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Markowitz [1952, 1991] devel-
oped the mean–variance 
optimization (MVO) model 
to construct portfolios that 

optimally trade off risk and return. The three 
important ingredients in an MVO model 
are the alpha vector representing expected 
returns, the risk model that is used to mea-
sure the variance of the portfolio, and a set of 
constraints representing the portfolio man-
agers’ mandates and choices. Misalignment 
arises when the alpha vector is not completely 
spanned by the factors in the risk model. It 
results in the optimizer taking large expo-
sures on factors that have systematic risk but 
are missing from the risk model. With con-
straints, misalignment appears between the 
implied alpha and the risk model. Misalign-
ment in MVO results in optimal portfolios that 
suffer from risk underestimation, undesired 
exposures to factors with hidden systematic 
risk, a consistent failure of the portfolio man-
ager to achieve ex-ante performance targets, 
and an intrinsic inability to transform supe-
rior alphas into outperforming portfolios; see 
Saxena and Stubbs [2013] and Ceria et al. 
[2012]. Saxena and Stubbs [2010] provided 
a theoretical framework to show that the 
alpha alignment factor (AAF) (Renshaw et al. 
[2006]) alleviate the misalignment problem. 
Moreover, they present empirical results with 
the AAF showing improved ex-post perfor-

mance. Saxena and Stubbs [2012] highlighted 
the eff icacy of the AAF in addressing the 
misalignment issues that occur with the U.S. 
expected returns (USER) model; see also the 
foreword by Markowitz [2012] for comments 
on this approach.

Consider an MVO model with an 
investment universe of n assets. Let hi

 denote 
the weight invested in the ith asset. Let α

i
 

denote the portfolio managers’ estimate of 
the expected return for the ith asset. We will 
assume that the risk is measured by a factor 
model. We will differentiate between two 
types of factors: alpha factors, which have a 
positive long-term risk premium, and risk fac-
tors, which explain the cross-section of asset 
returns but do not have such a long-term 
trend. Examples of alpha factors include value, 
momentum, and growth, while examples of 
risk factors include industries and countries. 
Let B

A
 and B

R
 denote the asset exposures to 

the alpha and risk factors, respectively. Let us 
suppose that the alpha signal is a linear com-
bination of the factors in B

A
, i.e., α = B

A
ω. 

The risk model is given by

     = Ω + Δ2Q B= BT  (1)

where

[ ]B = [ A R

is the combined matrix of factor exposures,
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is the factor covariance matrix, and Δ2 is a diagonal 
matrix of specif ic variances. Consider the following 
MVO model

 
α − λ

≤
max

2
h− Qh

Ah b

T Tλ
h h

λ
 (2)

where λ > 0 is an appropriate risk-aversion parameter, 
and Ah ≤ b is the set of all constraints imposed by the 
portfolio manager. For ease of exposition, we consider 
only linear constraints in the MVO model in this section. 
The discussion can also easily be extended to include 
nonlinear constraints. Examples of portfolio constraints 
in the MVO model include asset bounds, sector expo-
sure bounds, limit on the number of names, turnover, 
and so on.

Note that our risk model in (2) also contains the 
factors that are used in the construction of the alpha 
vector. Consider what would happen if the alpha signal 
is not spanned by all the factors in the risk model. First, 
consider the unconstrained case with Δ = σ2 2σ Is , i.e., all 
assets have the same specific risk. The alpha signal can 
be decomposed as

 α = α + α ⊥B BR R (3)

where α = α( ) 1B ( B−) 1
B RB R

T
R R) B) T

R
 is the portion of α that 

is spanned by the exposures in the risk model and 
α = α − α⊥B B

R R
 is the portion of α that is orthogonal to 

the risk exposures. The optimal solution to the uncon-
strained problem is given by
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 (4)

Lee and Stefek [2008] noted that the optimal solu-
tion is dominated by the first term that is simply α ⊥BR

 
scaled by the specific variance. So, the optimizer over-
weights α ⊥BR

 relative to αBR
 in the final portfolio. In doing 

so, the optimizer takes excessive exposure to factors that 
have systematic risk but are missing from the factor risk 
model. This leads to the MVO model badly underesti-
mating the actual risk associated with the optimal port-
folio. Including the alpha factor or all its components in 
the risk model ensures that the optimizer correctly trades 
off the risk and the return of the alpha signal; in this case, 

0
BR

α =
B⊥  and α

B
 = α, so only the second component of the 

optimal solution in Equation (4) is non-zero.
Now consider the following risk model
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 (5)

that explicitly includes the alpha signal as a custom 
factor, in addition to the risk factors in the model. It 
is worth emphasizing that the difference between this 
model and the factor model in Equation (1) is that the 
former contains the alpha signal rather than its compo-
nents that are in B

A
. This risk model is also aligned with 

the alpha signal in the unconstrained case. However, the 
constrained case is very different. Constraints introduce 
additional misalignment between the alpha vector and 
the factors in the risk model. To see this, one can use 
the theory of convex optimization to replace the con-
strained MVO model (2) with the following uncon-
strained model

 
α − λ

2
max ( ) h h− λ

QhI T) T  (6)

where

 
α = α − πAI Tα A  (7)

is the implied alpha, where π contains the optimal dual 
multipliers to the linear constraints Ah ≤ b. Now sup-
pose that the alpha signal is made of two factors α1 and 
α2. Furthermore, assume that the MVO model has a 
constraint imposing an upper bound on the exposure 
that the portfolio takes to α2. Suppose the optimal dual 
multiplier to this constraint exactly matches the weight 
of α2 in the alpha factor. For this example, the implied 
alpha is given by

α = ω α + ω α − πα

= ω α
1 2α + ω 2

1

1 2+ ω α
1

I
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In other words, the implied alpha signal is a mul-
tiple of the α1 factor. In this case, the implied alpha signal 
will be misaligned with the risk model (5) that contains 
only the alpha signal. On the other hand, the implied 
alpha signal is still aligned with the factor model (1) 
that contains both α1 and α2 in B

A
. This remains true 

for any value of π.
The optimal solution to (2) can be written as

( )
λσ λσ

α(*

2 2
α

λσ
⊥

1 11h (= α1 (⊥
*

2 2
α ⊥

1 1

s
B

s
B
I
 (8)

where α = α + α⊥+I
B
I

B
I  is a decomposition of the implied 

alpha with α = α( ) 1B( B−) 1
B
I TB

(B( T Iα . Note that αB
I  will gener-

ally explain a larger portion of αI with the original factor 
model (1) than a risk model that does not explicitly contain 
the alpha factors. Consequently, the second component 
along αB

I  in (8) is better represented in the optimal solu-
tion. Therefore, a better way to persuade the optimizer 
to correctly identify the systematic risk associated with 
taking bets on the alpha vector in the presence of con-
straints is to introduce each of the components of the alpha 
vector, namely the factors in B

A
, as factors in a custom 

risk model. We will use a custom risk model (CRM) that 
contains all the components of the alpha vector for a case 
study with the global expected returns (GLER) model 
in this article.

Our aim is to showcase the following desirable 
features of a custom model in this article:

1. Correct for risk underestimation.
2. Better represent the alpha signal in the final 

portfolio in an optimal risk-adjusted fashion. By 
doing so, improve the IR (information ratio) of 
the active portfolio, i.e., push the realized fron-
tier upward.

3. Generate a more intuitive and useful ex-post 
performance attribution analysis of the portfolio.

The article is organized as follows: The next sec-
tion describes the GLER model. The next two sections 
describe the construction of the custom risk model and 
the alpha signal for the GLER study. The following sec-
tion presents the case study. We report our conclusions 
in the final section.

THE GLER MODEL

The GLER model uses fundamental valuation fac-
tors, which use reported earnings and other financial 
data and momentum (see Guerard et al. [2012b], for 
the role of momentum in predicting asset returns) to 
construct expected return estimates for assets. Guerard 
et al. [2013a] have a detailed description of the GLER 
model. Guerard, et al. [2012a, 2013b] integrated the 
USER and GLER models in several portfolio construc-
tion strategies to generate portfolios with attractive ex-
post properties.

We will give a brief description of the important 
features of this model in this section as it pertains to our 
study. The GLER is a multi-factor model given by

= + + +
+ + +
+ +

TR EP BP CP

SP REP R+ BPR RCP

RSP C+ TEF P+ M

0 1 2 3

4 5S 6 7

8 9SP 10

w w+0 + w w+2 +
w w+4 +SP w+6 +R

w +8RSP + w e+10 t

where

• TR = Asset return from period t to period t + 1;
• EP = Earnings–price ratio = earnings per share/

price per share;
• BP = Book–price ratio = book value per share/

price per share;
• CP = Cash–price ratio = cash f low per share/price 

per share;
• SP = Sales–price ratio = net sales per share/price 

per share;
• REP = Relative earnings–price ratio = earnings–

price ratio/average earnings–price ratio over the 
past 5 years;

• RBP = Relative book–price ratio = book–price 
ratio/average book–price ratio over the past 5 
years;

• RCP = Relative cash–price ratio = cash–price ratio/
average cash–price ratio over the past 5 years;

• RSP = Relative sales–price ratio = sales–price ratio/
average sales–price ratio over the past 5 years;

• CTEF = Consensus earnings-per-share I/B/E/S 
forecast, revisions, and breadth;

• PM = Price momentum = price at time t−1 (a 
month ago)/price at time t−12 (a year ago);

• et
 = randomly distributed residual term.
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These estimates are altered over time as company 
attributes and investing fashions change. The GLER 
model is estimated using weighted latent root regression 
analysis to identify variables that are statistically signifi-
cant at the 10% level; it uses the normalized coefficients 
as weights and averages the variable weights over the 
past 12 months.

The CTEF attribute is generated from forward 
forecast information. It is an equally weighted version 
of the following attributes

• FEP1 = One-year ahead forecast earnings per 
share/price per share;

• FEP2 = Two-year ahead forecast earnings per 
share/price per share;

• RV1 = One-year ahead forecast earnings per share 
monthly revision/price per share;

• RV2 = Two-year ahead forecast earnings per share 
monthly revision/price per share;

• BR1 = One-year ahead forecast earnings per share 
monthly breadth;

• BR2 = Two-year ahead forecast earnings per share 
monthly breadth.

The GLER attributes are available as ranks between 
0–99, with 0 being the least desirable and 99 being the 
most desirable. These data are available on the last trading 
day of the month between January 1999 and November 
2011. Note that nine of the attributes, namely, EP, BP, 
CP, SP, REP, RBP, RCP, RSP, and CTEF, are Value 
factors, while the PM attribute is a Momentum factor. 
We want to construct a custom risk model called CRM 
from BaseFund, which includes the GLER attributes, and 
excludes the Value and Short-Term Momentum factors for 
the GLER study in this article. We removed the Value 
factor since we have several proxies for Value among 
the GLER composite factors. Moreover, we remove the 
Short-Term Momentum factor because it is too short-
term for the strategy that we will consider in our study. 
Note that we retain the base model’s Medium-Term 
Momentum factor in the CRM.

Collinear factors introduce estimation errors 
in the regressions used to estimate the factor returns; 
this is the reason that a weighted latent root regres-
sion was employed to calculate the coefficients in the 
GLER model. So we want to identify and coalesce the 
collinear factors. There is a high degree of collinearity 
between the various Value attributes. To highlight the 

collinearity issue, we construct a custom risk model 
called CollinearCRM from the Axioma fundamental 
model, WW21AxiomaMH (hereafter referred to as Base-
Fund), which includes the 10 GLER factors and excludes 
the Value and the Short-Term Momentum factors from 
BaseFund. Exhibit 1 contains a box plot of the variance 
inf lation factor (VIF) for six suspected collinear fac-
tors (EP, CP, REP, RCP, RSP, RBP) in CollinearCRM. 
The top and the bottom of the box represent the first 
and the third quartiles, and the band inside the box 
represents the median of the VIF distribution. Let us 
define the interquantile range (IQR) as the difference 
between the third and the f irst quartiles. The lower 
whisker of the box plot represents the value that is 1.5 
IQR below the bottom of the box. Similarly, the upper 
whisker is the value that is 1.5 IQR above the top of the 
box. Values outside the whiskers are regarded as outliers 
and plotted with crosses. The high VIF values (>5) for 
some of the factors indicate multicollinearity in this risk 
model. We first conduct the following collinearity study 
of the GLER model:

1. Standardize each rank attribute along the same 
lines as the style factors in the fundamental model. 
In particular, this is done for each rank attribute b 
as follows:

a. Calculate the capitalization-weighted mean-ex-
posure b b= hT

u, where h
u
 contains the market-cap 

weights for all the assets in the estimation universe 
of the BaseFund model and is 0 otherwise.

E X H I B I T  1
VIFs for Collinear Factors in CollinearCRM
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b. Calculate the equal-weighted standard deviation

∑σ =
−

⎛
⎝⎜
⎛⎛
⎝⎝

⎞
⎠⎟
⎞⎞
⎠⎠=

1
1

( )2

1n
b b−i i

i

n

 of the exposure values in b about the market-
cap-weighted mean b  and n includes all the 
assets in the original attribute.

c. The standardized attribute b̂ is then given by

=
σ

ˆ , 1, ,…b
b b−

n…1= , ,…i
i

2. Calculate VIF statistics where we regress each stan-
dardized attribute against the remaining attributes, 
and all the other style factors in the BaseFund model, 
excluding Value and Short-Term Momentum. 
Carry out a square root of market-cap-weighted 
regression with an intercept term. Examine the 
beta coefficients, the t-statistics, and the coefficient 
of determination from the regression.

3. Coalesce the two most collinear factors from the 
VIF regression. A composite GLER rank factor is 
obtained by equally weighting the two collinear 
rank factors. We then standardize this composite 
factor using Step (1) and carry out the VIF regres-
sion in Step (2). The process is repeated until the 
VIF regression reveals that there are no collinear 
factors.

The collinearity study revealed that EP and CP 
were the two most collinear factors in the first round. 
Let us brief ly describe how we arrived at this deci-
sion. We run an end-of-month cross-sectional regres-
sion for all the standardized attributes between January 
1999 and November 2011. Exhibit 2 plots the r-squared 
(coefficient of determination) for the EP and CP VIF 
regressions. Note that the r-squared values of the two 
regressions are high, indicating that EP and CP are col-
linear with other factors in the VIF regression model. 
Exhibits 3(a) and 3(b) contain box plots of the beta 
coefficients for the various factors in the EP and CP VIF 
regressions, respectively. Exhibits 3(c) and 3(d) con-
tain the box plots of the t-stats in the EP and CP VIF 
regressions, respectively. These statistics indicate that EP 
and CP are highly collinear and need to be coalesced 
together. The EP-CP rank attribute was obtained by 

equally weighting these two attributes together. The 
second round revealed that RSP and RBP should be 
equally combined to form the composite RSP-RBP 
attribute. Finally, the third round revealed that REP, 
RCP, and EP-CP were collinear. So, the four attri-
butes, EP, CP, REP, and RCP, were equally weighted 
together (25% weight each) to form the composite EP-
CP-REP-RCP attribute. To summarize, we now have 
the following six composite attributes:

 

EP-CP-REP-RCP 0.25EP 0.25CP

0.25REP 0.25RECRR P

RSP-RBP 0.5RSP 0.5RBP

SP = SP

BP = BP

CTEF = CTEF

PM = PM

0.25EP

+ 0.25REP

0.5RSP

 (9)

Note that the equal weighting employed to con-
struct the composite attributes in Exhibit 17 is arbitrary, 
but sufficient for our illustrative purposes.

CUSTOM RISK MODEL

This section will brief ly describe the steps used in 
the construction of a custom risk model for the GLER 
study. The primary custom risk model used in this article 
will henceforth be labeled as CRM. This custom risk 
model is generated from the BaseFund model. It includes 

E X H I B I T  2
Coefficient of Determination for the EP and CP VIF 
Regressions
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the composite factors EP-CP-REP-RCP, RSP-RBP, 
SP, BP, CTEF, and PM, and excludes the Value and 
Short-Term Momentum factors from BaseFund.

Recall that we have the GLER rank attributes for 
the last trading day of each month between January 
1999 and November 2011. We first construct a matrix 
of daily factor exposures for each trading date between 
January 1999 and November 2011. This matrix includes 
the standardized GLER composite factors as well as a 
subset of the Axioma style, industry, country, currency, 
and global market factors from the fundamental model. 
The standardized GLER composite factors from the last 
trading day of a month are used as proxies for all the 
trading days for the succeeding month, excluding the 
last trading day for which data are available.

The CRM is constructed in the same way as Base-
Fund except for the difference in the style factors. We 
employ a robust regression scheme to construct the factor 

returns from the factor exposures and asset returns. The 
factor covariance matrix is then constructed from these 
factor returns. We refer the reader to Axioma [2013] 
for more details. To recap, some of the original GLER 
attributes were combined to avoid collinear factors. This 
is done to reduce the estimation errors in the regressions 
that generate the factor returns. Exhibit 4 contains a 
box plot of the variance inf lation factor (VIF) for each 
of the GLER attributes in the final model. A word on 
how we computed the VIFs is in order. The VIF for a 
composite GLER factor is obtained by regressing this 
factor against all the styles in the custom model. We use 
a weighted regression, with the weights determined by 
the robust regression (to estimate factor returns) used in 
the construction of the risk model.

This regression is carried out on each trading 
day between the end of January 1999 and the end of 
November 2011. The VIFs for the composite GLER 

E X H I B I T  3
Comparing the Regression Coefficients and t-Stats for the EP and CP VIF Regressions
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attributes are below 5. Therefore, coalescing the original 
10 attributes into 6 composite attributes did alleviate the 
multicollinearity issue among these attributes.

GENERATING AN ALPHA FROM COMPOSITE 
GLER ATTRIBUTES

We will brief ly describe how we generate our pri-
mary alpha signal, hereafter labeled Alpha1, from the 
GLER composite attributes in this section. We do so by 
first transforming these rank attributes into portfolios. 
A factor mimicking portfolio (FMP) is a long–short, 
dollar-neutral portfolio that represents a factor. Let B

A
 

denote the factor matrix containing the standardized 
GLER composite attributes. We standardize the rank 
attributes by subtracting the market-cap-weighted mean 
over the estimation universe of the fundamental model 
and dividing the result by the equally weighed stan-
dard deviation about the market-cap-weighted mean as 
described in the section on the GLER model. Let B

R
 

contain the standardized exposures for all the factors 
in the BaseFund minus the Value and the Short-Term 
Momentum factors. The FMP associated with the jth 
composite attribute is the solution h j, to

 =

=

min

s.t. 0

h WhWW

B h

B h e

T

R
T

A
T

j

 (10)

where W is a diagonal matrix containing the square 
root of the asset market caps, and e

j
 is the vector with 

1 in the j th position and zeros elsewhere. Note that the 
FMP associated with an attribute has an unit exposure 
to this attribute and is neutral to all the other factors in 
the risk model. The FMP returns represent the pure attri-
bute returns. In the Axioma fundamental model, these 
returns are computed using cross-sectional regressions. 
We use the square root of market cap weighting in the 
FMPs so that it is consistent with the initial weighting 
employed in the robust cross-sectional regression in Axi-
oma’s fundamental model. Our alpha signal for the study 
is given by

 
Bα = ωA

 (11)

where

 ∑ω = 1
( ) ( ), 1

T
r h) ( j m…1= , ,…t T) jt

t
j

 (12)

T is the total number of time periods, and r t and h jt 
denote the time series of realized asset returns and FMP 
holdings, respectively.

We generate Alpha1 for the GLER study from the 
composite GLER factors as follows: For each of the 6 
composite GLER factors, we run an end-of-month back-
test between January 1999 and November 2011, where 
each rebalancing constructs an FMP for the appropriate 
factor by solving (10). The FMP investment universe in 
each period includes all the assets in the GLER attribute 
that are also in the BaseFund model. The B

A
 matrix for 

each FMP includes the 6 composite GLER attributes, 
and the B

R
 matrix includes all the factors in the BaseFund 

model, excluding the Value and Short-Term Momentum 
styles. The composite alpha signal is then constructed 
using (11), where the weights in (12) represent the long-
term average returns of the FMP portfolios.

Exhibit 5 contains a box plot of the monthly 
returns of the 6 FMP portfolios between the end of 
January 1999 and the end of November 2011. Exhibit 6 
contains the annualized average FMP returns for these 
6 composite attributes.

ILLUSTRATIVE EXAMPLE

In this section, we present an outline of the GLER 
study in the first subsection. The second subsection illus-

E X H I B I T  4
VIFs for Composite GLER Factors in CRM
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trates the use of our custom model CRM in improving 
risk underestimation and IR in the MVO model. The 
third subsection highlights the intuitive and helpful ex-
post PA summary given by CRM.

GLER Study Setup

We first describe the GLER study that is used to 
highlight the role of the custom risk model. We want 
to combine the GLER attributes EP, BP, CP, SP, REP, 
RBP, RCP, RSP, CTEF, and PM into a composite 
alpha signal that delivers a high IR in an end-of-month 
rebalancing between January 2000 and November 2011. 
These attributes are available on the last trading day 
of the month between January 1999 and November 
2011. We can use the risk model of our choice to mea-
sure the risk taken by the portfolio. We experiment 
with the BaseFund model, the Axioma statistical model 
WW21AxiomaMH-S (hereafter referred to as BaseStat 
in this article), and our custom model CRM. The sec-

tion on the custom model describes the construction 
of CRM. The investment universe during each rebal-
ancing period includes all the master assets that are also 
in the risk model employed in the optimization; the size 
steadily increases from 8,000-odd assets in January 2000 
to 10,500-odd assets in November 2011. The portfolio 
also must satisfy the following mandates.

1. Long-only and fully invested portfolio.
2. Target a realized active risk of 4% with respect to 

a global cap-weighted benchmark.1 The strategy 
has a tracking error constraint with respect to this 
benchmark and the chosen risk model to achieve 
this goal.

3. Asset bounds of 4%.
4. Minimum threshold holdings of 0.35%.
5. Maximum round-trip turnover of 16%.

We construct a composite alpha signal called 
Alpha1 from the 6 composite GLER factors, where the 
weights are based on the long-term expected return of 
the FMPs corresponding to these factors (see Exhibit 6). 
Exhibit 7 contains these weights.

Use of Custom Model in Improving 
Risk Underestimation and IR

We run three end-of-month frontier backtests 
with the Alpha1 signal that use the BaseStat, BaseFund, 
and CRM custom risk models. The three resulting port-
folios are labeled as Alpha1-BaseStat, Alpha1-BaseFund, 
and Alpha1-CRM, respectively. The turnover con-
straint is allowed to be relaxed during the backtest in 
order to achieve a feasible rebalancing in each period. 
Exhibit 8 presents the realized backtest summary for 
the Alpha1-BaseStat portfolio for TE varying between 
1.9% to 7%. Note that the BaseStat model underesti-
mates the risk associated with the portfolio. The bias 

E X H I B I T  6
Annualized Average FMP Returns for GLER 
Composite Factors

E X H I B I T  7
GLER Attribute Weights in Alpha1

E X H I B I T  5
Monthly Returns of the GLER Composite FMPs
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statistic (ratio of the realized risk to the predicted risk) is 
around 2.1. Running the backtest with a TE of roughly 
1.9% gives a portfolio with a realized risk of 4.0%, and 
the IR of this portfolio is 1.02. Exhibit 9 presents the 
backtest summary for the Alpha1-BaseFund portfolio 
for TE varying between 2.7% to 7.0%. The BaseFund 
model also underestimates the risk associated with the 
portfolio, though to a lesser extent. The bias statistic is 
around 1.5. Running the backtest with a TE of roughly 
2.7% gives a realized risk of 4.0%, and the IR of this 
portfolio is 1.02. Exhibit 10 presents the realized back-
test summary for the Alpha1-CRM portfolio for TE 
varying between 3.0% to 7.0%. The CRM has a bias 
statistic of 1.15; it has the least risk underestimation 
among the three risk models. The perceptive reader 
might wonder why the CRM model also underestimates 
risk when there is no misalignment between the alpha 
factor and the risk model. This is due to the misalign-
ment between the implied alpha and the risk model, 

especially caused by the asset bound and turnover con-
straints that are unlikely to be spanned by the factors 
in the risk model.

Running the backtest with a TE of roughly 3.5% 
gives a portfolio with a realized risk of 4.0%, and the 
IR of this portfolio is 1.48. Exhibit 11 plots the real-
ized frontiers (realized return versus realized risk) for 
the Alpha1-BaseStat, Alpha1-BaseFund, and Alpha1-CRM 
portfolios for varying TE. Clearly, the CRM is able to 
push the frontier upward in addition to correcting for 
risk underestimation.

Exhibit 12 compares the average predicted risk and 
the realized risk associated with these three portfolios. 
The average predicted risk is also subdivided into the 
factor and specific risk portions. Clearly, the BaseStat 
model is underestimating total risk. Moreover, this model 
is attributing most of this total risk to the specific risk, 
and the predicted factor risk is very small. The predicted 
specific risks for BaseFund and CRM are about the same 

E X H I B I T  8
Frontier Summary for the Alpha1-BaseStat Portfolio

E X H I B I T  9
Frontier Summary for the Alpha1-BaseFund Portfolio

E X H I B I T  1 0
Frontier Summary for the Alpha1-CRM Portfolio
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in Exhibit 12. Since the ex-ante total risk as seen by 
CRM is larger than BaseFund, the CRM is correcting for 
risk underestimation by better capturing the systematic 
risk of the portfolio. Also, note that the risk underestima-
tion is most severe when the same risk model is used to 
both generate and measure the risk of the portfolio.

Performance attribution results with the custom 
risk model are presented in Exhibits 13 and 14. The 
three portfolios in Exhibit 13 all have a realized risk of 
4% over the duration of the backtest, so it is instruc-
tive to compare their realized active returns over this 
period. The Alpha1-CRM portfolio has a realized active 
return of 6%, compared to 4.26% and 4.15% for the 
Alpha1-BaseStat and Alpha1-BaseFund portfolios, respec-
tively. Furthermore, Exhibit 13 indicates that the extra 
active return for the Alpha1-CRM portfolio comes pri-
marily from bets on the GLER (custom) style attributes. 
Exhibit 14 shows the return contributions and the expo-
sures taken by the three portfolios to the GLER and 
Axioma style attributes in the custom risk model. Note 

that the Alpha1-CRM portfolio consistently takes large 
positive exposures on the GLER attributes, and these, 
in turn, translate into better realized active returns. All 
portfolios take a negative exposure to the GLER PM 
attribute, and Axioma’s Growth and Medium-Term 
Momentum attributes. Exhibit 15 gives the average 
exposure of the benchmark to the GLER attributes. 
The benchmark takes large negative exposures to the 
BP and SP attributes. To target a realized risk of 4%, we 
had to generate the Alpha1-BaseStat and Alpha1-BaseFund 
portfolios with TEs of 1.9% and 2.7%, respectively, as 
opposed to 3.5% for Alpha1-CRM. Since the Alpha1-
BaseStat and Alpha1-BaseFund portfolios need to track 
the benchmark more closely on an ex-ante basis, they 
take smaller exposures to the GLER attributes, espe-
cially SP and BP. The Alpha-CRM portfolio gets most 
of its active return from SP and BP, as can be seen in 
Exhibit 14.

We mention in the introduction that simply adding 
the alpha factor in the risk model is not enough to 
address the misalignment that is caused by constraints. 
To illustrate this case, we construct a second custom risk 
model labeled CRMCompositeAlpha from BaseFund, as 
follows:

1. Add the Alpha1 signal as an additional style factor.
2. Remove the Short-Term Momentum factor in 

BaseFund.
3. Retain the Value factor in BaseFund that was 

removed in the CRM model.

We run a frontier backtest with the CRMCompos-
iteAlpha model and the Alpha1 signal with TE varying 
from 3% to 7%. Exhibit 16 presents the frontier back-
test summary. The left-hand panel of Exhibit 17 com-
pares the realized frontiers of these two risk models. 
The original custom model CRM that has all the con-
stituents of the alpha signal is better able to push the 
frontier upward. Note also that CRM has a bias statistic 

E X H I B I T  1 2
Ex-Ante and Ex-Post Risk Associated with Alpha1 Portfolios

E X H I B I T  1 1
Realized Frontiers for the Alpha1 Frontiers 
for Varying TE
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of 1.15, which is lower than the 1.2 for CRMCompos-
iteAlpha when the ex-ante risk is 3.5% (target realized 
risk of 4%).

The custom risk model CRM is correcting the 
misalignment that ensues between the implied alpha 
signal and the risk model. To highlight this point, we 
construct another alpha signal MAlpha1 from SP, BP, 
CTEF, PM; and

MEP-CP

-REPRR -RCP 0.2EP 0.3CP 0.3REPRR + 0.2RCP

MRSP-RBPRR 0.6RSP 0.4RBPRR

= 0.2EP +

= +0.6RSP

which serve as misaligned versions of EP-CP-REP-RCP 
and RSP-RBP, respectively. The weights assigned to 
the attributes, including the misaligned ones, are the 
same as those in the Alpha1 signal; see Exhibit 7 for the 
values. We wish to emphasize that the only difference 

E X H I B I T  1 3
Factor Return Contribution in Active Portfolios with Alpha1 Signal

E X H I B I T  1 4
Factors with the Largest Exposures in Active Portfolios with Alpha1 Signal

E X H I B I T  1 5
Average Benchmark Exposures to GLER Attributes
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between Alpha1 and MAlpha1 is that the components 
EP-CP-REP-RCP and RSP-RBP have been replaced 
by MEP-CP-REP-RCP and MRSP-RBP, respectively. 
Not all the components of MAlpha1 signal, especially 
MEP-CP-REP-RCP and MRSP-RBP, are represented 
as factors in the CRM model, potentially introducing a 
misalignment between this signal and the risk model. 
Exhibit 18 presents the frontier backtest summary. The 
right-hand panel of Exhibit 17 compares the realized 
frontiers of these two alpha signals. In general, the 

aligned alpha signal Alpha1 is better able to push the 
frontier upward. Moreover, the portfolio generated with 
the aligned signal has a lower bias statistic when tar-
geting a realized risk of 4%.

We generate three other alpha signals: Alpha2, 
Alpha3, and Alpha4 from the 6 GLER attributes and 
Axioma’s Growth factor as described in Exhibit 19.2 
Three more backtests are run with these alpha signals 
and the CRM to emphasize that the custom model is 
consistently delivering portfolios with high IR indepen-

E X H I B I T  1 6
Frontier Summary for the Alpha1-CRMCompositeAlpha Portfolio

E X H I B I T  1 7
Realized Frontiers for Varying TE

E X H I B I T  1 8
Frontier Summary for the MAlpha1-CRM Portfolio
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dently of the alpha signal that is used in the optimization. 
The backtests follow the original strategy outlined; we 
target a predicted TE of 3.5% to construct portfolios 
that have a realized risk of 4% over the backtest period. 
Note that all the components of these alpha signals are 
represented as factors in the CRM model, so the custom 
model is still aligned with all of these alpha signals. 
The summaries for these three backtests are given in 
Exhibit 20, where we have also included the summary 
for the equivalent backtest with the Alpha1 signal for 
comparison. Exhibit 21 contains the average and return 
contributions for the backtest portfolios to some of the 
important style factors in the risk model. It indicates 
that the four portfolios are quite different. The three 
panels in Exhibit 22 plot the realized frontiers with the 
CRM and BaseFund models for the Alpha2, Alpha3, and 
Alpha4 signals. We have not used the BaseStat model 
in these comparisons, as it severely underestimates the 
actual risk associated with these portfolios. The CRM 
frontier is above the BaseFund frontier for the Alpha2 
and Alpha3 signals, although the distance between the 
realized frontiers is smaller than with the Alpha1 signal. 
There is a smaller misalignment between the Alpha4 
and the BaseFund model, since the Growth factor in the 
BaseFund model is one of the components of the alpha 
signal with a large weight. In this case, although the 

CRM better corrects for risk underestima-
tion, as can be seen from Exhibits 25 and 
28, the realized frontier for the BaseFund 
model is above that for the CRM model for 
large realized risks. Exhibits 23, 24, 25, 26, 
27, and 28 contain the frontier summaries 
for the three backtests with the CRM and 
BaseFund models.

The BaseFund portfolio has a larger 
allocation along α ⊥B

I , i.e., the portion of the 
implied alpha that is orthogonal to the fac-
tors in the risk model in each rebalancing 
period (since it has fewer factors than CRM), 
where it does not see any systematic risk. It 
is possible that some of these allocations, 
though uninformed, pay off handsomely, 
giving the portfolio a high IR.

We now look at how an aligned risk 
model is better able to allocate risk, which 
generally leads to improved IRs over long 
periods. Each of the risk models views the 
risk in the alpha factors differently. To 

examine how the three risk models are trading off the 
risk and the return of these factors, we construct FMPs 
for the six GLER factors at the end of September 2008. 
We then compute three covariance matrices (in the 
dimension of the FMPs)

Θ = , , ,( ) ( ) 1 6,h Q) h i,) j …= ,1,ij
i T) j

where hi is the FMP corresponding to factor i, and Q is 
CRM, BaseFund, and BaseStat in turn. Note that

w wΘ h QhT TΘ h

where

∑∗

=1

6

h w∑=∗ h
i

i
i

is our optimal portfolio. We solve a simple mini-MVO 
problem for each risk model to determine the weights 
w used in the optimal portfolio. The mini-MVO maxi-
mizes the alpha signal that is given in Exhibit 7. It has 
only a risk constraint with a right-hand side of 4%. 
The upper triangular portions of the three covariance 
matrices are given in Equations (13), (14), and (15), 

E X H I B I T  1 9
Attribute Weights in Alpha Signals

E X H I B I T  2 0
Backtest Results with the CRM Model
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E X H I B I T  2 1
Average Exposures and Return Contributions of Portfolios to Important Factors

E X H I B I T  2 2
Realized Frontiers for Varying TE
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E X H I B I T  2 3
Frontier Summary for the Alpha2-CRM Portfolio

E X H I B I T  2 4
Frontier Summary for the Alpha3-CRM Portfolio

E X H I B I T  2 5
Frontier Summary for the Alpha4-CRM Portfolio

E X H I B I T  2 7
Frontier Summary for the Alpha3-BaseFund Portfolio

E X H I B I T  2 6
Frontier Summary for the Alpha2-BaseFund Portfolio
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where the diagonal entries contain the predicted annualized risk (multiplied by 100) and the off-diagonal entries 
contain the correlations.

        

EP CP REP RCP RSP RBPRR SP BP CTEF PM

1.66 0.13 0.01 0.03 0.10 0.15

1.87 0.08 0.24 0.06 0.27

2.16 0.03 0.01 0.12

1.80 0.13 0.08

1.49 0.10

1.98

- -CP RCP RSP

CRMRΘ =CRMRR
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 (13)

       

EP CP REP RCP RSP RBPRR SP BP CTEF PM

1.18 0.43 0.08 0.23 0.32 0.39

2.19 0.15 0.14 0.48 0.52

1.02 0.09 0.07 0.07

1.60 0.13 0.08

0.72 0.23
1.41

- -CP RCP RSP

BaseFundΘ =BaseFund
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 (14)

       

EP CP REP RCP RSP RBPRR SP BP CTEF PM

1.50 0.47 0.23 0.12 0.23 0.38

2.40 0.24 0.03 0.55 0.23

2.22 0.26 0.18 0.31

1.47 0.15 0.24

0.96 0.12

1.92

- -CP RCP RSP
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 (15)

The optimal weights are given in the three rows of the matrix in Equation (16).

E X H I B I T  2 8
Frontier Summary for the Alpha4-BaseFund Portfolio
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Clearly, the three risk models view the risk in the 
GLER factors differently, so the optimal weights in (16) 
are different as well. Let us highlight some of the promi-
nent differences. Comparing the covariance matrices for 
CRM and BaseFund, we see that BaseFund believes that 
RSP-RBP is positively correlated with all the other fac-
tors, while CRM considers RSP-RBP to be positively 
correlated with PM and SP and negatively correlated 
with EP-CP-REP-RCP, BP, and CTEF. Moreover, 
BaseFund sees very little risk in the SP factor, while 

        CRM
BaseFund
BaseStat

EP CP REP RSP RBP SP BP CTEF PM

1.12 1.47 0.79 1.43 0.91 0.38

1.46 0.35 3.24 0.86 1.44 0.03

0.98 0.01 1.16 1.02 2.27 0.53

- -CP -

−
−

⎛
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⎜
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⎞

⎠

⎟
⎞⎞

⎟
⎟⎟

⎟
⎟⎟

⎟
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 (16)

CRM considers SP to be the most risky factor, although 
both models consider SP to be relatively uncorrelated 
with the other factors. These different views explain the 
different weights assigned to RSP-RBP and SP by the 
optimizations that use these two models.

We repeat the mini-MVO optimization on the 
last trading of the month between January 2000 and 
November 2011. Exhibit 29 contains the box plot of the 
factor weights for the mini-MVO optimizations with the 
CRM and BaseFund models. Note that the weights from 
the BaseFund optimization are more leveraged than those 
obtained with CRM. Also, the BaseFund weights vary 
quite a bit, while those obtained with CRM are more 
stable with time. The realized risk of the three optimal 
portfolios generated from this optimization are given in 
Exhibit 30. Although there is risk underestimation in all 
of these leveraged unconstrained portfolios, the custom 
model best captures the risk associated with the alpha 
factors, so it best represents the alpha signal in the final 
portfolio.

E X H I B I T  2 9
Factor Weights for the Mini-MVO Model with CRM and BaseFund

E X H I B I T  3 0
Ex-Ante and Ex-Post Risk for Optimal Portfolios 
Generated from the Unconstrained Mini-MVO 
Model
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Use of Custom Model in Ex-Post Performance 
Attribution

We would like to highlight the intuitive perfor-
mance attribution(PA) summary that is given by the 
custom risk model in this section. We ran two perfor-
mance attribution tasks on the Alpha1-BaseFund portfolio 
using the BaseFund and the CRM risk models in turn. 
Recall that this portfolio was generated with the Alpha1 
signal and the BaseFund risk model. Exhibit 31 reports 
the summaries from these PA tasks. Clearly, BaseFund 
PA summary assigns most of the active return of this 
portfolio to the specific returns, which is neither intui-
tive nor helpful to the portfolio manager. Moreover, this 
PA summary exaggerates the active returns associated 
with Axioma styles, countries, and industries. Exhibit 32 

E X H I B I T  3 2
Factors with the Largest Exposures in Active Alpha1 
Portfolios

describes how the style returns are decomposed by the 
two PA tasks. Clearly, the PA summary with the Base-
Fund model is assigning some of the returns that are asso-
ciated with the GLER attributes to some of the Axioma 
styles. As a result, the true returns associated with the 
Axioma styles are either exaggerated or diminished.

CONCLUSIONS

We used the GLER study to highlight the impor-
tant role of custom risk models in addressing the misalign-
ment problem resulting from the interactions between 
the alpha signal, the risk model, and the constraints in 
the MVO model. Our custom risk model includes all the 
components of the alpha signal as factors. We show that 
custom risk models:

1. Alleviate the risk-underestimation problem.
2. Represent the alpha signal in the portfolio in an 

optimal risk-adjusted fashion, thereby delivering 
portfolios with high IR, i.e., pushing the realized 
frontiers upward.

3. Generate a more intuitive and useful ex-post PA 
analysis of the portfolio.

ENDNOTES

1The global cap-weighted benchmark was provided to 
us by John Guerard, along with the other GLER attributes.

2Based on Guerard [2013], we generate Alpha2 and 
Alpha3 with larger weights to the CTEF and PM attri-
butes, and Alpha4, which also contains the Axioma Growth 
factor.
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