (the MSCI 
Momentum Indexes, MSCI Quality Indexes and MSCI Minimum Volatility Indexes) 
are more concentrated indexes, holding only a subset of the names in the parent 
index. These indexes exhibited higher tracking errors and lower levels of 
investability. (The MSCI Minimum Volatility Indexes are turnover constrained to 
20% but other measures of investability are more similar to the MSCI Momentum 
and MSCI Quality Indexes.)  

                         
12 Many institutional investors have a maximum (or target) level of desired risk, usually in 
the form of return standard deviation, but sometimes gauged by downside measures such as 
maximum drawdown or expected shortfall. 
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Index 
Factor 

exposures*
Total 
return

Total 
risk 

Active 
return 

Active 
risk 

Annual 
turnover 

Pairwise 
correl-
ation 

MSCI World – 7.1 15.4 0.0 0.0 3.9 NA 

MSCI World Equal 
Weighted Size 8.3 16.3 1.2 5.2 31.8 0.22 

MSCI World Minimum 
Volatility Volatility 8.5 11.6 1.4 6.7 20.0 0.30 

MSCI World Value 
Weighted 

Value 8.6 15.6 1.5 3.6 20.3 0.30 

MSCI World Risk 
Weighted 

Size, 
volatility 

9.5 13.7 2.4 5.3 27.2 0.46 

MSCI World Quality 
Growth, 
leverage 

10.9 14.0 3.8 5.9 27.6 0.13 

MSCI World Momentum Momentum 10.4 15.9 3.3 8.5 127.5 0.03 

MSCI World HDY – 10.3 14.6 3.2 6.5 22.0 0.41 

* In the column “Factor Exposures”, we show the Barra Global Equity Model (GEM2) factors which are 

statistically significant on average (>+/- 0.20), with the expected sign, since December 1997. Note that 

there is no “Yield factor” in the GEM2 Model. Instead, yield is a component (with a weight of 10%) in 

the GEM2 Value factor. Turnover reported is the average annual one-way turnover based on history from 

June 1988 to June 2013. 

Table 15.5. MSCI World Factor Indexes (main characteristics,  
June 1988−June 2013) 

15.4.2. Reducing trading costs by leveraging the benefits of natural 
crossing 

In addition to the investability dimensions we have discussed so far, investors 
should also consider the potential to reduce trading costs at each rebalancing through 
operational efficiency. As we discussed in section 15.3, historically there have been 
significant diversification effects when combining multiple factors. In the 
implementation phase, there can also be significant investability benefits to 
combining multiple factors in a multi-factor index. 

Combining factor indexes may reduce turnover from “natural crossing” effects. 
On the index rebalancing dates, the composite index would be rebalanced back to its 
target weights (e.g. 50/50) and turnover may be reduced as a company deleted from 
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one factor index might be added as a constituent of another factor index. Take, for 
example, a stock whose price is falling over time. As the price falls, it may drop out 
of a momentum index but the lower price could push the stock into a value index. 
Those shares which overlap the two indexes would be internally crossed. This 
“natural crossing” leads to lower index turnover and by implication, lower 
transaction costs in a portfolio replicating the index.   

The historical effects of natural crossing are shown in Table 15.6. In this 
example, we show a blend of the MSCI World Quality Index, MSCI World Risk-
Weighted Index, MSCI World Value-Weighted Index and MSCI World Momentum 
Index. The four indexes are equally weighted and rebalanced semi-annually at the 
same time the underlying indexes are reconstituted. (Note that the rebalancing for 
the individual indexes and the rebalancing across indexes needs to be synchronized 
for the natural crossing to take place). The annual turnover for the individual indexes 
is 22.98, 22.04, 18.30 and 89.62%, respectively. If these four indexes were 
replicated separately, their combined turnover would be 40.81%. When they are 
replicated as a single portfolio in a single mandate, the combined turnover is 
significantly lower at 31.91%. The turnover declines by 8.9% points. What does this 
mean in terms of trading costs in index replicating portfolios? If trading costs  
are 50 basis points (a relatively conservative assumption for global developed 
market equities), the round-trip trading costs would be 41 basis points for the 
separately managed portfolio, and 32 basis points for the combined multi-factor 
index-based portfolio. The latter option saves the investor close to 9 bps in 
transaction costs. 

 

Table 15.6. Crossing benefits resulted in lower turnover and lower trading costs 
(simulated turnover of separate and combined equally weighted allocations to select 

MSCI Factor Indexes) 

Our conclusion here is that these natural crossing effects may often be 
overlooked and deserve consideration given the potential additional savings. 

MSCI World 
Quality Index

MSCI World 
Risk 

Weighted 
Index

MSCI World 
Value 

Weighted 
Index

MSCI World 
Momentum 

Index

Separate 
Mandates (A)

Combined 
Mandates (B)

Reduction 
(A) - (B)

Turnover(%) 22.98 22.04 18.30 89.62 40.81 31.91 8.90
Performance Drag in bps (at 25 bps)* 11.49 11.02 9.15 44.81 20.40 15.95 4.45
Performance Drag in bps (at 50 bps)* 22.98 22.04 18.30 89.62 40.81 31.91 8.90
Performance Drag in bps (at 75 bps)* 34.47 33.06 27.45 134.42 61.21 47.86 13.35
Annualized for the 05/31/1999 to 9/30/2013 period

* Performance drag a ims to represent the tota l two-way annualized index level transaction cost assuming various  levels of security level transaction cost
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15.5. Multi-factor index allocations: examples 

The right blend of factors will depend on the institution’s preferences for various 
aspects of performance (return, risk, correlations, etc.), investability and factor 
exposure, which in turn reflects the institution’s objectives and constraints. 

Actual use cases can be helpful in understanding how institutions have actually 
addressed these issues in adopting multi-factor index combinations.   

Based on real use cases, in the first example, we show a strategic or long-term 
static allocation that is designed to be well diversified. Factor indexes in this 
example are the MSCI Value, MSCI Momentum, MSCI Risk Weighted and MSCI 
Quality Indexes. The four factors are implemented as a single composite multi-
factor index that is rebalanced semi-annually. The index allocation is executed as a 
passive internal mandate. 

The second example focuses on an allocation that provides lower absolute 
volatility with higher yield. The desire to “de-risk” is driven by the institution’s 
projections of a bearish, low growth market. At the same time, the institution seeks 
to achieve higher yields while de-risking. This allocation is implemented as a 
passive external mandate on a multi-factor index combining low volatility via the 
MSCI Minimum Volatility Indexes and yield via the MSCI High-Dividend Yield 
Indexes. 

One additional use case is an extension of the second example. The “core 
portfolio” in the second use case (MSCI Minimum Volatility and MSCI High-
Dividend Yield Indexes) can also be augmented by tactical factor allocations to 
factor indexes such as MSCI Momentum, MSCI Quality, MSCI Value Weighted 
and MSCI Equal Weighted Indexes. These exposures could be adjusted over time 
based on forward-looking views and deployed via four exchange-traded funds 
tracking the MSCI indexes. An external consultant or active manager could play a 
role in advising on the tactical overlay decision. 

How do institutions in practice arrive at allocations like these? Institutions must 
evaluate a number of key dimensions that we have already discussed in this  
chapter − performance (risk, returns, etc.), factor exposure, investability and the 
effects of combining multiple indexes. Table 15.7 summarizes a few of the key 
dimensions that might help the institution form a view on different combinations.   

In order to help institutions understand whether their objectives are met given 
various combinations of factor indexes, MSCI has developed Index Metrics, a 
structured framework for the analysis of multi-factor blends. Kassam et al.  
[KAS 13] describe this framework in greater detail. 
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Performance Exposure Investability Combination 

– Total Returns, 
Total Risk, Sharpe 
Ratio 

– Active Returns, 
Tracking Error, 
Information Ratio 

– VaR, Expected 
Shortfall 

– Maximum 
Drawdown 
(percentage, 
length) 

– Relative Maximum 
Drawdown 

– Years of 
Consecutive 
Underperformance 

– Active Factor, 
Sector, 
Region 
Exposures 

– Relative 
Valuation and 
Fundamental 
Ratios 

– Liquidity 

– Cost of 
Replication 
(Turnover) 

– Capacity 

– Concentratio
n 

– Diversificati
on of 
Returns 

– Turnover 
Reduction 

Table 15.7. Key metrics for evaluating different combinations of factor  
indexes in structuring a multi-factor index allocation 

15.5.1. Example #1: Strategic long-term risk-adjusted return  

Strategic allocation: 

– MSCI World Value Weighted Index 25%; 

– MSCI WorldRisk Weighted Index25%; 

– MSCI World Quality Index 25%; 

– MSCI World Momentum Index 25%. 

As shown in Figure 15.8, the four indexes exhibited significantly different 
returns over various sub periods. They historically provided high levels of 
diversification. 
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Figure 15.8. Performance using historical returns (May 1999–September  
2013). For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

The result of combining the four indexes is a balanced portfolio which exhibited 
return enhancement at lower risk levels than the market historically. 

 

Table 15.8. Performance using historical returns (May 1999–September 2013) 

15.5.2. Example #2: De-risking with yield enhancement 

Strategic allocation: 

– MSCI World Minimum Volatility Index 50%; 

– MSCI World High Dividend Yield Index 50%. 

Historical Gross Total Return, USD MSCI World MSCI World 
Quality Index

MSCI World 
Risk 

Weighted 
Index

MSCI World 
Value 

Weighted 
Index

MSCI World 
Momentum 

Index
Combined

Total Return Performance
Total Return* (%) 4.2 5.3 8.6 5.5 6.9 6.7
Total Risk* (%) 16.3 14.3 14.6 17.2 16.7 14.9
Return/Risk 0.26 0.37 0.59 0.32 0.41 0.45
Sharpe Ratio 0.18 0.26 0.47 0.25 0.33 0.34
Active Return Performance
Active Return* (%) 0.0 1.1 4.4 1.2 2.7 2.5
Tracking error* (%) 0.0 4.5 5.6 3.6 9.0 3.0
Information Ratio N/A 0.25 0.79 0.35 0.30 0.83
Trading Costs / Investability
Weighted Average Days to Trade*** 0.01 0.04 0.04 0.01 0.18 0.03
Turnover** (%) 3.1 23.0 22.0 18.3 89.6 32.0
Performance Drag in bps (at 50 bps) 3.1 23.0 22.0 18.3 89.6 32.0
* Annua l i ze d i n  USD for the  05/31/1999 to 09/30/2013 pe ri od

** Annua l i ze d one -wa y i nde x turnove r for the  05/31/1999 to 09/30/2013 pe ri od

*** Ave ra ge  of l a s t four i nde x re vi e ws  e ndi ng 09/30/2013. As s umi ng a  fund s i ze  of USD 10 bn a nd a  ma xi mum da i l y tra di ng l i mi t o f 20%
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Some institutional investors have sought to enhance yield in recent years and at 
the same time reduce overall volatility. As shown in Figure 15.9, combining the 
MSCI World High Dividend Yield and MSCI World Minimum Volatility Indexes 
would have improved the historical performance of the portfolio over the May 1 
999 –June 2013 period significantly with overall lower volatility. Meanwhile, the 
average dividend yield for this period was 3.3% for the multi-factor index compared 
to 2.2% for the market cap-weighted parent MSCI World Index.  

 

Figure 15.9. Performance using historical returns (May 1999–September 2013).  
For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

The result of combining a high yield factor index with a low volatility index is a 
portfolio which historically exhibited substantial risk-adjusted return enhancement 
as seen below. 

 

Table 15.9. Performance using historical returns (May 1999–September 2013) 

Historical Gross Total Return, USD MSCI World Index
MSCI World High 

Dividend Yield 
Index

MSCI World 
Minimum 

Volatility (USD) 
Combined

Total Return Performance
Total Return* (%) 4.2 6.1 6.3 6.3
Total Risk* (%) 16.3 16.1 11.4 13.5
Return/Risk 0.26 0.38 0.55 0.46
Sharpe Ratio 0.18 0.30 0.37 0.33
Active Return Performance
Active Return* (%) 0.0 1.9 2.0 2.0
Tracking error* (%) 0.0 6.1 7.9 6.2
Information Ratio N/A 0.31 0.26 0.33
Trading Costs / Investability
Weighted Average Days to Trade*** 0.01 0.4 1.2 0.5
Turnover** (%) 3.1 20.4 27.1 23.1
Performance Drag in bps (at 50 bps) 3.1 20.4 27.1 23.1
Yield
Dividend Yield (%)**** 2.3 4.0 2.6 3.3
* Annua l i ze d i n USD for the  05/31/1999 to 09/30/2013 pe ri od

** Annua l i ze d  one -wa y i nde x turnove r for the  05/31/1999 to 09/30/2013 pe ri od

*** Ave ra ge  of l a s t four i nde x re vi e ws  e ndi ng 09/30/2013. As s umi ng a  fund s i ze  of USD 10 bn a nd a  ma xi mum da i l y tra d i ng l i mi t of 20%

**** Monthl y a ve ra ge s  for the  05/31/1999 to  09/30/2013 pe ri od
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15.6. Conclusion 

In this chapter, we discussed a framework for how institutional investors might 
consider deploying factor allocations based on factor indexes. The framework 
comprises three key steps. In the first step, the institution assesses the role of factor 
investing in its portfolio. The second step identifies which factor(s) are appropriate 
for the institution’s portfolio. Finally, the third step implements the factor index 
allocation. This includes structuring the portfolio to take into account potential 
diversification effects between factors and the institution’s preferences for 
investability and factor exposure. Factor allocations can play a variety of roles in the 
investment process, depending on the objectives and constraints of the investor.   

Because they reflect systematic factors that respond to macroeconomic and 
macromarket forces, factor indexes can underperform the overall market for periods 
of time that may exceed an investment committee’s patience. However, many of 
these factors respond differently to macroeconomic and macromarket forces, so they 
have historically low correlations which may yield strong diversification effects for 
combining multiple factors in an allocation. We demonstrated how combining factor 
indexes in a “Multi-Factor Index” captured these diversification effects as well as 
additional benefits such as lower turnover as a result of internal crossing.     
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16 

Defining the Equity  
Premium, a Framework  

It is noticeable that after 10 years of smart beta and the comeback of risk factors driven 
investments, we are still left alone with a zoo of heterogeneous approaches and few clues about 
their fundamental drivers. We develop in this chapter an articulate framework that is a step 
toward a better understanding of these investment strategies. 

We categorize these strategies into two groups: belonging either to a financial or a non-
speculative sphere. Endowing investors with a utility function defined over the set of portfolios, 
in the financial sphere investors take advantage of their ability to distinguish the utilities of 
assets from one another (or speculate), while in the non-speculative sphere utilities  
of assets are ex-ante indistinguishable, equal. We then define the equity premium as the return 
delivered by the portfolio that has maximal utility under the constraint that utilities of assets are 
equal. 

In this framework, and in the particular case of a Sharpe ratio utility function, all smart  
beta strategies identified in this chapter, but one, bet on some heterogeneity in utilities,  
and consequently belong to the financial sphere. The strategy that belongs to the  
non-speculative sphere is the most diversified portfolio (MDP) and as such delivers the equity 
premium. 

The chapter ends with a practical recommendation for long-term investors. In a world where the 
Sharpe ratio is one of the leading metrics to assess the performance of a portfolio, long-term 
investors seeking both the equity premium and tactical exposures to market timed factors could 
adopt a core-satellite approach. The MDP is then arguably a strong candidate to be the core 
portfolio. 

                         
Chapter written by Yves CHOUEIFATY* and Christophe ROEHRI*. 
*TOBAM. 
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16.1. Introduction 

Over the last 10 years, since Robert Arnott introduced investors to the concept of 
fundamental indexation [ARN 05], the financial industry has come up with a new set 
of investment strategies packaged together under the name “Smart Beta”. This set 
seems at first sight essentially characterized by its lack of unity, ranging from equal 
weights, fundamental indexation, to the minimum variance or the MDPs. As such, 
the smart beta initiative opened Pandora’s box and each research program took its 
own direction.  

Despite this methodological heterogeneity, we think these smart beta strategies 
are grounded on one fact: there exists a non-smart beta portfolio, the market 
capitalization-weighted portfolio. This non-smart portfolio has been the common 
spine of most asset allocation recommendations since the publication of seminal 
papers by W. Sharpe and J. Lintner in the mid-1960s. These papers came up with a 
very simple result: the cap-weighted portfolio of all financial assets is the portfolio 
that the representative investor should hold, with the stock market cap-weighted 
portfolio1 being used as a proxy for this portfolio.  

This result may be beautiful but that does not make it innocuous. History has 
taught us that the allocation of the cap-weighted portfolio is far from being neutral, 
even in the long run. Figure 16.1 shows that the sectors weights in the cap-weighted 
portfolio oscillate reaching their peaks at the top of their prices. In the early 1970s, 
the cap-weighted portfolio reached its maximum exposure to Consumer 
Discretionary just before the oil price surge, in the mid-1970s it reached its 
maximum exposure to the energy sector just before the great oil price collapse that 
started after the Iran and Iraq War in 1981. Similarly, in 2001, it was heavily 
invested in the information technology (IT) sector, on the eve of its collapse, or in 
2007 in financials. This story is compelling: it warns investors against the significant 
risk concentrations hidden behind passive investments. 

As such, even if it may be difficult to find one’s way through all those smart beta 
strategies, the fact is that there are better candidates to capture the equity premium 
hidden in the markets than the cap-weighted portfolio. 

                         
1 Hereafter, abbreviated cap-weighted portfolio. 
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Figure 16.1. S&P 500 Equity Sector Weights. For a color version of  
the figure, see www.iste.co.uk/jurczenko/risk.zip 
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Building on this conclusion, a new wave of articles explored the replication of 
the overperformance of smart beta portfolios using well-known risk factors, 
explicitly controlling the risk allocation to each of them [RON 12]. A non-
exhaustive but representative list of such factors would typically feature small caps, 
value, growth, high dividend, momentum, quality, low volatility, etc. Nowadays, 
banks and asset managers are proposing a large range of such risk factor-driven 
investment (RFDI) strategies. 

There are, however, some potential pitfalls to address. First, as pointed out by 
Cochrane [COC 11], significant common asset variations such as industry portfolios 
need not correspond to any risk premium. Second, factors risk premia are well 
known to be time-varying and may very well be much less significant in the future. 
Finally, factor construction can be very challenging in a low turnover, long only, 
unlevered setting. This takes us back to our starting point, with a zoo of smart beta 
and RFDI strategies without a framework that could help us discriminate among 
them. This motivated us to present a formal framework based on a sensible 
definition of the equity premium as well as a taxonomy of the fundamental drivers 
behind smart beta and RFDI strategies.  

16.2. Defining the equity premium 

At the risk of stating the obvious, long-term investors invest in the equity market 
because they harbor one major investment belief: in the long run, equities should 
reward the extra risk taken, or in investors’ lingo there should exist a positive 
“Equity Risk Premium”. In our framework, there are two potential sources of reward 
for the risk taken by an investment strategy, depending on whether this strategy 
belongs to the financial or to the non-speculative sphere. 

In the financial sphere, rewards come from taking advantage of an ability to 
assess mispricings, arbitrage opportunities or to take advantage of forecasting 
capabilities; in a nutshell being a gifted speculator. As such, the financial sphere is a 
speculation sphere. 

At this stage, it is important to dismiss the belief that the cap-weighted portfolio 
could be assimilated to a strategy not belonging to the financial sphere. As was 
shown by Figure 16.1, the cap-weighted portfolio behaves like a dynamic risk 
allocator and not a neutral risk allocator. This comes from an identity: the cap-
weighted portfolio is what remains when all active portfolios have been aggregated 
together. As such, the cap-weighted portfolio is built upon all speculative bets. It is 
hence biased toward the aggregated speculative behavior, and is a speculative 
portfolio. In fact, using the well-known mean-variance optimal portfolio weights 
formula, the Sharpe ratios of each stock can be implied from their market weights. For 
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instance, in the MSCI US, the implied Sharpe ratio of Blackrock is 11 times higher 
compared to Puma Biotechnology2. This means that the implied Sharpe ratios of the 
cap-weighted portfolio are heterogeneous, which virtually amounts to use some 
forecasting capabilities about the utility of each asset (in this case, the Sharpe ratio). 

With this insight, we elaborate on the drivers behind the investment strategies 
associated with each sphere. The financial sphere is the place where investors use their 
abilities to identify and forecast ex-ante valuation heterogeneities among stocks while, 
on the opposite, investors in the non-speculative sphere are not speculating and taking 
advantage of such abilities. This difference can be restated in terms of investor’s 
preferences. In the financial sphere, the fact that investors use their assessment of 
stocks heterogeneities implies that they associate heterogeneous utilities to different 
stocks, whereas in the non-speculative sphere these utilities are identical. 

To be more precise, denote ܷሺݓሻ the utility of the portfolio with weights ࢝ ൌ ሺݓଵ,… ,ଵܣ	ሻ to the investment universe assetsݓ, … , ,ଵݏ . We also denoteܣ … , ,ଵܣ	 the portfolios of single assetsݏ … ,   . Now, investors belonging toܣ
the non-speculative sphere would invest in the portfolio that maximizes	ܷሺ࢝ሻ under 
the constraint	ܷሺݏଵሻ ൌ ⋯ ൌ ܷሺݏሻ. This motivates us to define the “Equity 
Premium” as the excess returns (to cash) earned by this portfolio. 

DEFINITION.– the equity premium is the return of the portfolio that has maximum 
utility, under the constraint that single assets utilities are equal. 

Note that we have deliberately chosen not to use the term “Equity Risk 
Premium”, a different concept. In our view, the equity premium is indeed a return 
obtained without using any forecasting ability, taking its source in the real economy. 

Now, most investors base their decisions on the assessment of the risk-reward 
characteristics of their portfolios. As such, we will examine the consequences in this 
framework of considering that investors maximize a Sharpe ratio based utility function. 

Under this assumption, we have the following fundamental property of our two 
spheres: in the financial sphere investors exploit the dispersion of Sharpe ratios 
among equities, while in the non-speculative one, investors do not. It is important to 
clarify that we do not mean that non-speculative investors ignore risk-rewards 
differences among stocks, but that they simply do not believe to have any 
competitive edge exploiting them. 

                         
2 Computed using 252 observations to 1 June 2015. 
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16.3. Risk-rewards homogeneity and the equity premium 

Taking this formal framework a step further, we can also draw some conclusions 
about the link between how expectations are formed and the nature of the optimal 
portfolio. We first introduce the diversification ratio (DR). The DR of a portfolio is the 
ratio of the weighted average volatility of the portfolio’s stocks to its own volatility 
[CHO 06,CHO 08]. Formally, the DR of a portfolio with weights ࢝ ൌ ሺݓଵ,… ሻݓሺܴܦ :ሻ isݓ, ൌ 	 ∑ ௪ఙσ݅ሺ࢝ሻ 	,  

where σ୧ is the volatility of each asset and σሺ࢝ሻ is the portfolio volatility. This 
measure has an interesting property when maximized: the resulting portfolio, the 
MDP, is the tangency portfolio when all stocks have the same Sharpe ratio  
[CHO 06]. This can be readily seen rewriting the Sharpe ratio of a portfolio: ܷሺݓሻ ൌ 	 ∑ ௪ఙܷሺ௦ሻ݅ σሺ࢝ሻ   

with ܷሺݏሻ the Sharpe ratios of each asset. Therefore, assuming that investors 
maximize the Sharpe ratio, we have: 

RESULT 16.1.– All portfolios build upon heterogeneous expected risk-rewards are 
diversifiable according to the DR (i.e. a portfolio that does not achieve maximal DR). 

COROLLARY 16.1.– A portfolio belonging to the financial sphere is diversifiable. 

Its converse also holds: 

RESULT 16.2.– If a portfolio has maximal DR, then it is built upon homogenous 
expected risk-rewards among stocks.  

COROLLARY 16.2.– The MDP delivers the equity premium.  

Note that while homogenous expected risk-rewards among stocks are needed for 
the MDP to be the tangency portfolio ex-ante, they are not needed for the MDP to be 
more efficient than the market portfolio ex-post. 

We now explore the practical implications of our last two results. 

16.4. A taxonomy of smart beta and risk factors driven strategies  

Equipped with this framework, we are now able to provide a taxonomy of the 
sources of risk-rewards hidden behind mainstream smart beta strategies. As shown 



Defining the Equity Premium, a Framework     371 

in Table 16.1, in this framework, all smart beta strategies, but one, bet on some form 
of risk-rewards heterogeneity and, therefore belong to the financial sphere. Indeed, 
investing in a minimum-variance portfolio is like betting that low volatility stocks 
will better reward the risk, while equal weighting and equal risk contribution (ERC) 
portfolios suppose that risk sources which have many representatives are more 
rewarded [CHO 13]. The only smart beta strategy that belongs to the non-
speculative sphere is the MDP: in this portfolio, all the stocks of the investment 
universe have been assigned the same Sharpe ratio. 

Smart beta strategy Risk reward heterogeneity 
Financial 

sphere 

Non-speculative 

sphere 

Minimum variance Low volatility stocks reward the risk better X  

Equal 

weighting/ERC 

Sources of risk that have many representatives 

reward the risk better 

X  

Fundamental 

indexation 

Value stocks reward the risk better X  

Maximum 

diversification 

None (Result 2)  X 

RFDI Biased by construction X  

Table 16.1. Smart beta taxonomy when utility=return/risk 

With this framework, we can also understand a little more about RFDIs. They 
hinge on the belief that exposures to some source of return variations − the factors − 
deliver a superior risk-adjusted return. In a long–short setting, RFDI can be 
compared to an arbitrage strategy which goes long stocks that are cheap according to 
the factor and short otherwise. Such an investment strategy belongs to the financial 
sphere. Moreover, in a long only setting, as each factor has its reciprocal − e.g. 
“value” stocks versus “growth” (or “non-value” stocks) − factor-based portfolios are 
by construction biased toward one particular source of market (co-)variation. In this 
sense, each RFDI portfolio is such that there exists at least another portfolio which 
combined with the former will increase their overall diversification.  

16.5. Being practical: a core-satellite portfolio allocation 

These results can be turned into practical recommendations about how to build 
an equity portfolio. Investors believe that equity markets reward risk in the long 
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term, while common investment practices suggest they also believe that some short-
term tactical performance can be drawn from investing in wisely selected funds and 
strategies. Putting it in the terminology of this chapter, while their main goal is to 
access the equity premium, long-term investors may still believe that the financial 
sphere can also be a source of extra returns. 

So, beyond the equity premium, long-term investors may also seek short-term 
exposure that would add market timing attributes to their aggregated portfolios. 
Here, we are thinking about market timing strategies in a very broad sense, with 
strategies ranging from style arbitrage, statistical arbitrage (mean-reversion, trend 
following etc.) to volatility timing and any other types of speculation. The 
composition of this market timing portfolio will thus reflect how cheap or expensive 
the factors it is exposed to are perceived. Through time, this composition is likely to 
change, for example when factor valuations have mean-reverted toward “fair 
valuations”. 

An important question is how to build a portfolio that combines efficiently a 
long-term exposure to the equity market and market timing strategies. We think that 
a rational answer is to take a core/satellites approach. In this case, the core portfolio 
should focus on accessing the equity premium. The formal framework developed in 
this chapter gives a way to tackle this issue. Indeed, assuming that investors have a 
Sharpe ratio utility, the MDP gives access to the equity premium and as such is 
arguably a strong candidate to be the core portfolio.  

We present now two empirical analyses illustrating that the cap-weighted 
benchmark belongs to the financial sphere, and also that the MDP can be a core 
complement to some of the most popular risk factors: 

1) The first plot of Figure 16.2 depicts the 100 days rolling correlation of the 
MSCI US index to the GICS sectors. We can clearly observe that the cap-weighted 
portfolio may be biased toward few sectors. For example, from 1997 to 2000, the 
MSCI US concentrated itself in a few sectors, among which the Consumer 
Discretionary, Industrials and the IT sectors as shown by the very high correlation of 
those three sectors with the MSCI US. During the 2001 crisis, that concentration 
trend lead the MSCI US to essentially emulate the behavior of three sectors only, 
while achieving a negative correlation to three other sectors. In the second  
plot of Figure 16.2, we perform the same experiment with a sector MDP computed 
on the aforementioned sectors. We can observe that it remains almost equally 
correlated to all sectors at any point in time, even if these are far from perfect 
proxies for market risk factors. This is expected from a maximally diversified 
portfolio: it should be the least biased portfolio given its investment constraints. In a  
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nutshell: the MDP is a “neutral risk allocator, while the Benchmark is a “biased, 
dynamic risk allocator”. 

 
Figure 16.2. Market and MDP portfolios correlation to cap-weighted  
sectors (source: MSCI, Bloomberg, TOBAM). For a color version of  

the figure, see www.iste.co.uk/jurczenko/risk.zip 

2) We now turn to the correlation between the MDP and standard equity risk 
factors, shown in Table 16.2. 

The striking results are that (1) the MDP has among the weakest correlations to 
other  factors and (2) the correlation between a factor and its complementary (e.g. 
“value” versus “growth”) is higher than the correlation between that factor and the 
MDP. In this sense, the MDP behaves like a universal diversifier: this could be 
expected from a portfolio offering a diversified exposure to the equity market. 
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Table 16.2. Correlation between the MDP and a set of standard MSCI risk factors 
across the USA, World and Emerging Market universes. Period: 2000–2014. (source: 

Tobam, MSCI, Bloomberg. The MDP is abbreviated AB in the table) For a color 
version of the table see www.iste.co.uk/jurczenko/risk.zip 

16.6. Conclusion 

We developed a formal framework in which the equity premium is delivered by 
the portfolio that maximizes the utility of investors under the constraint that single 
assets utilities are equal. This portfolio is unbiased in the sense that no forecast is 
made regarding the heterogeneities of the utilities of single assets. 

If we further endow investors with a Sharpe ratio utility function, the MDP 
delivers the equity premium. As a byproduct, we obtain that all mainstream smart 
beta strategies, but the MDP, bet on some heterogeneity of risk-rewards, and as such 
are biased. 

 This result may be turned into a practical recommendation for long-term 
investors seeking both the equity risk premium and tactical exposures to some other 
factors/strategies. In this case, a core-satellite approach is the rational way to 
allocate strategies between portfolios. Moreover, for investors using the Sharpe ratio 
as the main metric to assess the performance, the MDP is arguably a serious 
candidate to be the core portfolio.  

Correlation AB US Bench US Small Large Value Growth Average Max
AB US 89.7% 86.1% 86.4% 88.2% 87.7% 87.6% 89.7%

Bench US 89.7% 91.5% 98.9% 98.3% 97.9% 95.3% 98.9%
Small 86.1% 91.5% 87.5% 91.4% 88.0% 88.9% 91.5%
Large 86.4% 98.9% 87.5% 96.7% 97.4% 93.4% 98.9%
Value 88.2% 98.3% 91.4% 96.7% 92.5% 93.4% 98.3%

Growth 87.7% 97.9% 88.0% 97.4% 92.5% 92.7% 97.9%

Correlation AB World Bench World Small Large Value Growth Average Max
AB World 90.2% 89.8% 88.1% 81.0% 79.2% 85.7% 90.2%

Bench World 90.2% 96.5% 99.1% 89.7% 88.7% 92.8% 99.1%
Small 89.8% 96.5% 92.5% 82.5% 80.6% 88.4% 96.5%
Large 88.1% 99.1% 92.5% 90.8% 90.3% 92.1% 99.1%
Value 81.0% 89.7% 82.5% 90.8% 92.8% 87.4% 92.8%

Growth 79.2% 88.7% 80.6% 90.3% 92.8% 86.3% 92.8%

Correlation AB EM Bench EM Small Large Value Growth Average Max
AB EM 89.4% 90.4% 83.4% 88.4% 89.2% 88.2% 90.4%

Bench EM 89.4% 95.9% 97.0% 99.2% 99.2% 96.1% 99.2%
Small 90.4% 95.9% 89.4% 94.5% 95.9% 93.2% 95.9%
Large 83.4% 97.0% 89.4% 96.5% 95.9% 92.4% 97.0%
Value 88.4% 99.2% 94.5% 96.5% 97.0% 95.1% 99.2%

Growth 89.2% 99.2% 95.9% 95.9% 97.0% 95.4% 99.2%
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Designing Multi-Factor Equity Portfolios 

17.1. Introduction  

This chapter reviews efficient index design methods for factor indices referred to 
as smart factor investing. It then uses such smart factor indices as building blocks to 
design suitable allocation strategies to address specific risk/return objectives.  

In this study, we focus on four well-known rewarded factors – size, value, 
momentum and low volatility. We review the concept of smart factor index, which can 
be regarded as an efficient investable proxy for a given risk premium. In a nutshell, a 
risk premium can be thought of as a combination of a risk (exposure) and a premium 
(to be earned from the risk exposure). Smart factor indices have been precisely 
engineered to achieve a pronounced factor tilt emanating from the stock selection 
procedure (right risk exposure), as well as high Sharpe ratio emanating from the 
efficient diversification of unrewarded risks related to individual stocks (fair reward 
for the risk exposure). The access to the fair reward for the given risk exposure is 
obtained through a well-diversified smart-weighted portfolio (as opposed to 
concentrated cap-weighted portfolio) of the selected stocks so as to ensure that the 
largest possible fraction of individual stocks’ unrewarded risks is eliminated.  

We then show that such smart factor indices can be used as attractive building 
blocks in the design of an efficient allocation to the multiple risk premia to be 
harvested in the equity universe. In fact, additional value can be added at the allocation 
stage, where the investor can control for the dollar and risk contributions of various 
constituents or factors to the absolute (volatility) or relative risk (tracking error) of the 
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portfolio. As a result, extremely substantial levels of risk-adjusted out-performance 
(information ratios) can be achieved even in the absence of views on factor returns.  

17.1.1. Designing efficient and investable proxies for risk premia 

Current smart beta investment approaches only provide a partial answer to the 
main shortcomings of capitalization-weighted (cap-weighted) indices. We discuss a 
new approach to equity investing referred to as smart factor investing. It provides an 
assessment of the benefits of simultaneously addressing the two main shortcomings 
of cap-weighted indices, namely their undesirable factor exposures and heavy 
concentration, by constructing factor indices that explicitly seek exposures to 
rewarded risk factors while diversifying away from unrewarded risks. The results we 
obtain suggest that such smart factor indices lead to considerable improvements in 
risk-adjusted performance. 

The results in Table 17.1 confirm that the combination of relevant security 
selection and appropriate weighting schemes in a two-step process leads to 
substantial improvements in risk-adjusted performance with respect to the use of a 
standard cap-weighted index, which typically implies an inefficient set of factor 
exposures and an excess of unrewarded risk. 

 
Broad 
CW 

Mid Cap High momentum Low volatility Value 

CW 
Diversified 
multi-strategy

CW 
Diversified 
multi-strategy

CW 
Diversified 
multi-strategy

CW 
Diversified 
multi-strategy 

Ann returns 9.74% 12.54% 14.19% 10.85% 13.30% 10.09% 12.64% 11.78% 14.44% 
Ann volatility 17.47% 17.83% 16.73% 17.60% 16.30% 15.89% 14.39% 18.02% 16.55% 
Sharpe ratio 0.24 0.39 0.52 0.30 0.48 0.29 0.50 0.35 0.54 

Historical daily 
5% VaR 

1.59% 1.60% 1.50% 1.64% 1.50% 1.42% 1.28% 1.59% 1.47% 

Max drawdown 54.53% 60.13% 58.11% 48.91% 49.00% 50.50% 50.13% 61.20% 58.41% 
Ann excess returns – 2.80% 4.45% 1.10% 3.56% 0.35% 2.90% 2.04% 4.70% 
Ann tracking error – 5.99% 6.80% 3.50% 4.88% 4.44% 6.17% 4.74% 5.82% 
95% Tracking error – 9.39% 11.56% 6.84% 8.58% 9.20% 11.53% 8.72% 10.14% 

Information ratio – 0.47 0.66 0.32 0.73 0.08 0.47 0.43 0.81 

Table 17.1. Performance comparison of USA Cap-Weighted Factor Indices and USA 
Multi-Strategy Factor Indices. The table shows the absolute performance, relative 
performance and risk indicators for Cap-Weighted (CW) Factor Indices and Multi-
Strategy Factor Indices for four factor tilts – mid cap, high momentum, low volatility 
and value. The complete stock universe consists of the 500 largest stocks in the 
USA. The benchmark is the cap-weighted portfolio of the full universe. The yield on 
secondary market US Treasury Bills (3M) is the risk-free rate. The return-based 
analysis is based on daily total returns from 31/12/1972 to 31/12/2012 (40 years). All 
weight-based statistics are average values across 160 quarters (40 years) from 
31/12/1972 to 31/12/2012 
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On the one hand, starting with a focus on the systematic risk exposure, we find 
that a higher Sharpe ratio can be achieved with the same weighting scheme, here a 
cap-weighting scheme, for stocks selected on the basis of their loadings on the 
value, size, momentum and low-volatility factors, compared to the case where the 
full universe is held in the form of a cap-weighted portfolio. 

The results we obtain, reported in Table 17.1, show that while the Sharpe ratio of 
the broad cap-weighted index is 0.24 on the sample period, it reaches values as high as 
0.39 for a cap-weighted strategy using a mid cap stock selection, 0.30 for a high 
momentum stock selection, 0.29 for a low-volatility stock selection or 0.35 for a value 
stock selection1. These results suggest that a systematic attempt to harvest equity risk 
premia above and beyond broad market exposure leads to additional risk-adjusted 
performance. It should be noted at this stage that substantially higher levels of max 
drawdown are incurred for the mid cap and value selections, confirming that the 
reward harvested through the factor exposure is a compensation for a corresponding 
increase in risk. In contrast, we note that high momentum and low-volatility selections 
lead to lower levels of max drawdown compared to the no selection case, suggesting 
that the excess performance earned on these two factors has, at best, a behavioral 
explanation and is not necessarily related to an increased riskiness. 

On the other hand, shifting to the management of specific risk exposures, we find 
that even higher levels of Sharpe ratio can be achieved for each selected factor 
exposure through the use of a well-diversified weighting scheme, which we take to 
be an equally weighted combination of five popular smart weighting schemes2. 

                         
1 The cap-weighted tilted strategies are implemented by selecting on a quarterly basis the top 
50% of stocks in the reference universe by the relevant factor score (i.e. the 50% of stocks 
with, respectively, the lowest market cap, highest book-to-market, highest past returns or the 
lowest volatility) and weighting them in proportion to their free-float-adjusted market cap.   
2 Diversified multi-strategy weighting is an equal-weighted combination of the following five 
weighting schemes – maximum deconcentration, diversified risk-weighted, maximum 
decorrelation, efficient minimum volatility and efficient maximum Sharpe ratio. Maximum 
deconcentration consists of maximizing the effective number of stocks subject to turnover and 
liquidity constraints and thus corresponds to an adjusted version of equal-weighting. 
Diversified risk-weighted attributes stock’s weights inversely proportional to their volatility. 
Maximum decorrelation constructs a portfolio of stocks that behave differently over time, 
which is achieved by minimizing portfolio volatility subject to the assumption that volatility 
is identical across stocks. Efficient minimum volatility consists of a volatility minimization 
subject to norm constraints. Efficient maximum Sharpe ratio maximizes the Sharpe ratio of 
the portfolio given the assumption that expected returns are proportional to the median semi-
deviation of stocks in the same decile resulting from a sort on stock-level semi-deviation. The 
three latter strategies require a covariance matrix as an input to the optimization problem. The 
covariance matrix is estimated using a robust estimation procedure employing a statistical 
factor model based on principal component analysis where the number of components is 
selected using a criterion from random matrix theory. For more details on the weighting 
schemes and the derivation of required input parameters, see www.scientificbeta.com. 
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Thus, the Sharpe ratio of the so-called diversified multi-strategy combination 
reaches 0.52 for mid cap stocks, 0.48 for high momentum stocks, 0.50 for low-
volatility stocks and 0.54 for value stocks. 

These results suggest that multi-strategy factor-tilted indices obtain the desired 
factor tilts without undue concentration, which provides an explanation for their 
superior risk-adjusted performance with respect to the cap-weighted combination of 
the same selection of stocks. 

Overall, it appears that the combined effects of a rewarded factor exposure ensured 
by a dedicated proper security selection process and an efficient harvesting of the 
associated premium through improved portfolio diversification leads to a Sharpe ratio 
improvement of around 100% compared to the broad cap-weighted index. 

17.1.2. Risk allocation with smart factor indices 

Once a series of smart factor indices have been developed for various regions of 
the equity universe, they can be used as attractive building blocks in the design of an 
efficient allocation to these multiple risk premia. 

In an attempt to identify, and analyze the benefits of, the possible approaches to 
efficient risk allocation across the various smart factor indices, we identify four 
main dimensions that can be taken into consideration when designing a sophisticated 
allocation methodology (see Figure 17.1). 

 
Figure 17.1. The various dimensions of allocation  

methodologies across assets or risk factors 

The first, and arguably most important, dimension relates to whether risk is 
defined by the investor from an absolute perspective in the absence of a benchmark, 
or whether it is instead defined in relative terms with respect to an existing 
benchmark, which is more often than not a cap-weighted index. In the former 
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situation, we would use volatility as a relevant risk measure, while tracking error 
with respect to the cap-weighted index would instead be used in the latter case. 

The second dimension concerns whether we would like to incorporate views 
regarding factor returns in the optimization process. While additional benefits can be 
obtained from the introduction of views on factor returns at various points of the 
business cycle, in the following we focus on approaches that are solely based on risk 
parameters, which are notoriously easier to estimate with a sufficient degree of 
robustness and accuracy [MER 80]. The third dimension is related to the objective of 
the allocation procedure. Indeed, there are several possible targets for the design of a 
well-diversified portfolio of factor exposure, depending upon whether we would like 
to use naive approaches (equal dollar allocation or equal risk allocation) or scientific 
approaches based on minimizing portfolio risk (volatility in the absolute return context 
or tracking error in the relative return context). The fourth and last dimension is related 
to the presence of various forms of constraints such as minimum/maximum weight 
constraints, turnover constraints or factor exposure constraints, which are obviously 
highly relevant in the context of risk factor allocation. 

17.2. Absolute return perspective 

In the context of generating a “smart” (meaning efficient) allocation to smart 
factor indices, a natural first, albeit naive, approach consists of forming an equally 
weighted portfolio of the selected smart factor indices, in this case the indices that 
serve as proxies for the value, small cap, momentum and low-volatility risk premia.  

While an equally weighted scheme is the simplest approach we can use, it is 
likely that the use of more sophisticated weighting schemes could add additional 
value, in particular when it comes to the management of the risks relative to the cap-
weighted (CW) benchmark. In what follows, we will sequentially consider the 
absolute return approach both with and without factor risk parity/budgeting 
constraints. We consider naive approaches to diversification (maximum 
deconcentration in terms of dollar or risk contributions) and scientific approaches 
(minimum risk from the absolute return perspective). One of the important aims of 
this chapter will also be to show that it is possible to perform risk parity in the  
long-only world, i.e. to have an exposure that is equal in terms of risk factors 
rewarded over the long term without necessarily having pure or orthogonal factors 
that are impossible to obtain in the long-only space. This point is all the more 
important in that often, under the pretext of purity, investors choose excessively 
concentrated factor indices that contribute neither purity nor diversification and 
therefore have a fairly low risk-adjusted return. Our argument here is that by using 
well-diversified investable proxies for each factor (the scientific beta smart factor 
indices), it is possible to implement high-performance allocation between these 
indices while respecting factor risk parity constraints.  
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All these methodologies will be implemented without any active views (expected 
return forecasts) on constituents or factors; they generate portfolios that can be 
regarded as attractive starting points, with very substantial risk-adjusted 
outperformance benefits with respect to cap-weighted indices, to which additional 
benefits could be added by asset managers possessing skills for actively timing 
factor exposures. 

The developed dataset extends over the 10-year period from 31 December 2003 
to 31 December 2013 and uses five subregions of the global developed universe: 
US, UK, developed Europe (e.g. UK) and Asia Pacific (e.g. Japan). Using four smart 
multi-strategy indices as proxies for the value, size, momentum and volatility-
rewarded tilts in each subregion, we obtain a total of 5 × 4 = 20 constituents.  

Following an equally weighted allocation is equivalent to holding an equal dollar 
allocation, which does not necessarily lead to an equal risk allocation. Formally, the 
risk contribution of a stock to the total risk of a portfolio is given by the weight of the 
stock in the portfolio times the marginal contribution of the stock to total portfolio 
volatility. Qian [QIA 06] shows that decomposing total portfolio volatility in terms of 
its constituents’ risk contributions is also related to the expected contributions to the 
portfolio losses, particularly when considering extreme losses. In what follows, we 
consider two approaches to managing portfolio risk: one approach based on 
minimizing portfolio volatility (global minimum variance or GMV approach) and 
another approach based on imposing equal contribution of all constituents to portfolio 
volatility (heuristic equal risk contribution or ERC approach). 

17.2.1. Absolute risk management without factor risk exposure constraints 

In our attempt to design an efficient allocation to smart factor indices, we first 
impose that all constituents in the portfolio have the same contribution to portfolio 
risk (ERC). If we make the explicit assumption that all pairwise correlation 
coefficients across constituents are identical, then the equal risk constribution 
weights can be obtained analytically and are proportional to the inverse volatility of 
the smart factor indices. In the general case, i.e. without the assumption of identical 
pairwise correlations across stocks, the risk parity methodology does not yield a 
closed-form solution. However, Maillard et al. [MAI 10] propose numerical 
algorithms to compute risk parity portfolios.  

Overall, ERC and EW are two competing ways of implementing agnostic 
diversification. When looking at the empirical analysis performed in the global 
developed universe shown in Figure 17.2, we find that the allocation between the 
equally weighted and the ERC schemes can exhibit strong differences. For example, 
the largest average weight over the period under study in the ERC scheme is given 
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to the Japan low volatility smart factor index (7.45%), whereas the lowest weight is 
given to the Developed Europe, e.g. UK value smart factor index (3.78%), while the 
EW scheme maintains a 5% allocation to all indices. We also find that the ERC can 
lead to regional allocations that strongly deviate from the corresponding allocation 
within a cap-weighted index, where the larger markets (e.g. the US) strongly 
dominate smaller markets, such as Japan. 

 

 

 

Figure 17.2. EW and ERC allocations to smart factor diversified multi-strategy 
indices (developed universe). The graph compares the allocation and risk 
contributions of diversified multi-strategy indices: the equal combination of the  
20 diversified multi-strategy indices converted into US Dollars with stock selection 
based on mid cap, momentum, low volatility and value in the five subregions US,  
UK, developed Europe (e.g. UK) Japan and Asia Pacific (e.g. Japan), and the ERC 
combination of the same 20 constituents. The period is from 31 December 2003 to 
31 December 2013. For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

We have also implemented an allocation between smart factor indices based on 
minimizing the risk of the allocation, expressed by its volatility (GMV). In this case, 
the GMV portfolio of the 20 index constituents, which is the efficient portfolio that 
requires only covariance matrix input, the sample covariance matrix is estimated 
using the past 18 months of weekly data as an input. Long-only constraints are 

Weight Distribution -  Developed EW Weight Distribution – Developed ERC 

In-Sample Absolute Risk  
Contribution - Developed EW 

In-Sample Absolute Risk  
Contribution - Developed ERC 
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applied to the standard minimum volatility problem, i.e. minimize portfolio 
volatility as given by this expression: 

( ) 1,...,

Min ( ) '
i i Nw

v w w Cw
=

≡   

To avoid introducing excessively strong biases with respect to the CW index, 
and even though the focus is not on relative risk management in this illustration, we 
also introduce a set of constraints dedicated to ensuring that each subregion is not 
too strongly under- or overrepresented with respect to its market capitalization in the 
CW global developed index, i.e. we define the weight to lie between half the 
region’s market cap weight and twice its market cap weight.  

More formally, we impose the following constraints (with δ = 2) in each region: 

Re
Re Re Re Re Re

j
j j j j j

g
g g g g g

tilt MidCap tilt Value tilt HiMom tilt LoVol
mcap w w w w mcapδ

δ − − − −≤ + + + ≤   

where mcap represents the market capitalizations of the different subregions, and 
wtilt are the weights in each smart factor index of the same corresponding subregions. 

Figure 17.3 shows that the GMV allocation with geographical constraints leads 
to a portfolio that is almost exclusively invested in the lowest volatility smart index 
for each subregion: on average, 52.47% low-volatility smart factor US index, 8.60% 
low-volatility smart factor UK index, 16.42% low-volatility smart factor developed 
Europe (e.g. UK) index, 12.68% low-volatility smart factor Japan index and 6.74% 
low-volatility smart factor Asia Pacific (e.g. Japan) index. In the end, this process 
leads to a dynamically managed portfolio of the 20 constituents that should achieve 
low volatility but that is highly concentrated. 

Figure 17.3 also shows that the portfolio variance is almost exclusively driven by 
the low-volatility factor3, an observation that stresses the need for the introduction of 
risk factor budgeting constraints in order to better balance the factor contributions to 
the risk of the portfolio4.  

 

                         
3 See section 17.2.2 for details on measuring the contribution of the factors to portfolio risk. 
4 The contribution of the low volatility factor is sometimes even greater than 100%, while 
other factors have a negative contribution to portfolio variance due to the presence of  
non-zero correlations between the smart factor indices and also between the long-short 
factors. For example, increasing the exposure to a factor that is negatively correlated with 
other factors may contribute to decreasing the portfolio variance. 
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Figure 17.3. GMV allocations to smart factor diversified multi-strategy indices under 
geographical constraints (developed universe). The graph shows the allocation and risk 
contributions of the GMV allocation invested in the 20 diversified multi-strategy indices 
converted into US Dollars with stock selection based on mid cap, momentum, low 
volatility and value in the five US, UK, developed Europe (e.g. UK), Japan and Asia 
Pacific (e.g. Japan) subregions. Both risk parity and geographical constraints are imposed 
on the resulting portfolios. The period is from 31 December 2003 to 31 December 2013. 
For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

17.2.2. Introducing risk-budgeting constraints 

Having an equal contribution from the constituents to the overall portfolio risk is 
not identical to having an equal contribution from the factors. It is only if both the 
factors and the factor indices are perfectly “pure”, that is uncorrelated, that these two 
approaches coincide, which is not the case with smart factor indices. However, often 
it is the objective of investors to have an equal contribution to the underlying risk 
factors because risk contributions are perceived as indicators of the factor’s expected 
contribution to future losses (see [QIA 06]). In this way, integration of factor risk 
constraints in the allocation process takes into account the imperfections of existing 
single (smart) factor indices. 

In the following, we use the factor exposure of the smart factor indices to analyze the 
question. We will compute exposure with respect to the equally weighted version of the 
factors, since they are the most neutral reference portfolios. As a neutral target, we may 
seek to impose an equal contribution of the factors to the variance coming from the 
factors. This extension of the ERC approach from the constituents to the factors leads to 
linear constraints in the design of the portfolio. This method of ERC of factors (along 
with EW of factors) is a reasonable approach for investors who are agnostic about the 
future performance of any single factor and therefore do not want to take a bet on one 
factor over another. In practice, in the absence of any active views on factors, these 
approaches are quite robust allocation techniques. 

Weight Distribution - Developed GMV In-Sample Factor Contribution - Developed GMV 
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We introduce factor risk-budgeting constraints to the portfolio allocation process so 
as to avoid the domination of any one particular factor (such as the domination of the 
low-volatility factor). When the number of constituents N is greater than the number of 
factor constraints K, and long-short solutions are allowed, an infinite number of 
portfolios satisfy a given set of factor risk budgets (e.g. factor risk parity exposure). In a 
long-only context, we may have zero or multiple solutions. When no solution exists, we 
can start with the long-short version and rescale the weights to avoid short positions.  

To be more specific, in order to measure the contribution of the factors to the 
portfolio variance, we employ the decomposition of the portfolio return as the sum 
of K+1 factors leading to: 

( )| | | | 1| |
1 1

,  where  
k

K N

p p w mkt mkt w k F w k i i k k N k
k i

r r r w wα β β ε β β β β
= =

= + + + ≡ =∑ ∑ L L   

Then, focusing only the contribution of the K long-short factors to the portfolio 
variance leads to the following expression for the contribution of factor i to the 
variance coming from the K factors: 

( )var
| |

1
i j

K

i w i w j F F
j

c w β β σ
=

= ∑   

As a neutral target, we may seek to impose an equal contribution of the factors to 
the variance coming from these K factors. This extension of the ERC approach from 
the constituents to the factors leads to the following K linear constraints in the 
design of the portfolio: 

( ) ( )var var ,  for all 1 ,i jc w c w i j K= ≤ ≤   

When the number of constituents N is greater than the number of factors 
constraints K, and long-short solutions are allowed, an infinite number of portfolios 
satisfy a given set of factor risk budgets (e.g. factor risk parity exposure). In a long-
only context, we may have zero or multiple solutions. When no solution exists, then 
we can start with the long-short version and rescale the weights to avoid short 
positions.  

However, when multiple solutions exist, we can address the diversification of 
specific risks, e.g. from a scientific perspective, by minimizing portfolio variance 
subject to factor risk parity constraints: 
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( ) ( )

1,...,

var varMin ( ) '  such that ,  for all 1 ,
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We may also maximize portfolio deconcentration, measured by the effective 
number of constituents, again subject to factor risk parity constraints5: 

( )
( ) ( )

1,...,

var var1
Max  such that ,  for all 1 ,

'i i N
i jw

ENC c w c w i j K
w w=

≡ = ≤ ≤
  

Figure 17.4 shows max-deconcentration and GMV allocations under risk parity 
as well as geographical constraints.  

 

 

 

Figure 17.4. Max deconcentration and GMV allocations under risk factor and 
geographical constraints (developed universe). The graph shows the allocations and 
factor contributions of the max-deconcentration and GMV diversified multi-strategy 
indices invested in the 20 diversified multi-strategy indices with stock selection based 
on mid cap, momentum, low volatility and value in the five US, UK, developed 
Europe (e.g. UK), Japan and Asia Pacific (e.g. Japan) subregions. Both risk parity 
and geographical constraints are imposed onto the resulting portfolios. The period is 
from 31 December 2003 to 31 December 2013. For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

                         
5 Of course, in the absence of constraints, maximizing deconcentration simply leads to giving 
a weight of 1/N to each constituent in the universe.  

Weight Distribution – Max Deconcentration 
with factor risk constraints 

Weight Distribution – GMV with factor risk 
constraints 

In-Sample Factor Contribution - Max 
Deconcentration with factor risk constraints 

In-Sample Factor Contribution - GMV with 
factor risk constraints 
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First, we note that factor risk parity is satisfied, and that the portfolio is no longer 
simply invested in the low volatility constituents. Similarly to the allocation we 
obtained in the previous case, we also note that the aggregated weights in the 
different subregions appear to represent the subregion market capitalizations more 
fairly due to the presence of regional constraints. We also note that the  
max-deconcentration approach shows a more stable allocation over time compared 
to the GMV, which is still sensitive to changes in input parameters. Also, we see that 
the addition of factor risk parity constraints forces the allocations to spread the 
country weight more evenly among the different tilts. 

Table 17.2 reports the risk and returns characteristics of various multi-smart-beta 
allocation portfolios, and compares the results. We note that the GMV allocation 
process leads to the lowest volatility. Also, we note that the EW and ERC allocations 
have higher returns and higher volatilities than the GMV, as is often the case. We note 
further that the introduction of factor risk parity constraints has led to a substantial 
improvement in information ratios with an information ratio above 1 for the  
max-deconcentration allocation under geographical and risk parity constraints. This 
shows that the introduction of factor risk parity constraints leads to a stabilization of 
the portfolio that has resulted in strong outperformance (3.37%) over the CW index, 
with a tracking error barely greater than 5%. The introduction of factor risk parity 
constraints leads to 100% outperformance probabilities over a 3-year horizon.  

Developed 
(2004–2013)  CW (all stocks)

Diversified Multi-Strategy 
Multi-beta 

EW 
allocation 

Multi-beta 
ERC 

allocation 

Multi-beta 
GMV 

allocation 

Multi-beta 
max deconc. 

fact allocation 

Multi-beta 
GMV-fact 
allocation 

Ann returns  7.80% 11.37% 11.07% 10.57% 11.17% 10.88% 
Ann volatility  17.09% 15.32% 14.33% 12.84% 17.23% 17.21% 
Sharpe ratio 0.36 0.64 0.66 0.70 0.56 0.54 
Max drawdown  57.13% 54.40% 51.82% 45.07% 55.22% 55.32% 
Excess returns  - 3.56% 3.27% 2.76% 3.37% 3.07% 
Tracking error  - 6.75% 7.51% 6.36% 3.08% 3.34% 
95% Tracking error  - 13.84% 14.89% 11.85% 5.19% 5.55% 
Information ratio  - 0.53 0.44 0.43 1.09 0.92 
Outperf. prob. (3 years) - 98.36% 89.34% 89.07% 100.00% 100.00% 
Max rel. Drawdown  - 6.35% 9.54% 13.10% 4.03% 5.47% 

Table 17.2. Multi-beta allocations across smart factor indices (developed universe). 
The table compares the performance of the EW, ERC and GMV and both the max-
deconcentration and GMV diversified multi-strategy indices under geographical and 
risk parity constraints, invested in the 20 diversified multi-strategy indices with stock 
selection based on mid cap, momentum, low volatility and value in the five US, UK, 
developed Europe (e.g. UK), Japan and Asia Pacific (e.g. Japan) subregions. The 
period is from 31 December 2003 to 31 December 2013 (10 years). Outperformance 
probability is the probability of obtaining positive excess returns over CW if we invest 
in the strategy at any point in time for a period of 3 years. It is computed as the 
frequency of positive values in the series of excess returns assessed over a rolling 
window of 3 years and step size of 1 week covering the entire investment horizon 
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In Table 17.3, we analyze the performances in bull versus bear market regimes 
(defined as positive versus negative returns for the CW index). We observe that the 
addition of risk parity constraints to the GMV allocation tends to stabilize the 
returns across market conditions. For example, in the absence of factor risk parity 
constraints, the GMV allocation leads to a massive outperformance of 11.94% with 
respect to the CW index in bear markets, which is due to the almost exclusive 
domination of the low-volatility factor, with a defensive bias that proves extremely 
useful in such market conditions. However, the relative return in bull market is 
negative at –3.90% due to the performance drag associated with exclusively holding 
defensive equity exposure in bull market conditions. In this context, one key 
advantage of the introduction of factor risk parity constraints is that it leads to a 
much more balanced return profile across market conditions with positive 
outperformance in both bear and bull markets (at 2.66 and 3.18%, respectively).  

We have shown that simple allocations that do not balance their exposures to the 
factors may be too exposed to the low volatility factor, which may lead to lower 
relative returns with respect to the cap-weighted index, particularly in bull market 
regimes.  

Developed 
(2004–2013)  

Diversified multi-strategy  

Multi-beta 
EW allocation 

Multi-beta 
ERC allocation 

Multi-beta 
GMV allocation 

Multi-beta 
max deconc. 

fact allocation 

Multi-beta 
GMV-fact 
allocation 

Ann. ret. bull 31.58% 29.55% 25.18% 32.89% 32.26% 

Ann. vol. bull 11.71% 11.09% 9.42% 12.85% 12.85% 

Ann. rel. ret. bull 2.50% 0.48% –3.90% 3.81% 3.18% 

Tracking error bull 5.03% 5.94% 5.06% 2.53% 2.74% 

Ann. ret. bear  –24.51% –22.42% –17.23% –26.67% –26.50% 

Ann. vol. bear  21.33% 19.79% 18.40% 24.42% 24.38% 

Ann. rel. ret. bear  4.65% 6.74% 11.94% 2.50% 2.66% 

Tracking error bear 9.64% 10.27% 8.62% 4.08% 4.43% 

Table 17.3. Multi-beta allocations across smart factor indices in bull/bear regimes 
(developed universe). The table compares the conditional performance of the EW, 
ERC and GMV and both the max-deconcentration and GMV diversified multi-strategy 
indices under geographical and risk parity constraints, invested in the 20 diversified 
multi-strategy indices with stock selection based on mid cap, momentum, low 
volatility and value in the five US, UK, developed Europe (e.g. UK), Japan and Pacific 
Asia (e.g. Japan) subregions. The period is from 31 December 2003 to 31 December 
2013 (10 years). The quarters with positive market returns are considered bullish and 
the quarters with negative returns are considered bearish 
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17.2.3. Long-term evidence in the USA universe 

The limited availability of data in the global stock universe caused us to restrict 
the analysis to a 10-year period. In order to test the robustness of the allocation 
schemes, we replicate the allocations in the US stock universe for which data are 
available for 40 years. This period consists of varying degrees of market 
environments and therefore allows us to look at the performance of different 
allocations over time through a conditional analysis tool. 

The first observation from Table 17.4 is that the results for the USA are similar 
in nature to those for developed. All allocations outperform the CW benchmark by a 
large margin (>3.8%). As expected, the information ratio of factor-risk-parity-
constrained max deconcentration is 0.81, as compared to 0.76 for EW allocation, 
showing that the constraints fulfill their long-term objective. Table 17.5 shows that 
all allocations are quite stable across different market conditions. They are able to 
outperform the CW benchmark in both bull and bear market conditions. 

USA long term 
(1973–2012)  

CW (all stocks)

Diversified multi-strategy 

Multi-beta 
EW allocation 

Multi-beta 
ERC allocation 

Multi-beta max 
deconc. fact allocation 

Ann returns  9.74% 13.72% 13.63%  14.01% 

Ann volatility  17.47% 15.75% 15.67%  16.41% 

Sharpe ratio 0.24 0.52 0.52 0.52 

Max drawdown  54.53% 53.86% 53.62%  56.56% 

Excess returns  - 3.98% 3.89%  4.27% 

Tracking error  - 5.23% 5.25%  5.27% 

95% Tracking error  - 8.95% 9.10%  8.69% 

Information ratio  - 0.76 0.74  0.81 

Outperf. prob. (3 years) - 80.38%  80.43%  78.83% 

Max rel. drawdown  - 33.65% 43.46% 33.87% 

Table 17.4. Multi-beta allocations across smart factor indices (US universe). The 
table compares the performance of the EW, ERC and max-deconcentration indices 
with risk parity constraints, invested in the four diversified multi-strategy indices with 
stock selection based on mid cap, momentum, low volatility and value in the US. The 
period is from 31 December 1972 to 31 December 2012 (40 years). Outperformance 
probability is the probability of obtaining positive excess returns over CW if we invest 
in the strategy at any point in time for a period of 3 years. It is computed as the 
frequency of positive values in the series of excess returns assessed over a rolling 
window of 3 years and step size of 1 week covering the entire investment horizon 
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USA long term 
(1973–2012)  

Diversified multi-strategy 
Multi-beta EW 

allocation  
Multi-beta ERC 

allocation  
Multi-beta max deconc. 

fact allocation 
Ann. ret. bull 34.83% 34.57% 36.14% 
Ann. vol. bull 12.94% 12.85% 13.42% 
Ann. rel. ret. bull 3.03% 2.76% 4.34% 
Tracking error bull 4.45% 4.46% 4.54% 
Ann. ret. bear  –20.17% –20.04% –21.13% 

Ann. vol. bear  20.23% 20.14% 21.14% 

Ann. rel. ret. bear  4.83% 4.96% 3.87% 
Tracking error bear 6.57% 6.58% 6.53% 

Table 17.5. Multi-beta allocations across smart factor indices in bull/bear regimes 
(developed and USA universe). The table compares the performance of the EW, 
ERC and max-deconcentration indices with risk parity constraints, invested in the 
four diversified multi-strategy indices with stock selection based on mid cap, 
momentum, low volatility and value in the US. The period is from 31 December 1972 
to 31 December 2012 (40 years). The quarters with positive market returns are 
considered bullish and the quarters with negative returns are considered bearish 

17.3. Relative risk perspective 

Many investors are seeking to improve the performance of their equity portfolios 
by capturing exposure to rewarded factors. Investors may thus explore a variety of 
portfolio strategies which can be regarded as robust attempts at generating an 
efficient strategic factor allocation process in the equity space for different sets of 
objectives and constraints. Allocation can be done in the most simple manner, such 
as equal dollar contribution/equal weighting (EW), or ERC, or in a more 
sophisticated manner of diversification, such as volatility minimization (GMV). For 
the objectives involving risk parameters, allocation methods can broadly be 
categorized into two groups depending on the risk dimension they deal with – 
absolute risk and relative risk. In this chapter, we focus on allocation across smart 
factor indices from relative risk perspective. 

It is often the case that investors maintain the cap-weighted index as a benchmark, 
which has the merit of macroconsistency and is well understood by all stakeholders. In 
this context, a multi-smart-beta solution can be regarded as a reliable cost-efficient 
substitute for expensive active managers, and the most relevant perspective is not an 
absolute return perspective but a relative perspective with respect to the cap-weighted 
index. In what follows, we focus on two approaches: 

– naive diversification: a relative equal risk allocation (R-ERC) portfolio, which 
focuses on equalizing the contribution of the smart factor-tilted indices to the 
portfolio tracking error; 
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– scientific diversification: a relative global minimum variance portfolio  
(R-GMV), also known as minimum tracking error portfolio, which focuses on 
minimizing the variance of the portfolio relative returns with respect to the  
cap-weighted index. 

It should be noted that controlling for factor exposure biases from an absolute 
risk-budgeting perspective is useful, but this is no longer a key required ingredient 
since the CW index already provides a proper anchor point that is an implicit, as 
opposed to explicit, reference set of factor exposures. In the same manner, we find 
that regional constraints are no longer needed, since a portfolio seeking to equalize 
the contributions of the 20 constituents to the portfolio tracking error, or seeks to 
minimize the tracking error, will not lead to a severe overweighting of smaller 
regions with respect to larger regions, in contrast to what has been found from an 
absolute risk perspective. 

17.3.1. Methodology 

Relative ERC is implemented in a way similar to ERC allocation, the only difference 
being that tracking error contributions are equalized instead of volatility contributions. If 
we define the contribution of component i to portfolio tracking error as: ܥ௧ሺݓሻ ൌ డఙషೢమడ௪ 			with				ݓ ∑ ሻேୀଵݓ௧ሺܥ ൌ ି௪ଶߪ   

– the relative ERC portfolio is defined as the allocation w that satisfies the 
following identity: 

ೝೖሺ௪ሻఙషೢమ ൌ ଵே 	for all i  

– the relative GMV approach follows a mean variance optimization to minimize 
total portfolio tracking error under long-only constraints. Mathematically, it can be 
written as (ߑ is the covariance of excess returns over the CW benchmark): ݊݅ܯሺ்ݓ. .ߑ ݓ.subject to 1்		ሻݓ ൌ 1	and	ݓ  0	for all i  

We discuss the composition and performance statistics of developed and US 
portfolios. The developed dataset extends over the 10-year period from 31 
December 2003 to 31 December 2013 and uses five subregions of the global 
developed universe: US, UK, developed Europe (e.g. UK), Japan and Asia Pacific 
(e.g. Japan). Using four smart multi-strategy indices as proxies for the value, size, 
momentum and volatility-rewarded tilts in each subregion; we obtain a total of  
5 × 4 = 20 constituents. 
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17.3.2. Risk contributions and performance 

In Figure 17.5, we show the allocations of the relative GMV and relative ERC 
portfolios. First, we find again that the relative ERC allocation is more stable over 
time, which is due to the higher sensitivity of the relative GMV allocation to the 
parameter estimates, confirming a higher degree of robustness with the ERC 
approach. Even though both allocation strategies rely on risk parameter estimates, 
scientific diversification tends to overuse input information compared to the more 
agnostic risk-budgeting diversification, which makes a more parsimonious use of 
input estimates (see [RON 13] for more details and interpretations for the higher 
robustness of ERC portfolios with respect to errors in risk parameter estimates).  

 

 

 

Figure 17.5. Relative GMV and relative ERC allocations to smart factor indices and 
risk contributions (developed universe). The graph compares the allocation and risk 
contributions of diversified multi-strategy indices: the relative GMV and relative ERC 
allocations invested in the four diversified multi-strategy indices with stock selection 
based on mid cap, momentum, low volatility and value. The period is from 31 
December 2003 to 31 December 2013. For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

Weight Distribution – Relative ERC 
(Developed) 

Weight Distribution – Relative GMV 
(Developed) 

In-Sample Relative Risk Contribution by 
asset – Relative GMV (Developed) 

In-Sample Relative Risk Contribution by asset 
– Relative ERC (Developed) 
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Second, by construction, we observe that the relative ERC leads to identical 
constituent contributions to the tracking error. However, the relative GMV portfolio 
involves non-equal time-varying contributions from various constituents to the 
tracking error of the portfolio. This observation is in line with the relative GMV 
objective, i.e. the components that have large tracking error are underweighted 
relative to the ones that have lower tracking error. 

Developed 

(2004–2013) 

CW (all 
stocks) 

Diversified multi-strategy Developed 

(2004–2013) 

Diversified multi-strategy  
Multi-beta 

relative ERC 
allocation 

Multi-beta 
relative GMV 

allocation  

Multi-beta 
relative ERC 

allocation 

Multi-beta 
relative GMV 

allocation  
Annual returns  7.80%  10.92% 9.96% Ann. ret. bull 31.38% 31.02% 
Annual volatility  17.09% 16.10% 16.64% Ann. vol. bull 11.95% 12.25% 
Sharpe ratio 0.36  0.58 0.50 Ann. rel. ret. bull 2.30% 1.95% 
Max drawdown  57.13% 54.14% 55.50% Tracking error bull 2.09% 2.01% 
Excess returns  -  3.12% 2.15% Ann. ret. bear  –25.25% –26.93% 
Tracking error  -  2.56% 2.43% Ann. vol. bear  22.88% 23.75% 
95% Tracking error  -  4.70% 4.27% Ann. rel. ret. bear 3.92% 2.23% 
Information ratio  -  1.22 0.88 Tracking error bear 3.41% 3.21% 
Outperf. prob. (3 years) -  100.00% 89.34%    
Max rel. Drawdown  -  5.10% 4.95%    

Table 17.6. Relative ERC and relative GMV allocation (relative to the CW index) 
across smart factor indices (developed universe). The table compares the 
performance and risk of scientific beta diversified multi-strategy indices converted 
into US dollars. We look at relative ERC and relative GMV allocations invested in the 
20 diversified multi-strategy indices with stock selection based on mid cap, 
momentum, low volatility and value in the five US, UK, developed Europe (e.g. UK), 
Japan and Asia Pacific (e.g. Japan) subregions. Outperformance probability is the 
probability of obtaining positive excess returns over CW if we invest in the strategy at 
any point in time for a period of 3 years. It is computed as the frequency of positive 
values in the series of excess returns assessed over a rolling window of 3 years and 
step size of 1 week covering the entire investment horizon. The quarters with positive 
market returns are considered bullish and the quarters with negative returns are 
considered bearish. The period is from 31 December 2003 to 31 December 2013 

Table 17.6 displays the risk and return characteristics of the relative ERC and 
GMV allocation strategies. We note that the focus on relative return leads to low 
tracking error levels. For example, the ex post tracking error is around 2.50% for 
these portfolios. Relative GMV, as per its objective, results in lower tracking error 
(2.43%) compared to relative ERC (2.56%). However, relative ERC exhibits greater 
outperformance (+3.12%) compared to relative GMV (+2.15%). Such low tracking 
error levels, associated with substantial outperformance, eventually lead to 
exceedingly high information ratios. In particular, the relative ERC has an 
information ratio of 1.22, which is the highest level among all portfolio strategies  
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tested so far, with an outperformance probability of 100% over any given 3-year 
investment horizon during the same period. We also find that the focus on relative 
risk leads to lower tracking errors in bull and bear market regimes compared to their 
absolute risk counterparts. 

The benefit of exposure to multiple factors can be seen from conditional 
performance analysis. Both allocations are able to outperform the CW benchmark in 
both bull and bear market conditions. For example, relative allocation beats the CW 
benchmark by 2.30% in bull markets and 3.92% in bear markets. 

17.3.3. Relative risk allocation using long-term USA factor indices 

Since developed track records are limited to a 10-year time period, we use the 
US stock universe (of the 500 largest market-cap stocks) to redo the relative risk 
allocation exercise to ensure the robustness of our results. The US universe not only 
gives us the advantage of a much longer history (40 years) but also limits us to using 
four smart factor indices (instead of 20 indices in the international domain). For the 
following illustrations, long-term (40-year) data from 31 December 1973 to  
31 December 2013 are used for the four smart multi-strategy indices – mid cap, 
momentum, low volatility and value. All other construction principles remain the 
same as before. 

Figure 17.6 shows that over long periods, the weight distribution in the ERC 
allocation remains quite stable. The GMV allocation is relative time varying, 
overweighting the factor that is responsible for the lowest tracking error each time. 

When analyzing the risk and performance indicators in Table 17.7, we observe 
that the relative GMV, which is supposed to minimize the tracking error, achieves a 
tracking error of 4.79% compared to relative ERC, with a tracking error of 4.91%. 
As observed in the case of the developed universe, both allocations result in high 
outperformance, with relative ERC slightly better (at +3.79%) than relative GMV 
(+3.71%). The conditional performance over the long term constitutes many market 
cycles, including the technology bubble and the financial crisis. The fact that both 
allocations outperform the benchmark in varying market conditions reconfirms the 
robustness of these strategies. 

We find that value can be added through relative ERC and relative GMV at the 
allocation stage, for investors with a tracking error budget. As a result, extremely 
substantial levels of risk-adjusted outperformance (information ratios) can be 
achieved even in the absence of views on factor returns. The portfolio strategies we 
have presented in this chapter can be regarded as robust attempts at generating an 
efficient strategic factor allocation process in the equity space in the context of 
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benchmarked investment management. While possibilities for adding value through 
smart beta allocation are manifold, the robust performance improvements  
obtained through relative ERC and relative GMV allocations to the four main 
consensual factors displayed above in this chapter provide evidence that the benefits 
of multi-factor allocations exist in a context of strong relative risk constraints and 
are sizable. 

 
 

 

 

Figure 17.6. Relative GMV and relative ERC allocations to smart factor indices and 
risk contributions (US universe). The graph compares the allocation and risk 
contributions of diversified multi-strategy indices: the relative GMV and ERC 
allocations invested in the four diversified multi-strategy indices with stock selection 
based on mid cap, momentum, low volatility and value, and the ERC combination of 
the same four constituents. The relative GMV strategy has been derived with the 
following additional weight constraints: 1/δ*N<w< δ /N, where N=4 constituents and  
δ =2. The period is from 31 December 1972 to 31 December 2012. For a color 
version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

Weight Distribution – Relative 
ERC (USA) 

Weight Distribution – Relative 
GMV (USA) 

In-Sample Relative Risk Contribution 
by asset – Relative ERC (USA) 

In-Sample Relative Risk Contribution 
by asset – Relative GMV (USA) 
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US long term 
(1973–2012) 

CW (all 
stocks) 

Diversified multi-strategy 
US long term 
(1973–2012) 

Diversified multi-strategy  
Multi-beta 

relative ERC 
allocation 

Multi-beta 
relative GMV 

allocation  

Multi-beta 
relative ERC 

allocation 

Multi-beta 
relative GMV 

allocation  
Annual returns  9.74% 13.53%  13.45% Ann. ret. bull 34.72% 34.39% 
Annual volatility  17.47% 15.69% 15.60% Ann. vol. bull 12.89% 12.97% 
Sharpe ratio 0.24 0.51 0.51 Ann. rel. ret. bull 2.92% 2.59% 
Max drawdown  54.53% 53.30% 52.64% Tracking error bull 4.20% 3.78% 
Excess returns  - 3.79% 3.71% Ann. ret. bear  -20.44% -21.02% 
Tracking error  - 4.91% 4.79% Ann. vol. bear  20.14% 20.15% 
95% Tracking error - 8.11% 7.99% Ann. rel. ret. bear 4.56% 3.97% 
Information ratio  - 0.77 0.77 Tracking error bear 6.12% 5.49% 

Outperf. prob. (3 
years)  

- 80.90%  81.31% 
   

Max rel. 
Drawdown  

- 28.74% 27.00% 
   

Table 17.7. Relative ERC and relative GMV allocation to the CW index across smart 
factor indices (US universe). The table compares the performance and risk of the 
scientific beta diversified multi-strategy indices. We look at relative ERC and relative 
GMV allocations in the four diversified multi-strategy indices with stock selection 
based on mid cap, momentum, low volatility and value, respectively. All statistics are 
annualized and daily total returns from 31 December 1972 to 31 December 2012 are 
used for the analysis. The S&P 500 index is used as the cap-weighted benchmark. 
Yield on Secondary US Treasury Bills (3M) is used as a proxy for the risk-free rate. 
Outperformance probability is the probability of obtaining positive excess returns over 
CW if we invest in the strategy at any point in time for a period of 3 years. It is 
computed as the frequency of positive values in the series of excess returns 
assessed over a rolling window of 3 years and step size of 1 week covering the entire 
investment horizon. The quarters with positive market returns are considered bullish 
and the quarters with negative returns are considered bearish 

17.4. Conclusion: index design and allocation decisions for multi-factor 
equity portfolios 

We find that well-rewarded factor-tilted indices constitute attractive building 
blocks for the design of an improved equity portfolio. First-generation smart beta 
investment approaches only provide a partial answer to the main shortcomings of 
cap-weighted indices. Multi-strategy factor indices, which diversify away 
unrewarded risks and seek exposure to rewarded risk factors, address the two main 
problems of cap-weighted indices (their undesirable factor exposures and heavy 
concentration) simultaneously. 

The results suggest that such multi-strategy factor indices lead to considerable 
improvements in risk-adjusted performance. For long-term US data, smart factor  
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indices for a range of different factor tilts roughly double the Sharpe ratio of the 
broad cap-weighted index. Moreover, outperformance of such indices persists at 
levels ranging from 2.92 to 4.46%, even when assuming unrealistically high 
transaction costs. The outperformance of multi-strategy factor indices over cap-
weighted factor indices is observed for other developed stock markets as well. By 
providing explicit tilts to consensual factors, such indices improve upon many 
current smart beta offerings where, more often than not, factor tilts result as 
unintended consequences of ad hoc methodologies. 

Moreover, additional value can be added at the allocation stage, where the 
investor can control for the dollar and risk contributions of various constituents or 
factors to the absolute (volatility) or relative risk (tracking error) of the portfolio. As 
a result, extremely substantial levels of risk-adjusted outperformance  
(information ratios) can be achieved even on the absence of views on factor returns. 
The portfolio strategies that we have presented in this chapter can be regarded  
as robust attempts at generating an efficient strategic factor allocation benchmark  
in the equity space. Obviously, active portfolio managers may generate additional 
value on top of this efficient benchmark by incorporating forecasts of factor  
returns at various points of the business cycle in the context of tactical factor 
allocation decisions. 
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18 

Factor Investing and Portfolio 
Construction Techniques  

18.1. Introduction 

Factor investing has been growing in popularity within institutional investment 
circles over the last few years. At the same time, risk-based portfolio construction 
techniques have become more mainstream, particularly following the global 
financial crisis of 2008. We cannot be blamed for thinking that these two concepts 
are very closely related: factor investing is about understanding the sources of risk 
that underlie a particular portfolio and taking investment decisions directly at the 
factor level, while risk-based portfolio construction techniques can be used to put 
together risk-factor portfolios. However, we will argue that factor investing is 
ultimately an “asset allocation” concept (even though it may not be directly used as 
such), whereas risk-based portfolio construction is a methodology that can be 
pursued in building risk-factor portfolios; in fact, under certain assumptions, it may 
actually be the optimal technique. Risk-based portfolio construction methods are 
readily used outside the risk-factor area, and, at the same time, risk-factor portfolios 
can be constructed through a number of different approaches such as mean-variance 
optimization, etc. 

In sections 18.2 to 18.5 of this chapter we introduce the concept of risk-factor 
investing and discuss the practical implementation forms it has taken so far within 
the institutional asset owner space. In sections 18.6 to 18.9, we introduce two 
innovative risk-based portfolio construction techniques and compare them with 
traditional risk-based algorithms. 
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18.2. Risk factor investing: the new paradigm 

An increasing number of asset owners are revisiting their asset allocation 
practices, focusing on the factors that drive portfolio returns and consequently 
expressing their asset allocation in terms of risk-factor exposures, as opposed to 
asset classes. Fundamental to this shift has been the belief that long-horizon 
investors are compensated for risks they take, and consequently, the decision 
regarding the types of risk premia they set out to harness should be at the heart of 
their investment process, rather than a by-product. For example, seemingly well-
diversified asset-class portfolios may hide a heavily concentrated set of risk 
exposures. The classic 60/40 benchmark (60% invested in equities and 40% in 
bonds) is a case in point, as it is heavily reliant on equity risk. Moreover, asset-class 
correlations tend to rise during the periods of elevated market volatility and 
persistent liquidity draughts; in the aftermath of the most recent financial crisis, 
asset-class correlations remained elevated for quite some time as markets switched 
between binary risk-on and risk-off modes. On the contrary, correlations between 
risk factors tend to be lower than asset-class correlations, and in addition, they tend 
to be more robust to regime shifts. 

Risk-factor investing builds on insights that lie at the core of asset pricing theory. 
In the equity space, for instance, Fama and French [FRE 92] and Carhart [CAR 97] 
identified a set of stock characteristics (i.e. risk factors) that tend to explain a 
significant portion of the return variation in the cross-section of large stock 
portfolios. In addition, the aforementioned studies – and numerous others that 
followed – presented evidence over different time periods, and across markets, 
which suggests that individual securities earn risk premiums over time through their 
exposure to rewarded factors (such as value, momentum, and size).  

The notion, however, of employing risk factors at the asset allocation level 
gained traction when the Norway fund commissioned a study into the disappointing 
results of active management in 2008 and early 2009, which had wiped out 10 years’ 
worth of cumulative outperformance. The report by professors Ang, Goetzmann and 
Schaefer [ANG 09] concluded that a significant component of the active risk and 
performance of the fund could be explained by systematic factors that happened to 
fare poorly during the financial crisis. In essence, in large portfolios, it is hard to 
find “alpha”; many mispricing opportunities tend to be small in scale and firm- (or 
strategy-) specific exposures tend to become swamped at the portfolio level, as 
many correlated individual exposures become large exposures on factors. 

The broader implication of the Ang et al. [ANG 09] study is that exposure to 
such systematic sources of risk and return would actually be appropriate for a  
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long-horizon investor, as long as the factors earn risk premiums over the long run1. 
The authors proposed that risk-factor investing must be a part of the strategic asset 
allocation toolkit of institutional investors, with factor exposures forming part of the 
portfolio and benchmark construction, helping trustees in their decision-making 
process. 

A fundamental advantage of risk-factor investing is the opportunity it offers to 
capture non-traditional sources of premia that underlie rewarded factors, such as 
behavioral effects, supply/demand imbalances, etc. As portfolio construction aims to 
harvest the risk premia expected from holding exposure to rewarded factors, while 
minimizing exposure to unrewarded sources of risk, it seems only natural and 
theoretically pure to express the asset allocation decision in terms of risk factors 
rather than asset classes per se. We have introduced risk-factor allocation as the new 
investment paradigm in our 2012 research note titled “A New Asset Allocation 
Paradigm”2, arguing in favor of allocating to uncorrelated, rewarded risk factors. Of 
course, to exploit the benefits of the approach fully, shorting is required to take out 
the market (as long-only factors would usually deliver returns close to the market 
return), as well as leverage to render the returns from well-diversified risk-factor 
portfolios meaningful. 

18.3. Theory meets practice 

Essentially, risk-factor investing involves looking through the asset-class 
“labels” to the systematic factors lying beneath the assets. The main purpose of asset 
allocation through the factor “lens” is to allow for a clearer demarcation of risk 
exposures, a better attribution of returns according to the risks taken in the portfolio 
and potentially a significant improvement in risk-adjusted returns through 
diversification by the underlying return drivers (risk premia “clusters”). 

In practice, risk-factor investing has taken two (non-mutually exclusive) forms in 
the institutional asset owner space. We define these as the “fundamental risk class” 
and the “risk premia” approaches to asset allocation, respectively. Both terms have 
been used in practitioner journals or have appeared in practitioner magazines, and 
although sometimes used interchangeably, more often than not they are underpinned 

                         
1 A risk factor does not necessarily need to be compensated by the market, whereas a risk 
premium does. Although a risk factor can help explain the cross-sectional variation of returns 
within or across asset classes, investors looking to maximize their wealth are interested in 
holding compensated risk premia. Risk factors are positively rewarded if, and only if, they 
perform poorly during “bad” times (like they did during the financial crisis for the Norway 
fund), but more than compensate during good times so as to generate a positive excess return, 
on average. The incidence of “bad” times is, of course, premium-specific. 
2 See [MES 12]. 
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by a subtly different investment process. The “fundamental risk class” approach is 
closer to traditional asset allocation than the “risk premia” approach; the main 
difference to traditional asset allocation being that portfolio allocations are decided 
at the risk class level and subsequently flow down to the constituent asset of each 
risk class. In addition, risk management and portfolio attribution are performed at 
the risk class level rather than the asset-class level. 

The fundamental risk class approach focuses on  sources of portfolio risk that 
can be fundamental in nature, such as growth, inflation and liquidity. However, 
these are very hard to measure. Even so, some asset owners over the last few years 
have started thinking in terms of fundamental “risk classes3”, typically using assets 
as proxies, like equities for growth and commodities for inflation. For example, the 
strategic asset allocation of the Alaska Permanent Fund categorizes asset classes 
motivated by how they respond to different macro-factor risks. Effectively, Alaska’s 
macro-factor investing looks through asset-class labels to the underlying 
fundamental risks the fund is exposed to. The fund allocates to four risk classes. 
These are (see [INK 09]): 

a) company exposure – consists of investments that tend to perform well in 
periods of economic growth (stocks, corporate investment grade and high yield 
bonds, bank loans and private equity); 

b) interest rates and cash – intended to address to address deflation and market 
crises. U.S. government bonds, non-U.S. government bonds, and  liquid investments 
with durations of less than 12 months comprise this risk class; 

c) real assets – purpose is to hedge inflation risk and protect the real value of the 
Fund by investing in real estate, infrastructure, and TIPS; 

d) special opportunities – this allocation allows the Permanent Fund to take 
advantage of market dislocations by, for instance, investing in absolute return 
strategies, special deals for distressed assets, or in illiquid investment opportunities 
which Alaska can exploit because of its long investment horizon. 

Another good case in point is the Danish pension fund Arbejdmarkedets 
TillaegsPension (ATP). In order to ensure that the return stream of its investment 
portfolio is as stable and as independent of economic trends as possible, ATP’s 
portfolio has been invested in five risk classes with different risk profiles4. These 
risk classes are the interest rate risk class (proxied by interest-rate sensitive bonds), 
the credit risk class (the ability of issuers to repay debt obligations), the equity risk 
class, the inflation risk class (where part of the risk budget is allocated to liquid  
 

                         
3 See [ANG 14]. 
4 See [JES 11]. 
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investments such as index-linked bonds and inflation swaps, and the rest to illiquid 
investments such as real estate, infrastructure, alternative energy and forestry5) and 
the commodity risk class (proxied by oil futures). Essentially, this approach has 
entailed investing in (long-only) asset classes in a rather stable and non-dynamic 
way, which has been deemed appropriate to deliver the risk premium targeted by 
each risk cluster – a real-life example of asset allocation through the (fundamental) 
risk-factor “lens”. The five risk-class portfolios provided a cushion for ATP during 
the global financial crisis of 2008, as portfolio diversification worked well, mainly 
due to the government bond portfolio rising in value at the same time as the price of 
equities fell. 

However, more recently, and as reported by the Investment & Pensions Europe 
Magazine6, ATP has been seeking to further refine its approach in an investment 
environment of low prospective asset-class returns and potentially poor portfolio 
diversification: interest rates are expected to rise in the future from their current low 
levels, and a situation where risky asset classes such as equities and credit fall at the 
same time as interest rates are rising is not unfathomable. The five risk classes could 
perform poorly at the same time.  To address these concerns, and following the 
integration of the unit which used to manage hedge fund strategies (ATP Alpha) 
with the broader investment platform at the end of 2012, the pension fund appears to 
be embracing the alternative approach of risk-factor investing. This is viewed as a 
way of gaining access to truly uncorrelated (to asset-class beta) sources of return, 
such as value, momentum and carry. It entails adopting a long-short approach to 
isolate the premium in question, and consequently a  more dynamic investment 
style. We label this long-short, dynamic approach to risk-factor investing as the “risk 
premia” allocation approach. 

A pioneer of the “risk premia” approach has been PKA, a Danish administrator 
for five pension funds. PKA began to implement a strategy designed to get exposure 
to specific risk premia in equities back in 2012. Instead of simply allocating in a 
long-only manner to traditional global, regional or sector equity portfolios, PKA’s 
strategy combines developed, emerging, frontier and small-cap mandates (traditional 
long-only beta) with around 15 alternative sources of risk and return implemented 
using dynamic long-short strategies and derivatives7. PKA has expanded aspects of 
the “risk premia” approach applied to equities into rates, currencies and 
commodities markets. Another adopter (albeit to a lesser extent and scope compared 
to PKA) of the “risk premia” approach is Swedish pension fund SPK which has 

                         
5 Apart from stable inflation-adjusted cash flows, the aim of illiquid investments is also to 
harness an illiquidity premium. 
6 See [LII 14]. 
7 See [STE 14]. 
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allocated 8% of its total assets to dynamic factors in 2014, considering this 
allocation as an integral part of its total portfolio8. 

As can be gathered from the above discussion, “risk-premia” investing is not 
incompatible with the “fundamental risk class” approach to asset allocation and 
portfolio construction; rather, it can be regarded as a refinement. Although more 
challenging in implementation and “cutting across” asset classes, it makes use of the 
same principle of allocating to unique sources of risk and return, rather than assets per 
se, to achieve better risk-adjusted performance and superior portfolio diversification. 

18.4. Taxonomy of risk premia strategies 

Academics have been studying markets for years trying to identify persistent, 
systematic sources of return, their efforts often culminating in strategies that lacked 
robustness. Nevertheless, a number of investment styles have been identified (and 
widely supported by academics and practitioners alike) that seem able to deliver 
consistent long-term performance across many unrelated asset classes, during 
different market cycles, and in out-of-sample tests9. Value, momentum and carry are 
traditional risk factors that fit the above description. Most importantly, they are 
backed by sound economic reasoning: the rationale for the existence of the persistent 
returns of each style across asset classes is economic, behavioral or 
institutional/structural in nature10. 

Although asset-class premia are usually measured in terms of excess returns over 
“riskless” Treasury bills (T-bills) and require limited portfolio rebalancing  
(e.g. a value-weighted market index requires some asset turnover due to, for 
example, new issues and new entries to an index), style premia are more dynamic in 
nature, typically reflecting the excess returns of one risky-asset portfolio over 
another risky-asset portfolio. In principle, we would like risk premia strategies to be 
uncorrelated with the underlying asset-class return (i.e. to be market-neutral), which 
is attempted by constructing the strategies in a long-short format. 

For example, value seeks compensation for selecting relatively undervalued 
assets and shorting relatively overvalued assets in a long-term mean reversion trade. 
There exists a premium in this strategy for accepting the uncertainty regarding the 
time horizon over which the convergence trade will play out, giving up potential 
“upside” in the interim. Carry strategies go long of high-yielding assets and short of 

                         
8 Others have treated a bit more cautiously and created a separate bucket for dynamic  
long-short risk premia strategies, like some of the Swedish AP funds (see [LII 15]). 
9 See, for instance, [ASN 13]. 
10 For a more detailed exposition of the theories that have been brought forward to rationalize 
the value, momentum and carry risk premia see [MES 12]. 
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low-yielding assets from the same asset class, seeking a relative compensation for 
taking on the higher risk associated with higher yielding assets. The momentum 
premium is associated with accepting the risk of reversals in strategies that go long 
of past winners and short of past losers from the same asset pool, in the belief that 
market participants will extrapolate past trends into the future. 

The style-based risk premia universe can be broadened further to include another 
two categories that permeate asset-class boundaries too. The first category relates to 
the volatility risk premium, underpinned by the growth in derivative product markets 
and related microstructure issues, as well as supply/demand imbalances. To be more 
precise, systematically selling volatility to generate carry could also be grouped 
together with the rest of the carry premia, however, we believe that the common 
properties of volatility – across asset classes – of persistence and mean-reversion11, 
the more elaborate premium extraction strategies often involved for the implied 
versus realized volatility spread, as well as the insurance-like features of the 
volatility premium, justify the designation of volatility into a class of its own12. On 
the downside, data availability for the (short) volatility risk premium are limited 
compared to the more traditional risk factors (academic evidence in favor of which 
stretches back many decades in some cases). 

The second category comprises systematic anomalies that are rather incompatible 
with the notion of offering compensation for some type of economic risk, and seem to 
be purely related to behavioral or market structure issues. Two of these “anomalies” in 
the equity space are quality and low beta, which we classify under the heading of low 
risk. Such strategies capitalize on the fact that lower beta stocks or stocks with lower 
fundamental risk (higher quality) offer a better risk-adjusted return than higher risk 
stocks. There is increasing evidence that the low risk anomaly exists in asset classes 
other than equities, most predominantly in fixed income13. 

                         
11 Volatility tends to stay low for long periods, while transitions to a high volatility regime 
tend to be sudden and difficult to predict. 
12 Investors tend to be divided between those with a preference for long volatility exposure as 
a form of portfolio insurance, and those who prefer to take the opposite side of this trade and 
capture an embedded risk premium over time. The payout profile of a short volatility strategy 
involves frequent smaller profits punctuated by occasional larger losses. The most obvious 
parallel to this is the insurance market where premiums are gathered on a continual basis and 
used to cover occasional large losses; profits are made if the insurance premiums are set at a 
level that exceeds losses over time. 
13 See [LEO 14]. The authors present some compelling empirical evidence in favor of a low-
risk anomaly in government bonds, quasi-government bonds, securitized and collateralized 
bonds, corporate investment grade and high yield bonds, emerging market bonds, and 
aggregates of some of these universes. The results proved invariant to currency and appeared 
robust to using different measures of risk. 
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Overall, we believe there are three dimensions to risk premia strategies: the style 
of investing dimension, the asset class dimension (where style strategies select 
securities from within the same asset pool) and a hybrid dimension (where style 
strategies go long/short assets themselves, like in trend investing)14. 

 

Figure 18.1. Taxonomy of risk premia strategies (source:  
Deutsche Bank Quantitative Strategy) 

Portfolios of risk premia strategies can be built either independently, i.e. by 
allowing allocations to flow freely between the individual strategies, or by first 
restricting the allocations along any of the aforementioned three dimensions 
(followed by subsequent combination of the different “buckets”). Building risk 
premia portfolios within an asset class or style “bucket” first has the advantage of 
improving estimation efficiency by reducing the dimensionality of the problem at 
hand. To this end, it may prove even more powerful to opt for an empirical form of 
“bucketing” of the risk premia strategies. We could think of “bucketing” as a half-
way house between building a risk-factor model and employing a factor variance-
covariance matrix for estimation as opposed to using the individual asset-by-asset 
covariance matrix15: 

                         
14 See [NAT 13]. 
15 With a large set of strategies we may consider clustering techniques to assign strategies 
into homogeneous groups, taking into account the full distributional characteristics of each 
factor. 
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– bucketing by asset class: this is simple, but may result in foregone 
diversification benefits by not allowing factors to diversify across asset classes;  
for example, the weight on equity value would only depend on how it interacts  
with the other equity factors, rather than its relationship with factors across asset 
classes; 

– bucketing by style: while conceptually appealing for combining volatility or 
momentum strategies, other style “groups” may not have common return drivers 
across asset classes. Moreover, some strategies (such as quality and size) may not 
fall into predefined style definitions; 

– bucketing by degree of cyclicality: another way of thinking about the risk 
premia space is grouping strategies by the degree in which they exhibit cyclical 
behavior with the equity market over the long run. This classification may result in 
an empirically more homogeneous grouping of the strategies. Historically, and 
irrespective of the exact factor implementation, strategies that try to extract the 
(implied) volatility premium using derivatives instruments, as well as certain other 
factors such as FX Carry, have more procyclical tendencies than, say, 
momentum/trend strategies and factors such as equity quality. 

Empirical support for “bucketing” strategies according to their degree of 
cyclicality with the equity market is provided by Principal Component Analysis 
(PCA) on the historical correlations of our risk premia universe provides empirical 
support for grouping strategies according to their degree of cyclicality. This is 
particularly true since 2000 when the vast majority of factors enter our database (we 
require at least 5 years of history before adding a factor returns series to our 
analysis). The PCA analysis is carried out on monthly return series for 17 underlying 
long-short risk premia strategies across asset classes16. 

Of course, as the underlying investments are long-short strategies across asset 
classes capturing different sources of risk and return, the first PCA (PC1) explains 
only about 20% of the variation in the returns of the risk-factor strategies; 
nevertheless, the returns of PC1 are remarkably highly correlated with equity returns 
since 2000 (about 80%, see Figure 18.2), suggesting that whatever common 
variation there exists in the performance of our risk premia strategies, it can be 
largely explained by movements in the equity market. Last, but not least, the factors 
that we have identified before as procyclical have a positive loading to PC1, while 
the counter-cyclical factors load negatively on PC1, respectively. 

                         
16 Details regarding factor construction and the underlying data of our risk premia universe 
are available from the authors upon request. 
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Figure 18.2. Monthly returns of the MSCI World Index and the first principal 
component (PC1) since January 2000 (source: Bloomberg Finance LLP, MSCI, 
Factset, Thomson Reuters, Deutsche Bank Quantitative Strategy). For a color 

version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

18.5. Is risk premia allocation inherently superior to asset-class 
allocation?  

Yes for some, no for others. Some papers (such as [BEN 10] and [PAG 11]) have 
argued that risk-factor-based asset allocation is inherently superior to allocation 
based on asset classes. Idzorek and Kowara [IDZ 13] criticize the aforementioned 
authors for not offering real proof of their argument and carrying out an apples-to-
oranges comparison between a relatively simple asset class set and a risk-factor set 
that includes many more potential exposures. Furthermore, many of the presumed 
gains result from the fact that comparisons involve different inherent constraints, as 
for risk factors the long-only constraint is relaxed. On the contrary, in a simplified 
world in which the number of factors equals the number of assets, the asset class 
returns are completely determined by the risk factors, and the risk factors are 
completely determined by the asset-class returns (i.e. there is a one-to-one  
mapping between asset class and risk-factor returns). Idzorek and Kowara  
present a simple mathematical proof that there is no gain in efficiency from 
performing unconstrained optimizations in risk-factor space compared to the asset 
class space. The empirical evidence they produce seems to point in the same 
direction [IDZ 13]. 

Nevertheless, Ilmanen and Kizer [ILM 12] show that although imposing a long-
only constraint to risk-factor portfolios reduces the effectiveness of risk-factor-based  
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asset allocation, it does not eliminate it. Their findings concur with those of Blitz 
[BLI 11] that the benefits of introducing explicit factor allocations to asset class 
portfolios are meaningful even for long-only investors. Therefore, relaxing the  
long-only constraint when moving from an asset-class based to a risk-premia-based 
allocation framework cannot account for the total incremental benefit earned. 

Our own research and analysis suggests that introducing risk premia portfolios 
alongside traditional asset-class beta appears to confer significant benefits in terms 
of risk-adjusted return and left tail behavior, irrespective of the portfolio 
construction technique adopted. Factor diversification is more effective at reducing 
portfolio volatility and market directionality than asset class diversification, and is 
probably the best answer for many investors whose portfolio risk is dominated by 
(stock) market directionality

17. 

On the flipside, full adoption of a risk-factor-based asset allocation model by 
large institutional asset owners – particularly where risk factors are defined and 
captured through dynamic strategy styles – presents itself with practical challenges. 
The first is that most institutional investors are still uncomfortable with positions 
involving shorting and leverage that are implied by risk factors, and which are 
needed in order to fully harness the benefits of this approach. Second, it is not 
possible for the whole world to completely embrace risk premia allocation, as most 
factors require offsetting long and short positions; it is not possible for the whole 
world to be, for instance, simultaneously long the size premium (which goes long 
small-cap and shorts large-cap stocks), as this would require everyone to short large-
caps. Not all investors may hold the same portfolio should they wish to do so, and 
capacity considerations inevitably surface.  

18.5.1. Efficient frontier analysis 

We proceed to create two efficient frontiers – one comprising only asset classes 
that tend to appear in the asset allocation portfolio of an endowment fund (equities, 
fixed income, commodities, private equity, real estate and hedge funds), and the 
other containing our risk premia strategies. The Endowment proxy portfolio has 
been built using an annual average of the allocations (assumes annual rebalancing) 
of the Yale Endowment and Harvard Endowment policy portfolios respectively, 
between 2005 and 2013. The allocations are obtained from the annual report 

                         
17 See, for instance, [MES 12], where they have shown that even the endowment model 
which emphasizes allocation to alternative assets such as real estate and private equity, as well 
as hedge funds, failed to protect portfolios during (and in the aftermath)  the global financial 
crisis in 2008 as the embedded – in alternatives – equity and liquidity risk consumed any 
diversification potential among the different asset classes.  
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documents of the aforementioned endowments18. The 60/40 portfolio was built 
assuming 60% notional invested in Global Equities, proxied by the MSCI Word 
Price Return Index, and 40% invested in Bonds (represented by the JP Morgan 
Global Government Bond Index Hedged to USD), with monthly rebalancing. 

Because we are dealing with investments with asymmetric and fat-tailed risk, for 
the most part, we create efficient frontiers based on both standard deviation and 
conditional value at risk (CVaR) (see Figure 18.3). It is important to emphasize that 
the mean-variance and mean-CVaR efficient frontiers have been created in-sample, 
that is with full knowledge of the realized asset class/risk-factor returns time series.  

Before discussing the efficient frontier analysis, it is interesting to observe that 
the 60/40 portfolio (which refers to the “classic” asset allocation benchmark of 60% 
equities/40% bonds) lies closer to the asset-class efficient frontier compared to the 
Endowment proxy portfolio (see Figure 18.3: Panel A and Panel B). The 60/40 
portfolio has had a lower return and lower risk compared to the Endowment proxy. 
This is partly a function of the fact that some of the time series we use to proxy the 
asset classes with, such as private equity, have relatively short time series histories, 
and are thus heavily influenced by the global financial crisis in 2008/2009. 

It is obvious that the set of mean-variance and mean-CVaR optimal cross-asset 
risk-factor portfolios (risk factors frontiers in Figure 18.3) would have significantly 
outperformed the corresponding optimal mean-variance and mean-CVaR portfolios 
that employ asset classes only (asset class frontiers in Figure 18.3). The tangency 
risk premia portfolio generates a Sharpe ratio of 3.6 versus a Sharpe ratio of 2.1 for a 
portfolio comprising of asset classes (both standard and alternative). The mean-
variance tangency risk premium portfolio has a significantly lower  
volatility and somewhat lower return compared to the tangency asset-class  
portfolio. Equivalently, the return to CVaR ratio of the risk-factor tangency  
portfolio stands at 2.1 versus 1.1 for the corresponding asset class tangency  
 

                         
18 For example, the 2013 documents can be found at www.hmc.harvard.edu/docs/Final_ 
Annual_Report_2013.pdf and investments.yale.edu/images/documents/Yale_Endowment_ 
13.pdf, respectively. The 2013 average allocations of the Harvard and Yale Endowments were 
as follows: 16.5% allocation to the absolute return/hedge fund asset class, proxied with the 
HFRI Fund of Funds fund-weighted composite index (Bloomberg Ticker HFRIFWI), 8.5% 
allocation to domestic equity (for which we use the MSCI US Total Return Index, Bloomberg 
Ticker NDDUUS), 16% to foreign equity (represented by the MSCI All Country World-ex-
US Total Return Index, Bloomberg Ticker NDUEACWZ), 8% to fixed income (we use as 
proxy the JP Morgan Global Government Bond Index Hedged to USD, Bloomberg Ticker 
JHDCG10R), 11.5% to natural resources (proxies are the S&P Goldman Sachs Commodity 
Index, Bloomberg Ticker SPGCCI), 24.2% to private equity (proxied by the S&P Listed 
Private Equity Index, Bloomberg Ticker SPLPEQTR) and 15.3% to real estate (FTSE 
NARET Global REITS Index, Bloomberg Ticker TENHGU). 
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portfolio. It is interesting to note that, on the risk side, the CVaR reduction in 
moving from the tangency mean-CVaR asset-class portfolio to the corresponding 
mean-CVaR risk-factor portfolio is higher compared to the volatility reduction 
achieved when the tangency mean-variance portfolios are likewise compared. This 
suggests that a significant degree of tail diversification can be achieved in portfolios 
of risk factors.  

 

 

Figure 18.3. Efficient frontiers (source: Deutsche Bank, Bloomberg, Factset, MSCI). 
We use proxies for the asset classes as follows. Bonds: JP Morgan Global 
Government Bond Index Hedged to USD (Bloomberg TickerJHDCG10, start date 
February 1998). Hedge Fund: HFRI fund-weighted single manager non-FOF Index 
(Bloomberg Ticker HFRIFWI, start date January 1990). US Equity: MSCI USA Total 
Return Index (Bloomberg Ticker NDDUUS, January 1970). Intl. Equity: MSCI All-
Country World Ex-USA Total Return Index (Bloomberg Ticker NDUEACWZ, start 
date January 1999). Commodity: S&P GSCI Total Return Index (Bloomberg Ticker 
SPGCCI, start date February 1970). Infrastructure: UBS World Infrastructure & 
Utilities Total Return Index (Bloomberg Ticker UIAUGLTR, start date January 1995). 
Real Estate: FTSE NARET Global REITS Index (Bloomberg Ticker TENHGU, start 
date March 2005). Private Equity: S&P Listed Private Equity Total Return Index 
(Bloomberg Ticker SPLPEQT, start date December 2003). Average annualized 
returns over the whole history of each index were used to create the frontier, with 
covariances between two time series calculated over their common overlapping time 
periods. The 60/40 portfolio was built assuming 60% notional invested in Global 
Equities proxied by the MSCI Word Price Return Index (Bloomberg Ticker MXWO, 
start date January 1970) and 40% invested in our Bond proxy (see above), with 
monthly rebalancing. See footnote 18 for the Endowment proxy portfolio). For a color 
version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

Panel A: historical MV frontier Panel B: Historical MCVar frontier 
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Of course, these tangency portfolio optimal figures reflect the in-sample 
opportunity set, given complete knowledge of realized return distributions. In order 
not to rely solely on the historical realizations of risk-factor and asset-class returns, 
we perform a number of independent simulations for each time series assuming a  
t-distribution for returns and randomly perturbing the expected return of each series 
using breakpoints from the uniform distribution19. We simulate 4 million mean-
variance risk factor and 4 million asset-class portfolios, with which we plot 200 
efficient frontiers, respectively (20,000 portfolios per frontier), shown in Figure 
18.4: Panel A (blue radial lines represent the generated risk-factor efficient 
frontiers). Although there is some overlap between the risk factor and asset-class 
frontiers, it appears that the risk-factor mean-variance tangency portfolios lie to the 
left of the asset-class tangency portfolios, and a bit further down – i.e. typically risk-
factor tangency portfolios are lower risk – lower return.  

Comparing the simulated portfolios in Sharpe ratio terms (Figure 18.4 Panel B), 
the degree of overlap of the tangency portfolios’ distributions is almost 29%; in 
other words, the likelihood of a cross-asset risk-factor mean-variance optimal 
portfolio (at least one simulated using our cross-asset risk premia universe) having a 
strictly higher Sharpe ratio to a mean-variance optimal asset portfolio is 72%20. 

18.6. Portfolio construction techniques 

In what follows, we will introduce two innovative risk-based portfolio 
construction techniques that can be used, among other applications, to build risk-
factor portfolios, and compare them with traditional risk-based algorithms. Risk-
based allocation has become one of the most popular fields in both academic and 
investment circles in recent years. On the one hand, it is generally perceived that risk 
is easier to predict than returns; therefore, risk-based portfolio construction 
techniques are potentially more robust than traditional active portfolios that rely 
more on return forecasts. On the other hand, given the prolonged global financial 
crisis in 2008 and the subsequent risk-on/risk-off environment, not only is managing 
risk becoming more paramount than outperforming a benchmark, but also risk-based 

                         
19 Let μ represent the (annualized) historical mean of a returns time series and σ the annualized 

standard deviation. A random value ρ between 0 and 1 is generated from the uniform 

distribution and is used to generate the quantile value of the t-distribution and subsequently the 
density of the distribution. This is then divided by ρ  to obtain the multiple κ  by which the 

historical standard deviation is scaled to arrive at the new (simulated) mean :μ′ μ μ κσ′ = ± . 
This is repeated 200 times for each asset/risk factor. 
20 This number is much higher for a mean-CVAR optimal portfolio; mean-CVAR tangency risk 
factor portfolios tend to have superior mean-CVaR figures compared to corresponding tangency 
portfolios formed solely from asset classes. Results available upon request from the authors. 



Factor Investing and Portfolio Construction Techniques     415 

allocation techniques actually do indeed outperform many active strategies that 
require return prediction. The two techniques can be further extended to account for 
return forecasts (see [LUO 13c] for details). 

 

 

Figure 18.4. Simulated efficient frontiers and MSR Sharpe ratios (source: Deutsche 
Bank, Bloomberg, Factset, MSCI). Two hundred efficient frontiers plotted with risk 
factors and asset classes, respectively, using 4 million mean-variance portfolios in 
each case. The blue lines in Panel A are the generated risk factor efficient frontiers. 
For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

Portfolio construction itself does not introduce new assets (i.e. breadth) or new 
insights in return prediction (i.e. skill). The heart of portfolio construction is about 
diversification and risk reduction. In the next section, we introduce two innovative 
ways to define diversification and risk reduction. 

We all know that classic finance theory, such as Markowitz’s mean-variance 
optimization, heavily depends on the assumption that asset returns are jointly normally 
distributed. We also know that empirical evidence almost universally rejects the 
normality assumption. The traditional statistical tools (e.g. Pearson’s correlation 
coefficient, portfolio volatility, etc.) are mostly based on this problematic assumption.  

In this chapter, we empirically backtest seven risk-based allocation techniques, 
compared to traditional capitalization-weighted benchmarks in different contexts 
from asset allocation, multi-asset (bonds, commodities and alternative betas), 
country/sector portfolios, to equity portfolios:  

Panel A: resampled efficient frontiers Panel B: distribution of the Sharpe ratios 
of the resampled MSR portfolios 
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– naive diversification: equally weighted, inverse volatility/volatility parity, risk 
parity/equal risk contribution; 

– sophisticated diversification techniques: maximum diversification21 and 
minimum tail dependence; 

– sophisticated risk reduction techniques: global minimum variance and 
minimum CVaR. 

Figure 18.5 shows the scatterplot of the returns for the respective equity indices of six 
countries. The correlations among all six countries appear to be very strong. In addition, 
we see some clear nonlinear relationships and some heavy tails, especially among the 
peripheral European countries. The traditional assumption that asset returns follow 
multivariate normal distribution is clearly rejected by almost any statistical tests. 

 

Figure 18.5. Scatterplot of six countries (source: Bloomberg Finance LLP, MSCI, 
Deutsche Bank Quantitative Strategy) Note: the x- and y-axes and numbers  

are correlation coefficients between two assets. *** indicates statistical  
significance (p value less than 0.01) 

                         
21 This is TOBAM’s maximum diversification technique or most diversified portfolio. Both 
are trademarks of TOBAM. 
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For all portfolio backtestings in this chapter, we follow the following procedures. 
All backtestings are completely out-of-sample. All data used in this research are 
point-in-time. For example, we will use the point-in-time index constituents as our 
investment universe. All risk models are also point-in-time, either using commercial 
risk models22 or our own calculated covariance matrices.  

All portfolios are rebalanced monthly. However, all risk models are computed 
daily, using typically a rolling 1 year (or 5 years) of daily returns. Portfolio 
performance is also measured daily, which is essential for downside risk metrics 
(e.g. tail dependence, CVaR, etc.) in particular. All portfolios in this section are  
long only, fully invested.  

18.7. An alternative approach for defining diversification 

In this section, we first define an alternative approach to measure  
co-movement in asset returns. Rather than relying on Pearson’s correlation,  
we measure tail dependence between two assets using a copula model. In  
[CAH 13], we demonstrated an interesting way to measure the crowdedness of 
systematic equity strategies – median tail dependence. In this research, we extend  
the tail dependence concept by designing a strategy that proactively avoids  
crowded trades in what we call the minimum tail-dependent portfolio 
(MinTailDependence). 

The purpose of TOBAM’s MaxDiversification (see [CHO 08] and [CHO 13]) is 
to build a portfolio that is as diversified as possible, where diversification is 
measured by Pearson’s correlation. The Pearson’s correlation coefficient only 
measures the dependence between two random variables correctly if they are jointly 
normally distributed. Empirically, asset returns are almost never jointly multivariate 
normally distributed. We may argue that the dependence in the left tail (e.g. the 
chance of both assets suffering extreme losses at the same time) is more relevant in 
risk management and portfolio construction. 

Pfaff [PFA 12] first introduced the minimum tail dependence portfolio 
(MinTailDependence) concept. Similar to MaxDiversification, with 
MinTailDependence we try to build a portfolio that is as “diversified” as possible, 
where “diversification” is measured by tail dependence.  

                         
22 We use Axioma’s medium horizon fundamental risk models for all of our equity, country 
and industry portfolios. 
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18.7.1. Introducing the copula model 

The copula model was first introduced by Sklar [SKL 59]. A more recent 
textbook explanation can be found in [MCN 05]. A copula models the dependence 
between assets in a multivariate distribution. Copula models allow for the 
combination of multivariate dependence with univariate marginals. In a non-
technical sense23, 

onDistributi Marginal  Copula on DistributiJoint +=  

Therefore, a copula model gives us the flexibility to model joint asset return 
distributions. For example, we could fit an exponential GARCH model for each 
asset’s marginal distribution, while at the same time, model the joint distribution 
using a t-copula model. 

In a simple example, tail dependence coefficient can be estimated as: 
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– N  is the squared root of the number of observations rounded to the nearest 

integer. 

Figure 18.6 shows the difference between Pearson’s correlation and copula-
based tail dependence. Tail dependence coefficients among our six countries are 
clearly higher than Pearson’s correlation coefficients – as expected, assets are more 
likely to fall at the same time than the average. Some differences are strikingly large. 
For example, the Pearson’s correlation between Portugal and Spain is only 56%, 
which is quite normal compared to other pairs of countries (e.g. US and Germany). 
However, the tail-dependent coefficient is 86%, which is clearly on the high end. 

                         
23 See [MEU 11].  
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 US Germany Greece Italy Portugal Spain 

US 100% 64% 31% 55% 47% 54% 

Germany 53% 100% 58% 90% 81% 86% 

Greece 25% 33% 100% 59% 61% 59% 

Italy 44% 72% 36% 100% 86% 93% 

Portugal 28% 53% 36% 58% 100% 86% 

Spain 44% 64% 36% 81% 56% 100% 

Figure 18.6. Correlation versus tail dependence (lower triangle = correlation/upper 
triangle = copula tail dependence) (source: Bloomberg Finance LLP, Compustat, 

MSCI, Russell, Thomson Reuters, Deutsche Bank Quantitative Strategy) 

To visually examine how Pearson’s correlation coefficient underestimates the 
true dependence, let us compare the theoretical bivariate normal distribution 
between Portugal and Spain (see Figure 18.7: Panel A), with the empirical 
distribution (see Figure 18.7: Panel B). The empirical distribution between Portugal 
and Spain is clearly bimodal with two distinct peaks (or modes), i.e. the probabilities 
of these two countries both move higher or fall lower are much higher than any 
other combinations. 

 

Figure 18.7 Theoretical Gaussian and empirical bivariate distributions (source: 
Bloomberg Finance LLP, MSCI, Deutsche Bank Quantitative Strategy) 
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18.7.2. Minimum tail dependence portfolio optimization algorithm 

Numerically24, the MinTailDependence portfolio can be solved easily by 
minimizing ψψ Τ′ , where Τ  is the tail dependence matrix. Therefore, the 
MinTailDependence optimization is almost exactly the same as MaxDiversification, 
by replacing the correlation matrix with tail dependence matrix. The final weights 
are then retrieved by rescaling the intermediate weight vector (optimized using the 
tail dependence matrix) with the standard deviations of the assets’ returns. 

Step 1 

tttw ψψ Τ′
2

1
minarg  

subject to: 
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1

≥
=′

t

t

ψ
ιψ

 

where:  

– tw  is the first intermediate vector of asset weights at time t ; 

– tΤ  is the asset-by-asset tail dependence matrix at time t . 

Step 2 

Then, we need to rescale the first intermediate vector of asset weights tw  by 

each asset’s volatility ti,σ : 

ttt D ψξ 2/1−=  or 
ti

ti
ti

,

,
, σ

ψξ =  

where: 

– tξ  is the second intermediate vector of asset weights at time t ; 

– tD  is the diagonal matrix of asset variance at time t  with 2
,tiσ  at its ii,  

element and zero on all off-diagonal elements. 

                         
24 Please note that the calculation follows closely the maximum diversification, as shown by 
Choueifaty and Coignard [CHO 08]. 
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Step 3 

Finally, we rescale the second intermediate asset weight vector of the total 
weight, so the sum of the final weights equal to 100%, i.e. no leverage. 
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18.7.3. Alternative beta portfolios 

Now, let us demonstrate the benefit of our MinTailDependence portfolio in the 
context of alternative beta portfolios. Investing along the alternative beta portfolios 
(also called risk premia or risk factors) has become fairly popular in recent years, 
especially among asset owners.  

Here, we define five simple alternative beta factor portfolios in global equities: 

– value, based on trailing earnings yield; 

– momentum, based on 12-month total returns excluding the most recent month; 

– quality, based on return on equity; 

– size: MSCI World SmallCap total return index – MSCI World LargeCap total 
return index; 

– low volatility/low risk, based on trailing 1-year daily realized volatility. 

All portfolios (other than size) are constructed for the MSCI World universe, in a 
regional and sector neutral way, by forming a long/short quintile portfolio, equally 
weighted within the long and short portfolios. We divide the MSCI World into the 
following regions: US, Canada, Europe (e.g. UK), UK, Asia (e.g. Japan) and 
Australia/New Zealand. We select equal number of stocks from each region in each 
of the 10 GICS sectors. For those region/sector buckets where we have less than five 
stocks, we do not invest in those buckets. 

It is interesting to see that all portfolios constructed on alternative betas significantly 
outperform the benchmark MSCI World Index, with much higher Sharpe ratios (see 
Figure 18.8) and much lower downside risks (see Figure 18.9). Our MinTailDependence 
strategy displays the highest Sharpe ratio and the lowest downside risk. 
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Figure 18.8. Sharpe ratio (source: Bloomberg Finance LLP, Compustat, MSCI, 
Russell, Thomson Reuters, Deutsche Bank Quantitative Strategy). For a color 

version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

 

Figure 18.9. CVaR/expected shortfall25 (source: Bloomberg Finance  
LLP, Compustat, MSCI, Russell, Thomson Reuters, Deutsche Bank  

Quantitative Strategy). For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

                         
27 We compute the realized CVaR using the Cornish–Fisher expansion explained in [FAV 02] 
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18.8. An alternative definition of risk 

Second, we give a practical introduction to conditional value at risk (also called 
expected shortfall) and how to construct a portfolio that minimizes expected CVaR, 
i.e. the MinCVaR portfolio. We further develop a new algorithm by combining 
robust optimization and CVaR optimization into what we call robust CVaR 
optimization, which shows great promise by outperforming other portfolio 
construction techniques in terms of both Sharpe ratio and downside risk.  

The MinTailDependence portfolio (along with maximum diversification) helps 
us better capture diversification benefits, while the MinCVaR strategy (along with 
global minimum variance portfolio) attempts to manage risk better. 

18.8.1. Minimum CVaR portfolio 

CVaR or conditional value at risk is a statistical measure of tail risk, measured 
by assessing the likelihood (at a specific confidence level) that a specific loss will 
exceed the VaR. Mathematically speaking, CVaR is derived by taking a weighted 
average between the VaR and losses exceeding the VaR.  

Rockafellar and Uryasev [ROC 00, ROC 01] first introduced portfolio 
optimization with CVaR or conditional value at risk. In the risk management 
literature, VaR or value at risk is criticized as being an incoherent risk measure. 
However, CVaR, which is also referred as expected shortfall, is a coherent risk 
measure. In portfolio optimization, CVaR is a convex function, while VaR is not 
necessarily convex26. More importantly, as shown in [ROC 01], CVaR optimization 
can be transformed into linear optimization, which tends to be easier to solve. 

Despite the theoretical soundness of the CVaR methodology, in practice, we 
have to estimate CVaR empirically and face all the usual problems with estimation 
errors. It is the same trade-off between model error versus estimation error, i.e. we 
could have a better model, but may have larger estimation error.  

Let us use country equity portfolio as an example. Our sample includes 45 
countries comprising the MSCI All Country World Index (ACWI). We use daily 
total returns in USD to perform all portfolio backtests below. All strategies are 
monthly rebalanced and constrained to be long only. 

                         
26 The problem with non-convex optimization is that we may get local optima instead of 
global optima. Therefore, a global optimizer is typically required, while global optimizations 
tend to be very slow. 
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18.8.2. CVaR optimization theory 

Here, we will only give a very brief description of the CVaR optimization 
problem and corresponding algorithm. A more detailed exposure can be found in 
[ROC 00, ROC 01]. 

In the CVaR optimization setup, let us define ω  as the vector of asset weights 
(i.e. our decision variable). The asset return distribution is defined by vector r . The 
loss function is further defined as ( )rf ,ω . γ  is the value-at-risk and α  is our 

confidence level. The minimum CVaR optimization can be transformed as: 
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Therefore, the minimum CVaR optimization problem can be solved by linear 
programming algorithms. 

18.8.3. Mean-CVaR efficient frontier and minimum CVaR portfolio 

Similar to the mean-variance efficient frontier, we can define the mean-CVaR 
efficient frontier as a hyperbola containing portfolios with the following 
characteristics: for given level of risks (defined as CVaR), they have the highest 
expected returns. The portfolio that separates the efficient frontier from the lower 
border of the feasible set is the global minimum CVaR portfolio (i.e. the MinCVaR 
portfolio). Figure 18.10 shows the mean-CVaR efficient frontier, using our simple 
six-country equity index example. 

18.8.4. Robust minimum CVaR optimization 

The traditional CVaR optimization conducts the linear optimization using 
historical returns. To ensure the optimized weights are robust to a specific set of 
observed returns, we propose a new optimization technique that we will call “robust 
minimum CVaR optimization” or RobMinCVaR. We borrow the ideas from robust 
optimization (see [MIC 98] and traditional CVaR optimization above). In summary, 
we fit historical returns to a prespecified multivariate distribution. Next, we simulate 
multiple sets of historical returns. 
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Figure 18.10. Mean-CVaR efficient frontier (source: Bloomberg Finance  
LLP, MSCI, Deutsche Bank Quantitative Strategy). For a color version  

of the figure, see www.iste.co.uk/jurczenko/risk.zip 

18.8.4.1. Fitting a multivariate skew-t distribution 

To fully account for the nature of non-multivariate normal distribution in asset 
return data, we fit our 45-country return data at each month end, using 5 years of 
rolling daily returns to a multivariate skew-t distribution. The family of multivariate 
skew-t distributions is an extension of the multivariate Student’s t family, via the 
introduction of a shape parameter which regulates skewness. The fits are done using 
maximum likelihood estimation (see [AZZ 99] and [AZZ 03]). 

18.8.4.2. Robust minimum CVaR optimization 

We then simulate 50 time series of the same 5 years of daily country returns with 
the above fitted multivariate skew-t distribution, for these 45 countries at each 
month end. Then, we can construct 50 MinCVaR portfolios – one for each simulated 
data. We further construct our final portfolio using three approaches: 

– average (RobMinCVaR-Avg): we simply average the weights of the 50 asset 
weight vectors; 
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– the most conservative portfolio (RobMinCVaR-Conservative): for each of the 
50 MinCVaR portfolios, we calculate the expected CVaR, then we take the portfolio 
with the lowest CVaR, i.e. the worst-case scenario portfolio, as our final portfolio; 

– the most optimistic portfolio (RobMinCVaR-Optimistic): for each of the 50 
MinCVaR portfolios, we calculate the expected CVaR, then we take the portfolio 
with the highest CVaR, i.e. the most optimistic case scenario portfolio, as our final 
portfolio. 

In the following simulation, we fix α  at the 10% level. All three RobMinCVaR 
portfolios outperform the traditional MinCVaR strategy, with higher Sharpe ratios 
(see Figure 18.11) and slightly higher downside risks (see Figure 18.12). The 
RobMinCVaR-conservative portfolio, in particular, shows a decent Sharpe ratio. 
Indeed, even compared to all other risk-based allocation techniques, the 
RobMinCVaR portfolio shows the highest Sharpe ratio (see Figure 18.13) and the 
second lowest downside risk (see Figure 18.14). 

The biggest challenge in our RobMinCVaR optimization is computational speed. 
It can be slow even when the number of assets is modest. For example, with 45 
countries, it takes about 30 s per period. If we run 50 simulations over the past 14 
years, it can take around 3 days for a complete backtesting.  

 

Figure 18.11. Sharpe ratio (source: Bloomberg Finance LLP, MSCI,  
Deutsche Bank Quantitative Strategy). For a color version of the  

figure, see www.iste.co.uk/jurczenko/risk.zip 
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Figure 18.12. CVaR/expected shortfall (source: Bloomberg Finance LLP,  
MSCI, Deutsche Bank Quantitative Strategy). For a color version of  

the figure, see www.iste.co.uk/jurczenko/risk.zip 

 

Figure 18.13. Sharpe ratio – risk-based allocations (source: Axioma, Bloomberg 
Finance LLP, Compustat, MSCI, Russell, Thomson Reuters, Deutsche Bank 

Quantitative Strategy). For a color version of the figure, see 
www.iste.co.uk/jurczenko/risk.zip 

-.120

-.115

-.110

-.105

-.100

Benchmark (MSCI ACWI) Min CVaR, 1% conf
Min CVaR, 5% conf Min CVaR, 10% conf
Robust min CVaR, avg Robust min CVaR, conservative
Robust min CVaR, optimistic

Cornish-Fischer modified CVaR, 95%

.0

.2

.4

.6

.8

Benchmark (MSCI ACWI) Equally w eighted
Inverse Vol Risk parity
Global min variance Max diversification
Min tail dependence Robust min CVaR

SharpeRatio



428     Risk-Based and Factor Investing 

 

Figure 18.14. CVaR/expected shortfall (source: Axioma, Bloomberg Finance LLP, 
Compustat, MSCI, Russell, Thomson Reuters, Deutsche Bank Quantitative Strategy). 

For a color version of the figure, see www.iste.co.uk/jurczenko/risk.zip 

18.8.5. Choice of alpha parameter 

In MinCVaR optimization, one of the key input parameters is the confidence 
level α. The choice of α  is more art than science. Therefore, let us first experiment 
with three different levels of α  and study the impact of parameter sensitivity. We 
use our country portfolio as an example by investing in the 45 countries comprising 
the MSCI ACWI. We further set the α  at 1, 5 and 10%. As shown in Figure 18.12 
and 18.13, the MinCVaR portfolio is not very sensitive to the choice of α. More 
importantly, all three portfolios significantly outperform the capitalization-weighted 
benchmark. 

18.9. Comparison of different risk-based portfolio construction 
techniques 

18.9.1. The philosophy of portfolio construction 

In summary, we survey seven risk-based allocations and compare their 
performance with the more traditional capitalization-weighted benchmark. Using 
our country equity portfolio example explained in the CVaR optimization section 
18.8, we perform a cluster analysis on the monthly returns (from 1999 to 2013) of 
seven risk-based portfolios, along with the benchmark (MSCI ACWI). Among the 
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seven portfolio construction techniques, we can see that they form four distinct 
clusters27 (see Figure 18.15): 

– benchmark; 

– naive diversification: equally weighted, inverse volatility/volatility parity, risk 
parity/equal risk contribution; 

– sophisticated diversification techniques: maximum diversification28 and 
minimum tail dependence; 

– sophisticated risk reduction techniques: global minimum variance and 
minimum CVaR. 

 

Figure 18.15. Cluster analysis (source: Bloomberg Finance LLP,  
MSCI, Deutsche Bank Quantitative Strategy) 

                         
27 A dendrogram shows the similarity among a group of entities. The arrangement of the 
branches (called “leaves” in cluster analysis) tells us how similar they are. The more closely 
they are connected to each other, the higher the correlation. The height of the branch also 
indicates similarity. The greater the height, the greater the difference. 
28 This is TOBAM’s maximum diversification technique or the most diversified portfolio. 
Both are trademarks of TOBAM. 
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18.9.2. A horse race of risk-based portfolio construction techniques 

To obtain a fair comparison of the seven risk-based portfolio construction 
techniques, we backtest their performance in three different contexts, over 17 
portfolios. All portfolios are constructed out-of-sample, long-only, monthly 
rebalanced, from 1999 to 201329: 

– asset allocation: multi-asset allocation, global sovereign bonds, commodities 
and alternative betas; 

– country, sector and industry allocation: global countries, economic risk-
hedged global countries30, global sectors, US sectors, European sectors, global 
industries and region x sector combinations; 

– equities: US equities, European equities, Asia, (e.g. Japan equities), Japanese 
equities, emerging markets equities and global equities. 

In terms of Sharpe ratio (see Figure 18.16), GlobalMinVar achieves the highest 
Sharpe ratio overall, followed by MinTailDependence and MaxDiversification. 
Capitalization-weighted benchmark delivers the lowest Sharpe ratio, followed by 
naive EquallyWgted and InvVol strategies. The comparison along other risk 
dimensions can be found in [LUO 13c]. 

18.10. Conclusion 

In this chapter, we have discussed how investors are starting to implement risk 
premia investing as a top-down element of their overall investment strategy, and 
highlighted the benefits this is likely to confer versus traditional asset-class 
allocation practices. Despite practical challenges to full adoption of risk premia 
investing as the new asset allocation paradigm, particularly by large institutional 
investors, we believe factor investing is here to stay. We have also introduced two 
innovative risk-based portfolio construction techniques that can be used, among 
other applications, to build risk-factor portfolios, and compared them with 
traditional risk-based algorithms. In particular, we have developed a new a 
lgorithm that combines robust optimization with CVaR optimization into what  
we call robust CVaR optimization, which shows great promise by outperforming 
other portfolio construction techniques in terms of both Sharpe ratio and downside 
risk.  

                         
29 The exact specification of each portfolio can be found in [LUO 13b]. We do not include 
robust minimum CVaR in this simulation, due to computational speed concerns. 
30 Defined in [LUO 13a]. 
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Sharpe ratio Benchmark Equally
Wgted

Inv Vol Risk Parity Global Min
Var

Max
Diversification

Min Tail
Dependence

Asset allocation, avg 
ranking 

6 7 5 4 2 1 3

Multi-assets 7 6 4 2 5 1 3

Sovereign bonds 4 7 6 5 1 2 3

Commodities 6 6 4 5 1 2 3

Alternative betas 7 6 5 4 2 3 1

Country/sector 
allocation, avg ranking 

7 6 5 3 1 4 2

Countries, MSCI ACWI 7 6 5 4 3 2 1

Countries, MEAM 7 5 6 4 2 3 1

Sectors, MSCI 7 5 2 3 1 6 4

Sectors, US 7 5 2 3 1 6 4

Sectors, Europe 7 6 3 2 1 4 5

Industries, MSCI 7 6 5 3 1 4 2

Regions x sectors, MSCI 7 6 5 3 1 2 4

Equities, avg ranking 7 6 5 4 3 3 3
US 7 6 5 4 2 1 3

Europe 7 2 1 3 6 5 4

Asia, e.g. Japan 7 6 5 4 2 3 1

Japan 7 5 4 3 1 2 6

Emerging markets 7 4 2 3 5 6 1

Global 7 6 5 4 2 1 3

Overall ranking 7 6 5 4 1 3 2

Figure 18.16. Sharpe ratio ranking (source: Axioma, Bloomberg  
Finance LLP, Compustat, MSCI, Russell, Thomson Reuters,  

Deutsche Bank Quantitative Strategy) 
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Multi-Factor Portfolio Construction for 
Passively Managed Factor  Portfolios 

Transparent rule-based index-tracking portfolios that employ alternative weighting schemes 
have grown rapidly in the last decade, especially within equities. These passively managed 
factor portfolios can be constructed in many ways, ranging from relatively simple rule-based 
approaches that specify weights as a function of factor characteristics to more complex 
optimization-based ways. Both single factor and multiple factor portfolios can be constructed. In 
the latter case, an often asked question is whether it is better to combine individual factor 
portfolios or build a multi-factor portfolio from the security level. Here, we show that a bottom-up 
approach to multi-factor portfolio construction can produce superior results than a combination 
of individual single factor portfolios, at least for well-known factors such as value, quality, low 
volatility and momentum. Because the bottom-up approach assigns weights to securities on 
multiple factor dimensions simultaneously, it accounts for cross-sectional interaction effects in a 
way that combining single-factor portfolios does not.  

19.1. A short history of passively managed factor portfolios 

Transparent rule-based index-tracking portfolios that employ alternative 
weighting schemes have grown rapidly in the last decade, especially within equities. 
Today, these types of non-market cap-weighted portfolios go by the term “advanced 
beta”, “smart beta”, “systematic strategies”, “factor-based investing” and more. 
These strategies are passively implemented in the same way as traditional passive 
portfolios. Because of this, they retain the benefits of passive management including 
full transparency and low costs, with the potential to earn higher returns and/or  
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deliver lower volatility than market cap-weighted portfolios. Particularly, over  
long periods, many investors are increasingly viewing them as a more cost-effective 
way to enhance returns relative to traditional active management. A wealth of  
papers have been written on these non-market cap-weighted strategies, which we 
refer to as passively managed factor (PMF) strategies for the remainder of this 
chapter1.  

The earliest PMF strategies applied an alternative weighting scheme to market 
capitalization weighting. Examples include Gross Domestic Product (GDP)-
weighted portfolios in the 1980s, equal-weighted portfolios in the 1990s and more 
recently, fundamental-weighted portfolios in the 2000s. GDP weighting applies 
GDP weights as country weights in a global equity portfolio, while equal weighting 
and fundamental weighting assign equal weights to securities or weights based on 
company fundamentals such as book value, respectively. Proponents of these 
strategies were typically critical of cap weighting and argued that these alternative 
weighting schemes were superior either because they were more representative of 
investment value or more diversified (less concentrated).  

Since 2008, an alternate way of viewing PMF portfolios has emerged, one that 
focuses on the underlying factors. This approach focuses on what “pure” factors 
(value, size, quality, momentum, etc.) the portfolios are exposed to, and derive their 
returns, from. The pure factors, beginning with the multi-factor models of Ross 
[ROS 76] are those that have been widely researched in the academic literature, have 
strong theoretical foundations and have exhibited persistence over multiple decades. 
Viewing PMF as a way to capture pure factors means it is consistent with the way 
academics have viewed factors, most widely popularized by Fama and French’s 
seminal three-factor model, and extended over the years by countless others. It also 
grounds PMF investing in the same broad investing principles that underlie many 
active management approaches. 

These factors represent systematic sources of return and risk, “risk premia” or 
arise because of mispricing of securities by investors which fail to be arbitraged 
away or because of market frictions. Increasing familiarity with traditionally 
academic factor models and newer commercially available factor models has driven 
greater adoption of this factor-based approach.    

19.2. Single-factor portfolio construction 

There are a range of techniques that can be used to build single-factor portfolios. 
Equal weighting, GDP weighting, fundamental indexation and its close companion  
 

                         
1 See [ANG 09, ANG 13, URW 11, BEN 13a] and [BEN 13b]. 
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wealth weighting were compelling because they were intuitive and did not employ a 
black box algorithm such as optimization, which meant security weights could be 
directly tied to the securities’ observable characteristics. Subsequent factor-based 
approaches could also be constructed in a similar manner; these can be viewed as 
“heuristic” or rule-based methods which use a set of rules to specify security 
weights as a function of the factor characteristics. Fama–French factor portfolios, for 
instance, while typically not viewed as PMF, are in fact rules-based factor 
portfolios. However, these were never meant to be investable portfolios, their long-
short construct being difficult to scale. 

Heuristic methods fall under one of the two categories: benchmark-independent 
or benchmark-relative. A benchmark-independent approach specifies a function for 
determining the weights that does not recognize the role of a benchmark (a market 
cap-weighted portfolio). A benchmark-dependent approach, however, does. 
Fundamental indexation, equal weighting and risk weighting are all examples of 
benchmark-independent approaches as shown in equations [19.1]–[19.3]. 

Equal weights: 
N
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1=  [19.1] 

Fundamental indexation weights: 

∑
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where iw  is the weight of stock i in the portfolio, N is the number of stocks in the 

universe, iF  is the fundamental value of stock i (e.g. book value, earnings, etc.) and 
2
iσ  is the variance of stock i. 

Benchmark-relative approaches on the other hand incorporate market cap-
weighting explicitly. For instance, one popular way is to apply multipliers to market 
cap weights: 

Tilted factor portfolio weights: imktcapii ww γ,=  [19.4] 

where iγ  is a scalar applied to the market cap weight of each stock. The scalar iγ  

can be specified in many ways. It can be the result of a mapping function based on 
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the security’s factor characteristics. It can be nonlinear or linear cross-sectionally, 
and it can be unique for each security or unique for groups of securities. 

In addition to the weighting scheme, stock screening decisions also drive the 
performance and characteristics of the portfolio. These two decisions together 
determine the main characteristics of the portfolio (risk, return, excess return, 
relative risk, liquidity, concentration, etc.). In tilted portfolios, for instance, the 
greater the amount of stocks screened or the more aggressively the weighting 
scheme departs from cap weighting, the higher the relative risk (or tracking error), 
the higher the turnover, the lower the liquidity and so forth.   

Benchmark-relative approaches have appeared to become the more preferred 
route in recent years primarily because of several reasons. First, there has been a 
broad adoption of market cap-weighted indices as performance and policy 
benchmarks by institutional investors. In this context, factor exposures are viewed as 
active exposures relative to the market cap-weighted index. Second, benchmark-
relative approaches are more consistent with academic models such as Fama–
French. In this model, for instance, the market factor is the first factor such that size 
Small Minus Big (SMB) and value High Minus Low (HML) are meant to capture 
effects excess or net of the market. When benchmark-relative portfolios are 
regressed on Fama–French factors, the signs of the exposures are consistent with the 
targeted factors. In the same vein, “anti-tilted” portfolios which tilt away from a 
particular factor do in fact underperform the benchmark and exhibit the opposite 
signs on Fama–French exposures. Further discussion appears in [BEN 15]. 

Besides heuristic or rules-based approaches, more complex portfolio 
construction methods can be used. PMF does not preclude per se the use of 
quadratic optimization or linear or nonlinear algorithms. Optimization has widely 
been accepted for building minimum volatility portfolios, for instance not least 
because it is by far the most efficient way to do so. Standard mean-variance 
quadratic optimization could be used for PMF portfolios. Recall the unconstrained 
optimal solution from [GRI 00] which maximizes the function: 

www Σ′−′
2

max
λα  [19.5] 

where w  is the vector of active weights, Σ  is the covariance matrix, α  is the 
vector of alphas and λ  is the risk aversion parameter. The optimal portfolio is given 
by: 

α
λ

11
* −Σ=w  [19.6] 
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Equation [19.6] is not dissimilar from equations [19.1]–[19.4]. Security weights 
are a function of alpha (which could just be some normalized factor characteristic or 
exposure), risk and risk aversion. In practice, however, constraints are typically 
required to arrive at realistic portfolios, since quadratic optimization tends to select 
extreme outcomes if no constraints are set and to potentially become error-
maximizers, such that estimation noise in the inputs is magnified in the optimal 
weights; see [MIC 98]. Once constraints are introduced, the closed form solution in 
equation [19.6] no longer holds and the link between optimization inputs and 
portfolio weights quickly becomes less clear.  

While the use of more complex portfolio construction techniques is not barred in 
PMF portfolios, because they tend to run contrary to transparency, their usage is likely 
to be limited. This issue arises because the active decision to own factors is made by 
the investors, and not by the asset managers. Passive managers hired to track a factor 
index cannot be held accountable if the factor underperforms since their objective is to 
track the index. Because the investors own the factor investing decision, they must be 
comfortable in understanding the methodology behind the indices. More generally, if 
the goal is broad exposure to one or more factors, which we believe it should be in 
PMF, we believe that both approaches will achieve the desired result. 

19.3. Why combine multiple factors? 

So far, we have discussed single-factor portfolio construction in broad terms 
without referencing the actual factors, arguably the most important point in PMF 
investing. Factor research (also known as the asset pricing anomaly research) 
comprises a vast body of academic literature. The most widely discussed factors 
include the original Fama–French–Carhart factors – value, size and momentum – 
and a handful of additional factors which have received moderate treatment – (low) 
volatility, quality, liquidity and yield. Numerous other stock characteristics have 
also been studied, spanning across income statement and balance sheet measures 
such as earnings revisions and accruals, technical indicators such as volatility and 
relative strength (momentum) and even non-financial factors such as media 
coverage, Internet hits and environmental, social and governance (ESG) themes. 

There are several main camps in the debate over what drives factor returns. In 
the first camp are those who argue that factors earn excess returns because there is 
systematic risk attached to them. Markets are generally efficient and these factors 
reflect “systematic” sources of risk. In the second camp, factors are thought to earn 
excess returns because of investors’ systematic errors which lead to persistent 
mispricing. These systematic behaviors are a result of investors collectively 
exhibiting behavioral biases and barriers which prevent these from being arbitraged 
away. A third camp focuses on market frictions giving rise to these anomalies, for 
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instance the fact that many investors cannot use leverage. All three rationales have 
been proposed for value and size, while momentum, quality and low volatility tend 
to rest on investor mispricing mistakes or market frictions.  

Since factors are unobservable, there is a limit to how certain investors can be 
around their existence and persistence. Following the old adage that “it is better not 
to put all of one’s eggs in one basket”, employing multiple factors has been one 
manner in which investors have diversified this information uncertainty. This is the 
first leg of the diversification argument for multi-factor investing. 

The second leg of the diversification argument is that empirically, factors also 
have exhibited variation in performance over time, such that they diversify each 
other. In Table 19.1, we summarize the performance of factor portfolios over the 
past two decades. These portfolios are developed market securities formed from the 
MSCI World Index universe, where securities ranked higher on the relevant factor 
are overweight relative to the benchmark and securities ranked lower are 
underweight. (The details behind these portfolios, including the actual metrics used 
for these factors, are discussed in section 19.6). All five portfolios have historically 
outperformed the market cap-weighted benchmark, the MSCI World Index, and 
have exhibited higher return-to-risk ratios and moderate-to-robust information ratios 
(Table 19.1). 

 Value Volatility Size Momentum Quality  

 
Valuation 

tilt 
(Low) 

Volatility tilt
(Low) 

Size tilt 
Momentum 

tilt Quality tilt 
MSCI 
World 

Annualized returns 9.15% 8.39% 8.86% 8.69% 9.04% 7.82% 

Annualized standard deviation 15.74% 13.01% 15.26% 14.66% 13.85% 14.98% 

Return to risk ratio 0.58 0.64 0.58 0.59 0.65 0.52 

Annualized excess returns 1.34% 0.57% 1.04% 0.87% 1.22% – 

Tracking error 3.39% 3.44% 2.87% 4.40% 2.36% – 

Information ratio  0.39 0.17 0.36 0.20 0.52 – 

Table 19.1. Tilted factor portfolios, performance (Gross USD Monthly  
Returns, March 1993–December 2014, Global, Universe = MSCI World Index). The 
valuation tilted strategy tilts toward stocks with higher than average book-to-price, 
sales-to-price, earnings-to-price, cash flow to price and dividend yield. The low 
volatility tilted strategy tilts toward stocks with lower than average historical return 
volatility, while the low size tilted strategy tilts toward smaller cap stocks in the MSCI 
World Index (i.e. mid caps). The momentum tilted strategy tilts toward stocks with 
higher than average trailing 12-month returns, while the quality tilted strategy tilts 
toward stocks with higher than average return-on-assets and lower than average 
earnings-per-share variability and long-term debt to equity. Underlying factors are 
shown in the first row with the relevant tilted strategy underneath. Excess returns are 
the returns to the tilted strategies minus the benchmark (MSCI World). Tracking error 
is the standard deviation of excess returns annualized. The information ratio is 
excess returns divided by tracking error  



Multi-Factor Portfolio Construction for Passively Managed Factor Portfolios     441 

Next, Table 19.2 displays the correlations of the factor portfolios over the March 
1993–December 2014 period. Correlations are generally low, sometimes negative. 
The highest correlations are between value and size, and low volatility and quality. 
The lowest correlations are between value and momentum, value and quality, and 
size and quality. 

 Value Volatility Size Momentum Quality 

 Valuation tilt
(Low) Volatility 

tilt 
(Low) Size 

tilt 
Momentum 

tilt Quality tilt 

Valuation tilt 1.00     

(Low) Volatility tilt 0.13 1.00    

(Low) Size tilt 0.60 –0.02 1.00   

Momentum tilt –0.42 0.23 –0.22 1.00  

Quality tilt –0.38 0.53 –0.36 0.31 1.00 

Table 19.2. Correlation of excess returns (Gross USD Monthly Returns,  
March 1993–December 2014). Underlying factors are shown in the first row  

with the relevant tilted strategy underneath. Excess returns are the returns to  
the tilted strategies minus the benchmark (MSCI World) (source: SSgA, Factset) 

The correlations above are just one view of diversification, measuring month-to-
month co-movement between two PMF strategies. Another view of diversification is 
through their co-movement over longer periods. Rolling excess returns averaged 
over the preceding 3 years are shown in Figure 19.1. For example, between 2004 
and 2007, quality and momentum significantly underperformed the market, but 
value and size significantly outperformed the market. There have been only a 
handful of periods, all short-lived, where all the factors performed poorly, for 
instance in 2003.  
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Figure 19.1. Alleviating timing risk as seen through returns over time  
(Gross USD Monthly Returns, March 1993–December 2014). The relevant tilted 
strategies are shown for each underlying factor. Excess returns are the returns  

to the tilted strategies minus the benchmark (MSCI World) (source: SSgA, Factset) 

Having said that, as evidenced in Figure 19.1, all five factors have historically 
undergone prolonged periods of underperformance. Combining multiple factors 
alleviates the problem but does not completely eliminate it. Even if multiple factors are 
employed, PMF investing requires patience to harvest premiums over the long run.  

19.4. Multi-factor portfolio construction 

Multi-factor portfolios can be constructed into two main ways. The simplest way is 
to combine single-factor portfolios, such as the ones shown in Tables 19.1 and 19.2 
and Figure 19.1, into one portfolio. Another way is to build the portfolio from the 
security-level up (“bottom-up”), incorporating all the factor characteristics 
simultaneously. Intuitively, the latter approach is more compelling since this approach 
evaluates securities on the multiple dimensions simultaneously. Asness [ASN 97] 
highlighted, for instance, interaction effects between value and momentum. Mixing 
portfolios independently constructed may miss these interaction effects. However, 
analogous to working with “building blocks,” combining single-factor portfolios does 
have benefits for performance attribution and reallocation across factors.  

We focus on comparing the “bottom-up” versus the “combination” methods 
within the context of the tilted portfolio approach where market cap weights are 
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scaled by a multiplier. First, it may be helpful to point out that there is only one 
condition under which the two approaches will be identical: 

– the starting weight (which the multiplier is applied to) is equal weight; 

– multipliers do not capture information about the cross-sectional distribution of 
securities. For instance, ranks are used to identify the relative attractiveness of the 
10 securities, not scores, and no two securities have the exact same rank (among any 
of the factors). 

To illustrate this, we show portfolios of 10 securities in Table 19.3 (left panel) 
that blend three simple “factors” – dividend yield, book-to-price and return-on-
assets as of 31 December 2014. For the combination portfolio, we rank securities for 
each of the three factors. We assign multipliers to equal weights (10%), and cap 
weights, which are identical to the stocks rank (e.g. a stock ranked 5 has a multiplier 
of 5). The scaled weights are then rescaled to sum to 100%. Then, we blend the 
three resulting portfolios into one using equal weights. For the bottom-up Portfolio, 
after we rank securities, we compute an average (equally weighted) rank across the 
three factors and multiply this combined rank by security market cap weights (or 
equal weights). We rescale the weights to sum to 100%. 

Rank-based approach (left panel) Score-based approach (right panel) 

  
Applied to equal 

weights 
Applied to market 

cap weights  
Applied to equal 

weights 
Applied to market cap 

weights  

  
Comb. 

portfolio 
Bottom-

up 
Comb. 

portfolio
Bottom-

up 
Comb. 

portfolio
Bottom-

up 
Comb. 

portfolio Bottom-up 

633987 10.30% 10.30% 3.61% 2.95% 10.42% 12.73% 3.61% 3.15% 

B1YW44 6.67% 6.67% 0.28% 0.25% 6.71% 1.82% 0.28% 0.06% 

88579Y10 10.91% 10.91% 9.30% 10.04% 10.92% 14.55% 9.30% 11.58% 

425304 8.48% 8.48% 10.49% 9.97% 8.54% 7.27% 10.49% 7.39% 

425305 7.88% 7.88% 8.91% 8.94% 7.33% 3.64% 8.91% 3.57% 

710889 8.48% 8.48% 4.33% 3.59% 8.56% 10.91% 4.33% 3.99% 

00282410 14.55% 14.55% 9.29% 8.51% 14.65% 18.18% 9.29% 9.21% 

00287Y10 10.30% 10.30% 9.21% 9.27% 10.33% 9.09% 9.21% 7.08% 

629210 12.12% 12.12% 43.97% 45.98% 12.15% 16.36% 43.97% 53.73% 

000312 10.30% 10.30% 0.61% 0.51% 10.39% 5.45% 0.61% 0.23% 

Correlation 1.00   1.00   0.87   0.99   
Absolute sum of 
weight differences 0.00%   5.70%   32.05%   24.09%   

Table 19.3. Bottom-up versus combination method, 10-stock example:  
rank versus score-based (31 December 2014) 



444     Risk-Based and Factor Investing 

If we apply the multipliers to equal weights, we see in Table 19.3 that the two 
resulting portfolios are identical; that is the bottom-up multi-factor portfolio is 
identical to the combination portfolio in the left panel. This is the only scenario in 
which the two portfolios can be the same; when no cross-sectional distributional 
information is captured in the multiplier (e.g. ranks are used, each security receives 
one unique rank and no two ranks are the same), and the multipliers are applied to 
equal weights. Note that in the right panel, while the correlation between the weights 
in the two portfolios is 1.0, because the “excess weight” (the difference between the 
sum of the weights and the 100% target weight) is distributed unevenly across 
securities so that higher ranked larger stocks receive more weight, the weights for 
the two portfolios are different. 

Similarly, if we use scores instead of ranks, the two outcomes are different, 
whether or not we apply the multipliers to equal weights or cap weights. For scores, 
we normalize the raw metrics for each security by subtracting the mean and dividing 
by the standard deviation across securities, for each factor. Scores preserve the 
distributional characteristics of each factor in a way that ranks do not. If a security 
has an extremely high price-to-book relative to the other securities, that 
“extremeness” will be captured by the score. Since multipliers cannot be negative 
for long-only portfolios, we use the ranks of the scores, and not the scores 
themselves, as the multipliers. Note that average rank is not the same as a rank based 
on average score. The latter is what we use in the bottom-up portfolio and it does 
indeed capture distributional characteristics. Table 19.3 (right panel) summarizes the 
difference between the rank-based approach and the score-based approach.    

The score-based approach results in portfolios that are meaningfully more 
different from each other than the rank-based approach. In the case where 
multipliers are applied to equal weights, the correlation falls to 0.87 and the absolute 
sum of the weight differences is 32%, considerably higher than both rank-based 
examples. In the case where multipliers are applied to market cap weights, the 
correlation remains high at 0.99 but the absolute sum of the weight differences 
remains quite high at 24%.  

We have seen with a highly stylized hypothetical 10-security example that 
scoring has a far greater impact than ranking when comparing combination versus 
bottom-up approaches to multi-factor portfolio construction. But, how much of an 
impact does it have in more realistic portfolios that employ a much larger number of 
securities? 

We conduct the following simulations to further our understanding:  

– combination portfolio: for the combination portfolio, we create the following 
single-factor portfolios: value, low volatility, quality and momentum. The 
definitions for factors are the same used in the tilted portfolios (section 19.6). Our 
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universe is the MSCI World Index. First, we rank the securities by each metric. 
Second, we group the securities into 20 fractiles, which we also refer to as 
subportfolios. We apply a fixed set of multipliers (linearly interpolated between 0.25 
and 2.0 in increments of 0.25) to the market cap weight of the security depending on 
which fractile (subportfolio) it falls in. Finally, we rescale the weights such that they 
sum to 100%. The combination portfolio is an equally weighted average of the four 
individual factor portfolios. All portfolios are rebalanced monthly; 

– bottom-up portfolio: first, we assign scores to securities for each factor. 
Second, we average the scores (equally weighting the factors). Third, we group the 
securities into 20 fractiles/subportfolios based on their average scores. We then 
apply the same fixed set of multipliers as in the combination portfolio depending on 
the fractile the security falls in. Finally, the weights are rescaled such that they sum 
to 100%. The factor definitions, universe, rebalancing frequency are the same as 
above. 

The results are summarized in Table 19.4. The bottom-up returns are higher than 
any of the underlying component factor returns, and higher than the combinations. 
The difference is not insignificant, a spread of 86 basis points. Moreover, the 
volatility of the bottom-up approach is significantly lower and risk-adjusted return 
increases from 0.73 to 0.84 between the two approaches. This suggests that there are 
interaction effects important to capture. While these relationships are not likely to be 
the same across all factor combinations, we suspect that for the most well-known 
factors – value, size, volatility, momentum, etc. – these interaction effects will exist. 

Value 
portfolio 

Low volatility 
portfolio 

Quality 
portfolio 

Momentum 
portfolio 

Combination 
portfolio Bottom-up 

Annualized return 11.63% 10.69% 10.40% 10.91% 10.94% 11.80% 

Annualized volatility 17.05% 13.77% 15.05% 15.07% 15.06% 14.12% 

Risk-adjusted return 0.68 0.78 0.69 0.72 0.73 0.84 

Excess return 3.49% 2.55% 2.26% 2.77% 2.80% 3.66% 

Tracking error 7.12% 5.19% 4.43% 4.52% 4.78% 5.10% 

Information ratio 0.49 0.49 0.51 0.61 0.59 0.72 

Table 19.4. Combination versus bottom-up approach, four-factor  
portfolios (January 1993–March 2015, Gross USD Returns) 

19.5. Conclusion 

PMF portfolios have emerged in recent years as an alternative to investors 
dissatisfied with market-cap weighting or as an explicit way to achieve exposure to 
well-known factors that have been shown to drive stock returns. These portfolios 
employ indices and portfolios are managed to these indices just as in traditional 
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passive investing. Thus, PMF investing has the same benefits as traditional passive 
investing – transparency, implementation efficiency and low costs. These 
innovations are changing the investment landscape, which until recently, was 
composed of traditional passive investing and active management.  

Portfolios can be constructed in many ways, ranging from relatively simple 
rules-based approaches that specify weights as a function of factor characteristics to 
more quantitatively-oriented ways that utilize more complex functions. Within 
multi-factor portfolio construction, we show that a bottom-up approach can produce 
superior results than a combination of individual single-factor portfolios, at least for 
well-known factors such as value, quality, low volatility and momentum.    

19.6. Appendix A: description of tilted factor portfolios 

The tilted factor portfolios shown in this chapter employ the following 
methodology. Each factor uses either a single metric or several metrics (in the latter 
case, they are equally weighted) as follows: 

– value (valuation tilted strategy): price to fundamental (five fundamentals used: 
earnings, cashflow, sales, dividend and book value); 

– low volatility (volatility tilted strategy): trailing 60-month variance of total 
returns; 

– quality (quality tilted strategy): return-on-assets, variability in earnings per 
share2 and leverage3; 

– size (size tilted strategy): free float-adjusted market capitalization; 

– momentum (momentum tilted strategy): trailing 12-month return. 

For each tilted portfolio, we rank all stocks in the benchmark universe by the 
variable shown. (In the case of value and quality, a normalized score is first 
calculated and averaged across the individual metrics before ranking.) The stocks 
are next assigned to 20 ranked subportfolios such that each subportfolio holds 5% of 
the market capitalization of the universe4. The subportfolio with the highest ranking 

                         
2 Earnings variability is measured by the standard deviation of earnings per share (EPS) 
divided by the median earnings for the past 5 years. Dividing the median earnings normalizes 
the volatility and makes it more comparable across different companies. 
3 Leverage is measured by total liabilities divided by shareholders equity. It indicates what 
percentage of equity and debt companies use to finance their assets. The lower the indicator, 
the more sound a company’s financial strength is, and the higher quality it is, holding all other 
factors constant. 
4 In the simulated strategies shown in this chapter, shares of a stock can straddle two 
subportfolios. 
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is subportfolio 20, while the subportfolio with the lowest ranking is subportfolio 1. 
Stocks within each subportfolio are cap-weighted. Next, a multiplier5 is assigned to 
each subportfolio with subportfolios in which the lower ranked subportfolios receive 
a multiplier less than 1 and the higher ranked subportfolios receive a multiplier 
greater than 1. This multiplier is then applied to each stock in the subportfolio’s 
market cap weight. All weights are then rescaled to sum to 100%. All simulated 
strategies are rebalanced annually in March, while the momentum strategy is 
rebalanced quarterly. 
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multiplier is 1.95 for subportfolio 20 and 0.05 for subportfolio 1, with a linear interpolation 
for the subportfolios in between. 
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Statistical Overfitting  
and Backtest Performance  

In the field of mathematical finance, a “backtest” is the usage of historical market data to assess 
the performance of a proposed trading strategy. It is a relatively simple matter for a present-day 
computer system to explore thousands, millions or even billions of variations of a proposed 
strategy, and pick the best performing variant as the “optimal” strategy “in sample” (i.e. on the input 
dataset). Unfortunately, such an “optimal” strategy often performs very poorly “out of sample” (i.e. 
on another dataset), because the parameters of the investment strategy have been overfit to the 
in-sample data, a situation known as “backtest overfitting” [BAI 12, BAI 14a, BAI 14b, BAI 15]. 

While the mathematics of backtest overfitting has been examined in several recent theoretical 
studies, here we pursue a more tangible analysis of this problem, in the form of an online 
simulator tool. Given an input random walk time series, the tool develops an “optimal” variant of 
a simple strategy by exhaustively exploring all integer parameter values among a handful of 
parameters. This “optimal” strategy is overfit, since by definition a random walk is unpredictable. 
Then, the tool tests the resulting “optimal” strategy on a second random walk time series. In 
most runs using our online tool, the “optimal” strategy derived from the first time series performs 
poorly on the second time series, demonstrating how hard it is not to overfit a backtest. We offer 
this online tool to facilitate further research in this area. 

20.1. Introduction 

Modern high-performance computing technology, accelerated by the relentless 
advance of Moore’s Law, has enabled researchers in many fields to perform 
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In this context, statistical overfitting means either proposing a model for an input 
dataset that inherently possesses a higher level of complexity than that of the input 
dataset being used to generate or test it, or else trying many variations of a model on 
an input dataset and then only presenting results from the one model variation that 
appears to best fit the data. In many such cases, the model fits the data well only by 
fluke, since it is really fitting only the idiosyncrasies of the specific dataset in 
question, and has little or no descriptive or predictive power beyond the particular 
dataset used in the analysis. 

Statistical overfitting can be thought of as an instance of “selection bias”, 
wherein a researcher presents the results of only those tests that support a predefined 
hypothesis. These types of errors are discussed in David Hand’s very readable 2014 
book The Improbability Principle [HAN 14]. 

Statistical overfitting and “selection bias” are thought to be at the root of some of 
the reproducibility problems that have plagued several fields of scientific research in 
recent years. For example, in the biomedical field, there have been numerous 
instances of pharmaceutical products that look promising based on initial clinical 
tests and trials, but later disappoint in real-world implementation. The success rates 
for new drug development projects in Phase II trials have recently dropped from 28 
to 18% [PRI 11]. The principal reason for these disappointments is now thought to 
be the fact that pharmaceutical firms, intentionally or not, typically only publish the 
results of successful trials, thus introducing a fundamental bias into the results.  

Recently, the U.S. Securities and Exchange Commission announced that its 
examination of hedge funds uncovered a number of issues that are examples of 
“selection bias”. According to a Wall Street Journal report, the SEC “uncovered 
marketing and advertising issues, with some firms potentially misleading clients on 
past performance by ‘cherry picking’ their results from fund to fund” [ACK 14]. 

20.2. Backtest overfitting in finance and investments 

In the field of mathematical finance, statistical overfitting most often arises when 
using “backtests” to develop and/or refine an investment strategy, a phenomenon 
known as “backtest overfitting”. The term “backtest” means using historical market 
data (e.g. the past 10 years of daily S&P500 closing averages) to evaluate how a 
proposed strategy would have performed had it been fielded over the past time 
frame in question. Since even a modestly powerful desktop or workstation can 
explore thousands, millions or even billions of variations of a strategy, it is not only 
possible but in fact quite likely that some variation of the strategy will perform well 
on this backtest dataset, yet in reality not have any useful predictive power, since the 
proposed strategy is only fitting idiosyncrasies in the “noise” of the dataset. 
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Overfitting can also occur when a statistical test is carried out multiple times on the 
same dataset, without controlling for the steady increase in the false positive rate 
(this is known as the “multiple-testing problem”). 

As an example, if someone rolls a set of 10 six-sided dices, the probability of 
seeing all sixes (or any other particular prespecified combination) is approximately 

1.65 × 10
-8, or in other words, roughly one chance in 60 million. But, as she/he rolls 

the 10 dices together over and over again, her/his chances of getting all sixes 
increase, until, after tens of millions of trials, she/he is almost guaranteed to see a 
roll with 10 sixes. If we had seen only the one all-sixes result of this experiment, we 
might have been justified in concluding that the dices are “loaded,” and that future 
rolls are likely to produce disproportionate numbers of sixes, but this is not the case. 

Rolling 10 dices 60,000,000 times is perhaps not a practical real-world scenario. 
But using a computer to explore 60,000,000 variations of an investment strategy is a 
relatively minor task, something that could be done in a few minutes on a present-
day system. Hence, such computer “experiments” are vastly more likely to result in 
overfitting errors. 

As another illustrative example, suppose that a financial advisor sends out 
10,240 (= 10 × 210) letters to prospective clients, with half predicting that some 
stock or other security would go up in market value, and half predicting that it would 
go down. One month later, the advisor sends out a set of 5,120 letters, only to those 
who were earlier sent the correct prediction, again with half predicting some security 
will go up and half predicting it will go down. After 10 repetitions of this process, 
the final 10 recipients, were they not aware of the many letters to other clients, 
doubtless would be impressed at the advisor’s remarkable prescience. The set often 
correct predictions sent to each of these final 10 recipients can be thought of as the 
equivalent of the string of 10 consecutive sixes in the first example above. 

As a third example, suppose that an investor believes that there are daily, weekly 
or monthly patterns in historical stock market data, and he or she seeks a strategy 
that can exploit these patterns for financial gain. One very basic strategy would be to 
buy a set of stocks each Monday and then sell them on Wednesday. Another would 
be to buy stocks on the sixth day of each month and sell them on the 19th. A 
computer program can easily explore many thousands of such variations. The 
strategy could then be refined further by selling the portfolio at any time that it drops 
in value more than 10% from its initial price, or to purchase shares only when they 
increase in value by 10% over their value at the start of the trading period, as part of 
a strategy to capture “momentum” in market prices. There are enormous numbers of 
such combinations – millions just for this simple example – which are the equivalent 
to rolling the dice many times in the first example above. And, for the same reason, 
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it is highly likely that one of these parameter combinations will perform well on the 
historical dataset, but this is merely a “selection bias” statistical fluke. 

Harvey and Liu [HAR 14] and Harvey et al. [HAR 14] report hundreds of 
examples where multiple testing and selection bias have taken place in the factor 
investing literature. The list is by no means exhaustive. In fact, it is very difficult to 
find publications where multiple testing has been controlled for when discovering 
new factors. This leads these authors to conclude that “most claimed research 
findings in financial economics are likely false”. Bailey and Lopez de Prado  
[BAI 14a], Bailey et al. [BAI 15] and Harvey and Liu [HAR 15a, HAR 15b] have 
proposed practical procedures to correct for the increased false positive probability 
that results from multiple testing. 

Backtested models are usually based on a hypothetical phenomenon governing 
financial markets. However, as some have noted, “poorly performing strategies are 
discarded or optimized to create the final product” [BEA 13], thus unwittingly 
introducing a bias into the analysis. Indeed, it now appears that backtest overfitting 
errors are much more pervasive in the field than commonly recognized, and are 
likely to be the reason why many systematic funds, which strategies rely on 
backtests, often disappoint [BAI 14a]. Such errors are evidently an unfortunate 
byproduct of fast, computer-based tools used by analysts to explore, develop and 
refine potential models and strategies. 

20.3. Quantifying backtest overfitting effects 

How can we quantify the effects of backtest overfitting? A common statistic 
utilized to measure performance is the Sharpe ratio, as it can be “used to quantify the 
backtested strategy’s return on risk” [LOP 13]. The Sharpe ratio, informally 
speaking, is defined as the performance of an investment over a given period, 
normalized by the standard deviation of the investment’s changing value over that 
period. For a more precise definition and other technical details, see [LOP 13] or 
[BAI 14b]. 

While the Sharpe ratio on the backtest dataset is important, we must also 
consider the Sharpe ratio for the algorithm on new data. In an attempt to avoid 
backtest overfitting, researchers and analysts often use the “hold-out” method to a 
strategy, which consists of splitting the data into two subsets. The model or strategy 
is trained in one subset (called the in sample, or IS dataset) and tested on another 
subset (called the out of sample, or OOS dataset). While this form of cross-
validation is useful for some purposes, unfortunately it is not a guarantee against 
overfitting, since the hold-out method does not control for the number of trials 
involved in a discovery. And, if we try hard enough, we can find an “optimal” 
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strategy that performs well on both the in sample and out of sample datasets, yet still 
has no substantive “skill”. 

Two of the present authors, together with two other colleagues, co-authored 
some recent studies on backtest overfitting. In the first study [BAI 14b], a formula 
was derived relating the number of variations attempted in the development of a 
strategy to the size of the backtest dataset. For example, it was shown that if only  
5 years of daily market data are available, and if 45 or more independent variations 
of a strategy are tried, it is more than likely that the best strategy selected in this 
process has a Sharpe ratio of 1.0 or better, indicating one standard deviation above 
the mean in performance. In the second study [BAI 15], a formula was derived for 
the probability of backtest overfitting. Numerous other results are presented in both 
papers. One particularly troubling consequence of this theory is that overfitting a 
backtest on time series with memory (e.g. autoregressive processes) leads to 
persistent losses, rather than just zero expected performance. 

While a theoretically rigorous basis for backtest overfitting is important for 
fundamental understanding, it is clear that some additional research tools are 
needed. For example, as mentioned above, some researchers and analysts believe 
that markets may act cyclically or seasonally. While that hypothesis is likely to be 
true in some specific cases, a carefully designed experiment is required to reach any 
conclusion with a satisfactory degree of confidence. Preliminary studies have shown 
that in most cases, there simply are not enough data points to determine the 
statistical significance of these cyclical behaviors, after controlling for the number of 
trials involved in making those supposed discoveries. Several other hypotheses of 
this sort could be listed. Which of these ideas have merit and which do not? 

20.4. An online demonstration of backtest overfitting 

In this work, we present an online tool that allows analysts and researchers to 
experiment with the phenomenon of backtest overfitting. We have based the tool on 
a popular investment strategy, with a very limited number of possible parameter 
choices, in part to emphasize the fact that backtest overfitting can arise even in 
simple contexts, and is not only a potential problem for highly sophisticated 
strategies. For our test data, we simulate a series of daily prices by drawing returns 
from a Gaussian (normal) distribution, using a high-quality pseudorandom number 
generator. 

The current version of the tool is available online at this URL: 

http://datagrid.lbl.gov/backtest 
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20.4.1. Simple example of backtest overfitting (SEBO) 

The investment strategy considered in our tool is particularly simple. We assume 
an investment decision is being made monthly, and only one equity with the 
simulated price is considered. A day of the month is chosen as the entry day for  
the investment. The strategy enters the market on either the buy side (long) or the 
sell side (short), and it always commits all available funds to this single position. 
The strategy exits the market either after it has held the equity for the specified 
number of days or once it triggers a stop loss condition. The variables controlling 
this simple strategy are then adjusted to produce good results, measured by the 
Sharpe ratio, based on the input time series dataset. 

Our implementation of this Website consists of text introducing the parameters 
that control the process. A Python program then accepts input values from users, 
performs the computation and displays the output results. For convenience of 
discussion, we have named the program “Simple Example of Backtest Overfitting” 
(SEBO). The following is a detailed description of its operation: 

1) SEBO first constructs a time series simulating stock market data. The daily 
price fluctuations are simulated by drawing returns from a standard Gaussian 
(normal) distribution, which are then compounded to derive a price time series. We 
use the pseudorandom number generator random.gauss from the Python 
programming language. The simulated prices generated this way are split into two 
equal parts, the first of which will be our in sample data and the second half will be 
the out of sample data. 

2) SEBO then explores all possible variations of the trading strategy, based on 
the following parameters specified by the user: 

i) stop loss: this is the maximum percent loss that can be sustained before the 
position is liquidated. To limit the number of choices, the user only chooses a 
maximum integer, so that the tool explores integer values up to the upper boundary; 

ii) holding period: this is the maximum length of time that stock can be held 
before it is sold. This is given in terms of trading days per month, with a value that 
cannot exceed 22. The test tool examines all possible number of days between 1 and 
the maximum number of holding period specified by the user; 

iii) entry day: this is the business day that the strategy enters the market in 
each trading month. All 22 trading days of a month are tried. The user does not 
control this parameter; 

iv) side: this is the type of trading strategy, either “long” (profits are to be 
made when the stock is rising) or “short” (profits are to be made when the stock is 
falling). Our tool examines both choices of long and short for every combination of 
other parameters. 
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3) For each combination of parameters, SEBO computes the Sharpe ratio on the 
given input time series. When a set of parameters achieves a better Sharpe ratio than 
the current best set, SEBO records the parameter set and plots the value of the 
investment. After SEBO has examined all possible combination of parameters, the set 
of parameters it has on record is the “optimal” variation of the investment strategy. 

4) The program then generates a second pseudorandom time series to test the 
strategy on a different time period (an “out of sample” dataset). The “optimal” 
variation of the investment strategy is applied to this second time series, and a 
Sharpe ratio is computed. 

5) The program then outputs, on the result page, a “movie” showing the progression 
of the generation of the optimal strategy on in sample (backtest) data on the left-hand 
side of the result page, with the performance of the final, “optimal” strategy on out of 
sample data shown in the graph on the right-hand side of the result page. 

20.4.2. How SEBO is used 

The tool has an online form for the user to specify the parameters mentioned 
above. The values that can be assigned by the user are the maximum holding period, 
maximum stop loss, length of the backtest, standard deviation of the Gaussian 
distribution and seed of the pseudorandom generator. As explained above, the last 
three parameters control the simulated prices, while the first two parameters control 
how to exit the market. The SEBO program employs an extremely simple choice for 
when to enter the market: it simply chooses a fixed trading day of the month to enter 
the market. It tries all 22 possible choices in this case. 

If a user is unsure what parameters to use, she/he may use the parameters that 
generated the example in Figure 20.2, or request the tool to choose a set of random 
parameters within the acceptable ranges. If we input a value for a parameter that is 
out of the acceptable range, the software uses a preset value for the parameter that 
falls within the acceptable range. The intent here is to permit the tool to be  
used by persons with a wide range of expertise in the field, from elementary to 
advanced. 

After the execution of SEBO program, two figures are generated on the output 
page. In the examples from Figure 20.2, the green line is the underlying time series, 
and the blue line shows the performance of the strategy. “SR” denotes the Sharpe 
ratio. In most runs, the SR of the right-hand graph (i.e. the final strategy on out of 
sample data) is either negative or much lower than the SR of the final left-hand 
graph (i.e. the “optimal” strategy on in sample data), indicating that the strategy has 
been overfit on the in sample (backtest) data. 
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a)                                                                        b) 

 

Figure 20.2. The “optimal” strategy’s performance a) on the in  
sample dataset, and b) on the out of sample dataset 

In the specific example shown in Figure 20.2(a), note that the SR of the final 
optimized strategy, when applied to the input (in sample) dataset, is 1.59, indicating 
a fairly promising strategy (the annualized rate of return is 1.59 time the risk 
undertaken). However, when this same “optimized” strategy is applied to the second 
(out of sample) dataset, as shown in Figure 20.2(b), the resulting SR is –0.18, 
indicating a completely ineffective strategy (it is actually somewhat prone to lose 
money). Even though in both cases, the underlying prices seem to oscillate in the 
similar way, on the in sample data, the investment represented by the blue line goes 
steadily up, while the same line on the out of sample data on the right goes steadily 
down. This suggests that the “optimal” strategy’s excellent performance on the in 
sample dataset was only a statistical fluke – the strategy was optimized to the 
particular characteristics of that data and had no fundamental “intelligence” to deal 
with any other dataset. 

20.4.3. Understanding the results 

Since the sample prices are generated with Gaussian distribution centered on 
zero, we expect the average investment strategy to have a Sharpe ratio of zero. This 
is indeed the case on the out of sample data in 400 test runs with different seeds for 
the random numbers (see Figure 20.3). In contrast, on this set of tests, the Sharpe 
ratios on the in sample data are centered on 0.9, which is significantly higher than 
zero.  
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variations of a strategy have been attempted when developing a strategy, there is no 
way to know a priori, one way or the other, whether the resulting strategy is overfit. 

Another conclusion from using the online tool is that the “hold-out” method is 
not very effective in preventing backtest overfitting. If the web application is run 
once, it is very likely that the optimized strategy will perform well on the in sample 
dataset but poorly on the out of sample dataset. However, if enough cases are tried 
using the online tool, a strategy that performs well both in sample and out of sample 
can be discovered. And yet, as before, the strategy cannot have any innate 
“intelligence,” since it is generated based on a pseudorandom dataset. 

It should also be emphasized that while this tool was designed to demonstrate the 
effect of backtest overfitting in mathematical finance, the fundamental underlying 
principle of statistical overfitting applies very broadly nonetheless. Thus, this tool 
could be easily modified to demonstrate a much broader class of overfitting 
problems. Indeed, by simply renaming of the input parameters and output results 
(i.e. renaming the Sharpe ratio, and suitably changing the output plots), we could 
consider the online tool to be a test of statistical overfitting when attempting to 
“guess” the future course of any process that can be modeled by a random walk. 

20.5. Conclusion 

We have developed an online tool to demonstrate the dangers of backtest 
overfitting in the mathematical finance field, although, as we emphasized above, the 
underlying mathematics and software design could easily be considered to be a 
demonstration of the much broader problem of statistical overfitting of a random 
walk process. 

By using the tool to generate even a modest number of trials, it is immediately 
clear that it is extremely easy, by using a computer to explore the parameter space of 
variations of a basic strategy, to “discover” what appears to be an “optimal” trading 
strategy that gives great-looking performance, based on standard financial 
performance statistics such as the Sharpe ratio, but yet is completely impotent when 
presented with any other dataset. The problem, as emphasized above, is that the 
resulting “optimal” strategy is statistically overfit, since far more variations of the 
strategy have been tried that can be justified given the size of the input dataset. For 
this reason, it is actually quite likely that even a modestly sophisticated search 
process will identify what mistakenly appears to be a promising strategy. 

We hope that this research will help investors understand the dangers of backtest 
overfitting in particular, and selection bias in general. There is still much to be 
learned about this perplexing phenomenon.  
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