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cademics and practitioners have

developed a wide variety of app-

roaches to optimize portfolios. In

fact, although portfolio optimiza-
tion traditionally referred to the maximiza-
tion of the Sharpe ratio, nowadays the same
expression can also be used to describe many
alternative approaches, including optimization
with higher moments, Bekaert et al. [1998];
full-scale optimization, Adler and Kritzman
[2006]; and mean-semivariance optimiza-
tion, Estrada [2008], to name but a few. These
alternative approaches include geometric mean
maximization, which is, together with the tra-
ditional criterion, the one we focus on in this
article.

Sharpe ratio maximization implies
selecting the portfolio with the highest risk-
adjusted return, the latter defined as expected
(excess) return per unit of volatility risk;
geometric mean maximization, in turn,
implies selecting the portfolio expected to
grow at the fastest rate, therefore maximizing
expected terminal wealth. Unfortunately,
although both goals are desirable, selecting
one implies, ex ante, giving up on the other.
In other words, portfolios that aim to maxi-
mize risk-adjusted return are (typically very)
different from those that aim to maximize
the expected growth of the capital invested.

However, what is expected ex ante
may be different from what actually happens

ex post. In fact, when comparing the observed
performance of portfolios that aim to maxi-
mize growth and those that aim to maximize
risk-adjusted return, our results show that
the former outperform the latter in terms of
growth, and yet the former are nof outper-
formed by the latter in terms of risk-adjusted
return.

Furthermore, when comparing sin-
lated performance, our results show that both
criteria are likely to achieve their respective
goals of maximizing growth or risk-adjusted
return. Our results also show that despite its
higher volatility, geometric mean maximiza-
tion does not expose investors to substantially
higher losses than does Sharpe ratio maximi-
zation. In fact, the former exposes investors to
moderate losses not only at the end of, but also
anywhere along, the holding period, and pro-
vides investors with far more upside potential
than does Sharpe ratio maximization.

Our findings have important implica-
tions for portfolio managers. Ultimately, we
find that portfolios resulting from geometric
mean maximization, even (or perhaps par-
ticularly) when subject to diversification con-
straints, have very desirable characteristics.
They are very likely to outperform in terms
of growth, and provide substantial upside
with rather limited downside, in both cases
relative to portfolios resulting from Sharpe
ratio maximization.
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The criterion we focus on in this article has been
variously referred to in the literature as the Kelly crite-
rion, the growth optimal portfolio, the capital growth
theory of investment, the geometric mean strategy,
investment for the long run, or maximum expected log;
here we will refer to it as geometric mean maximization,
or GMM for short. And we will refer to the traditional
criterion that aims to maximize risk-adjusted return as
Sharpe ratio maximization, or SR M for short. Further-
more, the optimal portfolios that result from GMM and
SRM are respectively referred to here as G (and G,
when constraints are added to GMM) and S.

The rest of the article is organized as follows. The
second section briefly discusses the issue at stake. The
third section discusses the implementation of the two
optimization criteria evaluated in this article. The fourth
section discusses the evidence on the expected, observed,
and simulated performance of the portfolios generated by
both optimization criteria. The final section provides an
assessment. An appendix with Appendix A, Appendix
B, and Appendix C, and methodology concludes the
article.

THE ISSUE

The GMM criterion has a very long history—in
fact, roughly as long as the history of the SRM cri-
terion. The latter can be traced back to the seminal
work of Markowitz [1952, 1959] and the complementary
contributions of Treynor [1961], Sharpe [1964], Lintner
[1965], and Mossin [1966]. The former, in turn, can be
traced back to the seminal work of Kelly [1956] and
Latane [1959]. Both Christensen [2005] and Poundstone
[2005] provide thorough accounts of the origins and
evolution of GMM and render an exhaustive literature
review here unnecessary. Estrada [2010], from which the
remainder of this section borrows heavily, also discusses
the GMM criterion in detail.

Although Kelly [1956] focused on gambling and
Latane [1959] on investing, both considered a set-up
with many similarities; these include a gambler/investor
making a large number of uncertain choices, a multi-
period framework, cumulative results, and the goal of
maximizing expected terminal wealth (or, similarly, the
expected growth of the capital invested). At the same
time, the optimal strategies derived by both share many
characteristics; these include that the allocations may
be very aggressive, the capital invested may fluctuate
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widely over time, and betting/investing more (less) than
suggested by the optimal strategy increases (decreases)
risk and decreases expected terminal wealth.

Importantly, although SR M is a one-period frame-
work, GMM is a multiperiod framework with cumulative
results, which is consistent with the way most inves-
tors view and manage their portfolios. This distinction
is critical because optimal decisions for a single period
may be suboptimal in a multiperiod framework, and
the relevant variable on which to focus when gains and
losses are reinvested (the geometric mean) is different
from the relevant variable when this is not the case (the
arithmetic mean).'

Interestingly, although Latane [1959] proposed
GMM as an alternative to Markowitz’s framework, the
latter has been one of the earliest and strongest supporters
of this criterion. In fact, not only did he allocate the
entire chapter VI of his pioneering book [Markowitz,
1959] to "Return in the Long Run,” but he also added
a “Note on Chapter VI” in a later edition. Markowitz
[1976] reaffirmed his support for GMM.

Empirical research on the GMM criterion is rather
scarce, and that is one of the voids this article aims to fill.
Roll [1973] and Fama and MacBeth [1974] compare the
G portfolio to the market portfolio and find that they are
statistically indistinguishable.? Grauer [1981] finds that
G portfolios are less diversified and have much higher
expected return and volatility than S portfolios; Hunt
[2005] finds similar results for the Australian market.
Finally, using a sample of developed markets, emerging
markets, and asset classes, Estrada [2010] confirms the
relative (expected) characteristics of G and S portfolios
already mentioned; he also finds that G portfolios are
very likely to outperform S portfolios in terms of growth,
and not likely to underperform in terms of risk-adjusted
return, in both cases based on observed performance.

In short, then, this article aims to compare two
portfolio optimization approaches, GMM and SRM;
to assess the expected characteristics of the portfolios
that stem from each criterion; and ultimately to eval-
uate the observed and simulated performance of those
portfolios.

METHODOLOGY

Standard modern portfolio theory establishes that
the expected return (],LF) and variance (G:) of a portfolio
are given by
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where x, denotes the proportion of the portfolio invested
in asset i; |, the expected return of asset i; o, the covari-
ance between assets { and j; and # the number of assets
in the portfolio.

Maximizing risk-adjusted return when risk is mea-
sured with volatility amounts to maximizing a portfolio’s
Sharpe ratio (SR1=)' This problem is formally given by
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where R, denotes the risk-free rate and x, 2 0 the no
short-selling constraint. This is the formal expression
of the criterion referred to in this article as SR.M; its
resulting portfolio is referred to here as S. The solution
of this problem is well known and available from a wide
variety of optimization packages.

The maximization of a portfolio’s geometric mean
return can be implemented in more than one way. Ziemba
[1972], Elton and Gruber [1974], Weide, Peterson, and
Maier [1977], Bernstein and Wilkinson [1997], and
Estrada [2010] all propose different algorithms to solve
this problem. The method proposed here is easy to imple-
ment numerically and requires the same inputs as those
needed for SRM. Following Estrada [2010], maximizing
a portfolio’s geometric mean return (GJ\'IP) amounts to
solving the problem formally given by
Max & M GM |
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This is the formal expression of the criterion
referred to in this article as GMM; its resulting portfolio
is referred to here as G (or G, if additional constraints
are imposed; more on this later). Note that maximizing
(5) is obviously the same as maximizing the expression
inside the brackets. In fact, Markowitz [1959] suggests
approximating the geometric mean of an asset precisely
with the expression {In(l + [t) — 6®/[2(1 + Ww)?]}.

Finally, note that expression (5) highlights an
important fact about the role that volatility plays in the
GMM framework. In the SRM framework, volatility
is undesirable because it is synonymous with risk; in the
GMM framework, in turn, volatility is also undesirable,
but for a different reason, namely, because it lowers the
geometric mearn return. In other words, in the GMM frame-
work volatility is nof ignored; it is detrimental because
it lowers the rate of growth of the capital invested, thus
ultimately lowering the expected terminal wealth.

EVIDENCE

We discuss in this section the main findings of
our work. We focus first on comparing the expected
characteristics of the G and 8 portfolios; then we assess
the observed performance of these portfolios; and finally
we evaluate their simulated behavior. Our sample con-
sists of monthly returns for six assets classes, namely,
U.S. stocks, EAFE stocks, emerging markets stocks, LS.
bonds, U.S. real estate, and gold. All returns are in dol-
lars and account for capital gains/losses and dividends/
coupons. The sample period varies by asset class but in
all cases goes through December 2010. Exhibit Al in
the Appendix A describes the data in detail.

Expected Performance

Qur first step consists of comparing the expected
characteristics of the portfolios selected by GMM and
SR M. In order to avoid drawing conclusions biased by
particular temporal conditions, we optimize portfolios
at three points in time: December 2000, December
2005, and December 2010, In all three cases, S port-
folios follow from expressions (3)—(4) and G (and G )
portfolios from expressions (5)—(6); also, in all cases, the
inputs of the optimization problems (expected returns,
variances, and covariances) are calculated on the basis
of all the data available for each variable at the time of
estimation. Exhibit 1 reports the relevant results.
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EXHIBIT 1
Optimal Portfolios and Expected Performance

This exhibit shows optimal portfolios and some of their expected characteristics. The optimizations are performed at the end of December
2000, December 2005, and December 2010 based on all the data available at each point in time. S portfolios aim to maximize the Sharpe ratio
and are obtained from expressions (3)—(4); G and G portfolios aim to maximize the geometric mean return and are obtained from expres-
sions (5)—(6), with G, constrained to have weights no larger than 47.5%. Panel A shows the weight of each asset in the optimal portfolios
and panel B shows some of the portfolios’ expected characteristics, including the number of assets in each (i), arithmetic (1,) and geometric
(GM)) mean return, volatility (), Sharpe ratio (SR ), and the terminal value of $100 invested at GMF after 10 (TV10), 20 (TV20), and 30
years (TV30). Mean returns, volatility, and Sharpe ratios in panel B are monthly magnitudes, unless indicated as annualized. The monthly
risk-free rates used in the maximization of Sharpe ratios are 0.42% (December 2000), 0.36% (December 2005), and 0.28% (December 2010).

The data is described in Exhibit Al in the Appendix A.

Dee/2000 Dee/2005 Dec/2010
A) G G, S G 7 hY G G,
Panel A: Weights (%)
U.S. stocks 11.9 0.0 5.0 0.0 0.0 0.0 2.0 0.0 0.0
EAFE stocks 43.4 43.2 47.5 17.1 0.0 274 0.0 0.0 26.6
EM stocks 21.5 56.8 47.5 30.7 100.0 47.5 223 100.0 47.5
U.S. bonds 0.0 0.0 0.0 13.9 0.0 0.0 61.7 0.0 0.0
U.S. real estate 232 0.0 0.0 375 0.0 25.1 59 0.0 25.9
Gold 0.0 0.0 0.0 0.7 0.0 0.0 8.1 0.0 0.0
Panel B: Characteristies

" 4 2 3 5 1 3 5 1 3
1, (%) 1.0 1.2 1.1 1.0 1.3 1.2 0.7 1.4 1.1
GM, (%) 1.0 1.0 1.0 0.9 1.1 1.0 06 " LI 1.0
o, (%) 4.0 52 5.0 3.5 6.0 4.5 2.0 7.0 5.1
SR, 0.157 0.142 0.146 0.181 0.149 0.175 0.195 0.154 0.166
Annualized GM, (%) 12.2 13.0 12.9 11.8 14.4 13.3 8.0 14.2 12.6
Annualized g, (%) 13.7 18.2 17.2 122 23.0 15.7 6.9 24.1 17.7
TVIO(S) 315 340 338 306 385 350 216 377 328
TV20 (S) 994 1,154 1,142 935 1,485 1,224 468 1,425 1,073
TV30 (8) 3,136 3,921 3,858 2,860 5,724 4284 1,014 5378 3,516

We will focus for now on the GG and § portfolios
and come back to the G_ portfolios later. The character-
istics of G and S atall three points in time are consistent
with those previously reported in the literature. First, G
portfolios are clearly less diversified than S portfolios; in
fact, SR.M never selects fewer than four assets, but GMM
selects two assets in December 2000 and just one asset
in December 2005 and December 2010. Second, the
lower diversification of G portfolios makes them more
volatile than § portfolios. Third, as expected by design,
G portfolios are outperformed by S portfolios in terms
of risk-adjusted return as measured by the Sharpe ratio,
Fourth, and also as expected by design, G portfolios
outperform S portfolios in terms of growth as measured
by the geometric mean return. This in turn implies that
G portfolios are expected to deliver a higher terminal
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capital, as the last three lines of the exhibit clearly show.
In all cases, the differences in expected growth and ter-
minal capital are substantial, particularly in the last two
optimizations (December 2005 and December 2010).

Note that the (arithmetic and geometric) mean
return, volatility, Sharpe ratio, and terminal capital
reported are the expected characteristics of the G and
S portfolios given the historical behavior of the assets
they contain. But is this relative expected performance
consistent with that actually observed? This is the issue
we address in the next section.

Observed Performance

Exhibit 2 summarizes the results of the observed
behavior of G and §; Exhibit B1 in the Appendix B
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ExHIiBIT 2
Observed Performance

This exhibit describes the observed performance of optimal portfolios defined as those that aim to maximize the Sharpe ratio (S) according
to expressions (3)—(4) or the geometric mean return (G and G_) according to expressions (5)—(6). The weights in G_ are constrained to be
no larger than 47.5%. The figures summarize the performance of $100 invested in the optimal portfolios formed at the end of December
2000 (shown in Exhibit 1), passively held through the end of December 2010. The last column summarizes the performance of $100 pas-
sively invested in the world market (equity) portfolio over the same period. Performance measures include the arithmetic (1 ) and geometric
(GM;-) mean return, volatility (Gx)’ semideviation with respect to 0 (E!), beta with respect to the world market (ﬂ:-)’ lowest (Min) and highest
(Max) return, Sharpe ratio (SR ), and Sortino ratio (N, = LIF/ZF), all expressed in monthly magnitudes, as well as the terminal value of the
$100 investment (TV). The data is described in Exhibit Al in the Appendix A.

S G G, World
1, (%) 0.9 1.2 1.1 0.4
GM, (%) 0.7 1.0 0.9 0.3
a, (%) 5.6 6.5 6.3 5.1
Z, (%) 4.0 4.4 4.3 3.7
B, 1.1 1.2 1.2 1.0
Min (%) —2538 —-25.6 -25.0 -19.8
Max (%) 17.5 15.9 15.4 11.9
SR, 0.097 0.131 0.120 0.019
N, 0.221 0.269 0.253 0.118
Annualized GM, (%) 9.0 12.3 11.2 3.7
Annualized o, (%) 19.5 224 21.8 17.5
TV ($) 236 319 289 144

complements the analysis. (As before, we will come back
to the G, portfolio later.), The figures reported sum-
marize the performance of a $100 investment in the G
and S portfolios selected at the end of December 2000
(shown in Exhibit 1), passively held through the end
of December 2010. The performance of a $100 passive
investment in the world market (equity) portfolio over
the same period is summarized in the last column simply
for perspective.

Consistent with the expected characteristics
discussed in the previous section, G is riskier than S
regardless of whether risk is measured with the standard
deviation (22.4% versus 19.5% in annualized terms),
the semideviation, the beta, or the minimum monthly
return. Also consistent with expectations, G outperforms
S in terms of growth (12.3% versus 9.0% annualized
geometric mean return) and terminal capital (8319 versus
$236). The difference in annualized return, 330bps (basis
points), is substantial and does not seem to come ata high
price in terms of volatility. Furthermore, the terminal
capital in G is 35% higher than that in S, and the $83
difference (=8319-$236) amounts to 83% of the initial
investment ($100). Needless to say, these differences are
substantial from an economic point of view,
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Is it the case, then, that the higher compounding
power of G relative to S is partially or fully offset by its
higher volatility, thus producing a lower risk-adjusted
return? No. As the exhibit shows, the Sharpe ratio of
the G portfolio (0.131) is actually higher than that of
the S portfolio (0.097). Although the difference is not
statistically significant, at the very least these figures
show that G is not outperformed by S in terms of risk-
adjusted return.” These results also hold if risk is mea-
sured with the semideviation and risk-adjusted return
with the Sortino ratio.

To summarize, the observed behavior of the G
and S portfolios over the January 2001-December 2010
period is partly as expected and partly somewhat unex-
pected. As expected, G is more volatile, grows more
rapidly, and leads to a higher terminal capital than S.
But, perhaps surprisingly, G is not outperformed by §
in terms of risk-adjusted return.

Observed Performance—Constrained GMM

The analysis in the previous section could be criti-
cized on at least two grounds. First, it could be argued
that even taking the results at face value, most investors
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would be reluctant to hold portfolios as concentrated
as those selected by the GMM criterion. And second,
it could be argued that the results reported are relevant
only in the two paths examined (one for each criterion).
We consider the first issue in this section and the second
issue in the next one.

As shown in Exhibit 1, the GMM criterion selects
two assets in December 2000 and only one in December
2005 and December 2010. Needless to say, such a low
degree of diversification would be difficult to digest
for most investors, even accounting for the fact that the
assets considered are diversified within each asset class.
And yet, this concentration should not lead to the rejec-
tion of GMM; rather, it should lead to the specification
of the necessary diversification constraints.

To that purpose, we re-optimize portfolios on the
same three dates as before, but this time constraining
GMM to invest no more than 47.5% of the portfolio
in any given asset. With this constraint we guarantee,
first, that the resulting portfolio will have at least three
assets; and second, that none of these assets will have a
weight lower than a meaningful 5%. The expected and
observed behavior of the resulting constrained G port-
folios is reported in the columns labeled G, in Exhibits
1 and 2; Exhibit B2 in the Appendix B complements
the analysis.

Exhibit 1 shows that G portfolios have three assets
at all three points in time. It also shows that, even with
these constraints, the portfolios selected by GMM are
still expected to outperform those selected by SRM in
terms of growth and terminal capital (and to be outper-
formed in terms of risk-adjusted return).

Exhibit 2, which summarizes observed perfor-
mance over the January 2001-December 2010 period,
shows that G, outperforms S in terms of growth (11.2%
versus 9.0% annualized geometric mean return) and ter-
minal capital (§289 versus $236). In fact, the difference
in annualized return (220bps) remains substantial and
comes at a low price in terms of volatility (21.8% versus
19.5% in annualized terms). Furthermore, the terminal
capital in G_. is 22% higher than that in S, and the $53
difference (—3289 $236) amounts to 53% of the initial
investment (8$100). In short, the differences in growth
and terminal capital remain substantial even after adding
diversification constraints to GMM.

Importantly, the Sharpe ratio of the G_. portfolio
(0.120) is higher than that of the S ponFollo (0.097),
though not significantly so from a statistical point of
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view. In other words, although G outperforms S in
terms of growth and terminal capital, it is not outper-
formed by S in terms of risk-adjusted return. These
results also hold if risk is measured with the semidevia-
tion and risk-adjusted return with the Sortino ratio.

Finally, note that the observed performance of
the S, G, and G, portfolios discussed is that of a buy-
and-hold strategy; that is, $100 is invested in each port-
folio at the end of December 2000 and passively held
through the end of December 2010. Exhibit A2 in the
Appendix A considers an alternative scenario in which
portfolios are rebalanced halfway through the 10-year
observation period. More precisely, $100 is invested in
the optimal S, G, and G_. at the end of December 2000
(shown in Exhibit 1) 'md p‘lsswe]y held through the end
of December 2005; the capital accumulated in these
portfolios is then reallocated to the optimal S, G, and G,
estimated at that point in time (also shown in Exhibit 1);
and these portfolios are passively held through the end of
December 2010, As the exhibit shows, this rebalancing
halfway into the observation period does not substan-
tially affect any of the results discussed.

i

Simulated Performance

The evidence on the observed performance of
S, G, and G portfolios suggests that GMM should
at the very least be considered a serious alternative to
SRM. The fact that G and G outperform S in terms of
growth and terminal capital, but are not outperformed
by S in terms of risk-adjusted return, underscores the
plausibility of GMM. However, although this evidence
is based on observed performance, it is also based on
the “one sample of history” (as Paul Samuelson would
say) that we have actually observed. For this reason,
we explore in this section the behavior of S, G, and
G.. portfolios in thousands of other scenarios that could
have happened.

The methodology behind our simulations, very
briefly, is as follows. (Technical details are discussed
in Appendix C.) First, we estimate the mean returns,
volatilities, and correlations of the six assets classes in our
sample with all the information available at the end of
December 2010. Then we use that information to deter-
mine the S, G, and GC portfolios at that point in time.
These two steps result in the three optimal portfolios
shown in the last three columns of Exhibit 1. We then
simulate 10,000 paths for each S, G, and G, portfolio
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over the 10-year (120-month) period between January
2011 and December 2020, thus running 10,000 horse
races. Finally, we calculate several performance measures
to summarize the results of these 10,000 horse races.
Our main results are shown in Exhibits 3 and 4.

Panel A of Exhibit 3 summarizes the average simu-
lated performance of the S, G, and G,. portfolios across
the 10,000 scenarios considered for the January 2011-
December 2020 period. To illustrate, for each of the
10,000 paths for S over the 120-month simulation period,
we calculate its geometric mean monthly return; the
average of those 10,000 figures is 0.7%, and the respective
figures for Gand G_are 1.1% and 1.0%. The interpreta-
tion of the rest of the figures in this panel is similar.

As panel A shows, then, the differences in growth
and terminal capital in the S, G, and G, portfolios are
remarkable. On average, G and G_, portfolios respec-
tively outperform S portfolios by 540bps and 360bps a
year, as indicated by their annualized geometric mean
returns of 14.2%, 12.4%, and 8.8%. These differences
imply, again on average, a terminal capital in G port-
folios ($501) over twice as high as that in S portfolios
($250), and 58% higher in G_ portfolios (§395) than in
S portfolios.

Panel A also shows that G and G portfolios are on
average more volatile than S portfolios, as indicated by
their respective annualized volatilities of 25.2%, 20.8%,
and 10.0%. This higher volatility imposes a heavy drag
on risk-adjusted return, leading G and G_, portfolios to
underperform S portfolios as indicated by their respec-
tive Sharpe ratios of 0.186, 0.190, and 0.254. These
results also hold if risk is measured with the semidevia-
tion and risk-adjusted return with the Sortino ratio.

Panel B shows the proportion of the 10,000 horse
races in which G and G, portfolios beat S portfolios
in terms of growth (hence terminal capital) and risk-
adjusted return, the latter measured both with the
Sharpe ratio and the Sortino ratio. As the panel shows,
G (G,) portfolios produce higher growth than S port-
folios 82.9% (81.1%) of the time. Conversely, G (G,)
portfolios produce higher Sharpe ratios than S portfolios
only 15.8% (16.6%) of the time, and higher Sortino
ratios 16.8% (17.3%) of the time. In short, across the
10,000 simulated scenarios, both GMM and SR M seem
to achieve their respective goals most of the time,

Panel C focuses on the capital accumulated at the
end of the 10-year simulation period. As already men-
tioned, the average terminal capital in the S, G, and &
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portfolios across the 10,000 scenarios is $§250, $501, and
$395, thus implying a substantial edge for GMM. The
spread between the worst scenario and the best scenario
is, as expected, larger for G ($19 and $9,306) and G

c

EXHIBIT 3
Simulated Performance

This exhibit shows results from our 10,000 simulations each over a
120-month period. § portfolios aim to maximize the Sharpe ratio
and are obtained from expressions (3)—(4); G and G, portfolios
aim to maximize the geometric mean return and are obtained
from expressions (5)—(6), with G constrained to have weights no
larger than 47.5%. Panel A shows averages across 10,000 paths for
the arithmetic (“;) and geometric (CM{) mean return, volatility
(©,), semideviation with respect to 0 (Z}), lowest (Min) and highest
(Max) return, Sharpe ratio (SR"), and Sortino ratio (Np = ]'lr/z.:)’
all expressed in monthly magnitudes, as well as for the terminal
value of the $100 investment (TV). Panel B shows the percentage
of the 10,000 paths in which G and G_ beat § in the dimensions
indicated. Panel C summarizes information about T'Vs, including
the average (Avg), lowest (Min), and highest (Max) values across
the 10,000 paths, as well as the average value in the quartile and
decile with lowest terminal capital (Q1 and D1) and the quartile
and decile with highest terminal capital (Q10 and D10),

A G G,

o ¢
Panel A
n, (%) 0.7 1.4 1.1
GM_ (%) 0.7 Ll 1.0
o, (%) 29 7:3 6.0
L (%) 17 4.4 36
Min (%) -7.2 —17.5 -14.5
Max (%) 85 20.2 16.7
SR, 0.254 0.186 0.190
N, 0.457 0.322 0.329
Annualized GM; (%) 8.8 14.2 12.4
Annualized ¢_(%) 10.0 252 20.8
TV (8) 250 501 395
Panel B (%)
GM, 82.9 81.1
SR, 15.8 16.6
N, 16.8 17.3
Panel C (S)
Avg 250 501 395
Min 81 19 26
Max 2,255 9,306 5,034
Avg QI 152 141 142
Avg Q4 399 1,099 791
Avg DI 133 94 102
AvgDI0 510 1,569 1,081

SummMER 2013



($26 and $§5,034) portfolios than for S portfolios ($81
and $2,255).

However, focusing on only two scenarios (the best
and the worst) out of 10,000 may be misleading. For this
reason, we take the terminal capital in S portfolios for
the 10,000 scenarios, rank them from the lowest to the
highest, and calculate the average terminal capital for
the top and bottom quartiles (and deciles); we then do
the same for the G and G_, portfolios.

Interestingly, as panel C shows, the average ter-
minal capital in the worst quartile is not much lower for
G ($141) and G, (§142) portfolios than for S portfolios
($152). At the same time, the average terminal capital
in the best quartile is much higher for G ($1,099) and
G (8791) portfolios than for S portfolios ($399). These
results suggest the existence of an important asymmetry
in upside and downside potential when investing in G
and G, portfolios as opposed to in S portfolios. Put
differently, although in the “bad” scenarios an investor
would be expected to fare somewhat worse by investing
in G and G than in §, in the “good” scenarios the
investor would be expected to fare mnch better.

Importantly, investors are typically concerned
about the probability and magnitude of potential losses.
For this reason, we explore the proportion of the 10,000
scenarios in which S, G, and G, portfolios are under
$100 (the initial capital) af the end of the 10-year simula-
tion period. Panel A of Exhibit 4 shows the proportion
of paths that end with different levels of losses for all S,
G, and G_. portfolios.

Atall the levels of loss considered, G and G, port-
folios end up with a higher proportion of paths under
$100 than S portfolios. However, the proportion of paths
in which G and G, portfolios end with losses is very
low. In only 4.0% (2.9%) of the scenarios considered,
G (G,) portfolios end with losses higher than 10%; and
in only 2.8% (1.9%) of the scenarios considered, G (G )
portfolios end with losses higher than 20%. In short,
then, G and G, portfolios are more likely than S port-
folios to end a lO—yf::n holding period with losses, but
the probability of this happening is very low.

That being said, not all investors focus only on
what happens at the end of any given holding period. As
argued by Kritzman and Rich [2002], many investors
do (or should) care about what happens throughout the
holding period. In other words, it is important to assess
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EXHIBIT 4
Simulated Performance—Downside Potential

This exhibit shows results from our 10,000 simulations, cach over
a 120-month period, focusing on losses. S portfolios aim to maxi-
mize the Sharpe ratio and are obtained from expressions (3)—(4);
Gand G, portfolios aim to maximize the geometric mean return
and are obtained from expressions (5)—(6), with G_ constrained
to have weights no larger than 47.5%. Panel A focuses on losses at
the end of each path (10,000 months) and shows the percentage of
the 10,000 paths that accumulate different levels of losses. Panel B
focuses on losses anywhere along each path (1.2 million months) and
shows the percentage of the 10,000 paths that accumulate different
levels of losses.

Ry « G,
Panel A (%)
Loss > 0% 0.2 5.2 4.2
Loss > 10% 0.1 4.0 29
Loss > 20% 0.0 2.8 1.9
Loss > 30% 0.0 1.9 1.1
Pancl B (%)
Loss > 0% 5.8 15.4 13.7
Loss > 10% 0.5 99 7.5
Loss > 20% 0.0 59 38
Loss > 30% 0.0 33 1.7

the likelihood and magnitude of losses not just at the end
of, but also anywhere along any given holding period.

Note that for each criterion (S, G, and G_) we sim-
ulate 10,000 paths of 120 months each, which amounts
to a total of 1.2 million simulated months per criterion.
Panel B of Exhibit 4 shows the proportion of these 1.2
million months in which S, G, and G, portfolios are
under $100. As in panel A, it remains the case that at
all the levels of losses considered, G and G, portfolios
spend more months under $100 than S portfolios. But,
also as before, the proportion of months with losses is
rather low in all cases. Note that G (G.) portfolios accu-
mulate losses higher than 10% less than 10% (8%) of the
time, and losses higher than 20% less than 6% (4%) of
the time. In other words, even when considering not
Jjust what happens at the end of, but anywhere along the
10,000 simulated paths, it is still the case that G and CC
portfolios do not expose investors to much higher losses
than do S portfolios.

To summarize, panel C of Exhibit 3 shows that
GMM exposes investors to much higher upside poten-
tial than does SR M. The same panel and Exhibit 4, in
turn, show that despite its high volatility, GMM does
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not expose investors to a considerable downside poten-
tial. These results combined suggest that GMM provides
both a substantial upside and a rather limited downside,
which should make it an attractive criterion for investors
and portfolio managers.

AN ASSESSMENT

Portfolio optimization has become a crowded
field, with many competing approaches in which Sharpe
ratio maximization (SRM) remains the standard cri-
terion. The results we discuss in this article, based on
expected, observed, and simulated performance, sug-
gest that geometric mean maximization (GMM) is a
plausible criterion that should be seriously considered
by both academics and practitioners.

There is no denying that GMM typically selects
portfolios (G) that are much less diversified and much
more volatile than those selected by SRM (S). And yet
that shortcoming may easily be overcome by imposing
the necessary diversification constraints. Our results show
that diversification-constrained GMM selects portfolios
(G,) that retain most of the desirable characteristics of
the portfolios selected by unconstrained GMM.

Our results also show that over the January 2001-
December 2010 period, bothiG and G, portfolios out-
performed S portfolios in terms of growth, as measured
by the geometric mean return and terminal capital,
and yet did not underperform in terms of risk-adjusted
return, as measured by the Sharpe and Sortino ratios. In
fact, the observed (out-of-saniple) annualized return dif-
ferential with respect to S was a remarkable 330bps in the
case of G, and a substantial 220bps in the case of G_.

Our simulations further strengthened the appeal of
GMM. In the 10,000 paths we simulated for each cri-
terion over a 10-year holding period, G (G,) portfolios
outperformed S portfolios by 540bps (360bps) a year,
thus producing much higher levels of terminal capital. In
fact, top-quartile terminal capital in G (G_) portfolios
was more than 2.7 times (almost 2 times) higher than
that in S portfolios. These differences would obviously
be even larger in holding periods longer than 10 years.

Interestingly, the much higher upside potential of G
and G_ portfolios was not offset by much higher downside
potential. Our simulations show that bottom-quartile ter-
minal capital in G and G, portfolios was roughly just 7%
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lower than that in S portfolios. Furthermore, although G
and G, portfolios were more likely to be underwater than
S partfolios, both during and at the end of the holding
period, the probability of being underwater was rather
low. In our simulations, G (G,_) portfolios accumulated
losses higher than 10% less than 10% (8%) of the time, and
losses higher than 20% less than 6% (4%) of the time, in
both cases considering performance not just at the end of,
but anywhere along the holding period. In other words,
G and G, portfolios are not likely to expose investors to
much higher losses than S portfolios.

What kind of investors would benefit the most
from GMM? Estrada [2010] argues that GMM is more
attractive 1) the lower the degree of risk aversion; 2)
the longer the holding period; and 3) the more certain
the holding period. Obviously, the less risk averse an
investor, the better he can tolerate the high volatility of
the portfolios selected by this criterion. And naturally,
the longer the holding period, the more time GMM has
to deliver its higher expected growth; in the short term,
anything can happen, and luck may play an important
role (whose impact would be expected to decrease as the
holding period increases).

As for the certainty of the holding period, if an
investor’s portfolio is not substantial and is likely to be
used to take care of unforeseen contingencies, then the
likelihood of having to liquidate it earlier than expected
may be high. In these circumstances, an investor may
intend to take the long view but may be forced to exit
the strategy before it has time to deliver its expected
higher growth. Similarly, a portfolio manager may want
to take the long view, but the investors in his fund may
be intolerant to suffering short-term losses and likely to .
exit the fund when these materialize. In short, the higher
the probability to remain invested for the long term, the
more attractive GMM becomes,

Long-term investors, portfolio managers whose
funds attract long-term investors, and hedge funds
(which typically impose lock-up periods that force inves-
tors to take the long view) may benefit the most from
GMM. Relative to the widely accepted SRM criterion,
then, GMM provides a much higher upside potential
with a rather limited downside potential, and that should
make it a plausible choice for investors and portfolio
managers.
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APPENDIX A

ExHIBIT A1l

Data and Summary Statistics

This exhibit shows, for the series of monthly returns, the arithmetic (1) and geometric (GM) mean return, standard deviation (@), beta with
respect to the world market (B), index of standardized skewness (SSkw), and index of standardized kurtosis (SKrt) for the six asset classes
in the sample and for the world market, all of them calculated between the beginning (Start) and the end (December 2010) of each asset’s
sample period. The returns of U.S. stocks are summarized by the S&P total return index (from Global Financial Data). The returns of EAFE
(Europe, Australasia, and the Far East) stocks and EM (Emerging Markets) stocks are summarized by MSCI total return indices. The returns
of U.S. bonds are summarized by the 10-year government bond total return index (from Global Financial Data), and those of ULS. real estate
by the FTSE NAREIT (All REITs) total return index. The return of gold is based on its New York price (8/ounce). The world market is
summarized by the MSCI All Country World index. All returns are in dollars and account for capital gains/losses and dividends/coupons.

Asset Class n(%) GM (%) a (%) p SSkw SKrt Start

U.S. stocks 0.9 0.8 52 0.34 5.0 733 Jan/1900
EAFE stocks 0.9 0.8 5.0 1.07 -2.8 5.1 Ja/1970
EM stocks 1.4 1.1 7.0 1.16 4.7 6.0 Jan/1988
U.S. bonds 0.4 0.4 L7 -0.03 12.6 49.2 Jan/1900
U.S. real estate 0.9 0.8 32 0.60 -3.7 34.1 Jan/1972
Gold 0.5 0.4 4.6 0.05 16.4 53.4 Jan/1940
World (Stocks) 0.7 0.6 4.5 1.00 -4.5 55 Jan/1988

EXHIBIT A2
Observed Performance—With Rebalancing

This exhibit describes the observed performance of optimal portfolios defined as those that aim to maximize the Sharpe ratio (S) according
to expressions (3)—(4) or mean compound return (G and G) according to expressions (5)—(6). The weights in G, are constrained to be
no larger than 47.5%. The figures summarize the performance of $100 invested in the optimal portfolios formeéd at the end of December
2000 (shown in Exhibit 1); passively held through the end of December 2005; rebalanced to the optimal portfolios formed at the end of
December 2005 (shown in Exhibit 1); and passively held through the end of December 2010. The last column summarizes the performance
of $100 passively invested in the world market (equity) portfolio. Performance measures include the arithmetic (1) and geometric (GAM)
mean return, volatility (G ), semideviation with respect to 0 (L ), beta with respect to the world market (B ), lowest (Min) and highest (Mw)
return, Sharpe ratio (SR ), and Sortino ratio (N = Lt /Z) all expressed in monthly magnitudes, as we]! as the terminal value of the $100
investment (TV). The data is described in Exhibit Al in the Appendix A.

Ay G G, World
i, (%) 09 13 1.0 04
GM, (%) 0.7 Lt 0.8 03
o, (%) 5.0 6.8 62 5.1
z (%) 3.6 4.6 43 37
B, 0.9 1.2 1.2 10
Min (%) ~23.3 -27.4 -26.3 -19.8
Max (%) 13.7 17.1 17.6 11.9
SRP 0.106 0.142 0.110 0.019
1\’P 0.244 0.284 0.236 0.118
Annualized GAM, (%) 9.3 13.6 10.3 3.7
Annualized o, (%) 175 23.5 21.5 17.5
TV (5) 243 357 268 144
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APPENDIX B

ExuiBiT Bl

Observed Performance

This exhibit shows the performance of $100 invested at the end of December 2000, passively held through the end of December 2010, in two

optimal portfolios, one selected by SRM (8) and the other selected by

GMM (G). It also shows the performance of $100 passively invested

in the world market portfolio (IV). Related performance figures are shown in Exhibit 2.
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ExHiBIiT B2

Observed Performance—Constrained GMM

This exhibit shows the performance of $100 invested at the end of December 2000, passively held through the end of December 2010, in
three optimal portfolios, one selected by SRM (S), one selected by GMM (G), and one selected by GMM constrained to have weights no
larger than 47.5% (G_). It also shows the performance of $100 passively invested in the world market portfolio (I). Related performance

figures are shown in Exhibit 2.
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APPENDIX C
SIMULATIONS—METHODOLOGY

We describe in this section in more detail the method-
ology behind our simulations, very briefly discussed before
in the “Simulated Performance” section. These simulations
gencrate 10,000 (out-of-sample) scenarios for each S, G, and
S portfolio; Exhibits 3 and 4 in the text report several perfor-
mance measures related to these 10,000 horse races.

On January 1, 2011, an initial capital of $100 is allo-
cated to each S, G, and G, portfolio, and the evolution of
each $100 is simulated over the subsequent 120 months. Note
that simulated data correspond to the “future” in the sense of
corresponding to a period after which our sample ends. Our
simulations use all the information available as of the end of
December 2010, and generate potential paths of asset returns
for the following 10 years (120 months).

Importantly, the evolution of each portfolio cannot be
simulated independently, because the asset classes we focus on
are correlated. For this reason, we need to simulate separately
the evolution of each asset class, including their correlations,
and then aggregate the results according to the composition
of each optimal portfolio (shown in the last three columns
of panel A in Exhibit ).}

We thus start by estimating mean returns, volatilities,
and covariances for our six asset classes following the Risk-
Metrics Exponentially Weighted Moving Average (EWMA)
forecasting approach.® We do so with some minor modifica-

tions, such as not assuming zero mean returns; instead, we use
the actual means estimated from the full sample available for
each asset class. Then, for any two assets i and j, we estimate
volatilities (0) and covariances (0"]) with the expressions

:{(l—k)-z:j: ?L”‘-(rl.,—.m'.)z}“2
= (1= 3 N =), —m)

where r_denotes the return of asset i in month f, m, denotes
the mean return of asset i, and A is a weight parameter that can
be used to give greater weight to more recent observations,
In our simulations, we have used A =0.99, which givesa 74%
weight to the observations over the 2001-2010 period, and a
meaningful 22% to those over the 1991-2000 period.’

Having estimated all the relevant parameters, we draw
a return for the first month (Jan/2011) for each of the six
asset classes in our sample. Using the weights in the last three
columns of Exhibit 1, we calculate the return for our three
portfolios for that first month, and then we do the same for
the subsequent 119 months. This yields one scenario, which
consists of a series of 120 monthly returns for cach portfolio
over the Jan/2011-Dec/2020 period; Exhibit Cl shows one
such scenario,

Finally, we repeat the whoIe process 10,000 times, thus
generating 10,000 scenarios. Exhibits 3 and 4 summarize sev-
eral aspects of the performance of S, G, and G_portfolios over
the 10,000 simulated horse races.

ExHiBIiT C1
Simulation Methodology—One Scenario

This exhibit, one of the 10,000 scenarios of our simulations, shows the performance of three optimal portfolios, one selected by SRM (S),
the other selected by GMM (G), and the other selected by GMM constrained to have weights no larger than 47.5% (GL).
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END NOTES
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The views expressed below and any errors that may remain
are entirely our own.

'As an example, consider two investments, one with a
5% certain return, and another with a 50-50 chance of a 200%
gain or a 100% loss. Although this second alternative (with
an expected value of 50%) may be, at least to some investors,
more attractive than the first when making a one-time choice,
it is a bad choice for all investors in a (long-term) multiperiod
framework with reinvestment of gains and losses. This is the
case because sooner or later, the 100% loss will occur and
wipe out all the capital accumulated.

However, Fama and MacBeth [1974] find substantial
economic differences between the G portfolio and the market
portfolio, the former having much higher (geometric mean)
return and (beta) risk.

*We test for the equality in Sharpe ratios with the meth-
odology proposed by Jobson and Korkie [1981] and Memmel
[2003], and cannot reject the null hypothesis at the 5% level
of significance.

“All the correlation coefficients we estimated are statis-
tically significant, with the exception of two (between gold
and U.S. stocks, and gold and U.S. real estate).

*Forccasting the parameters of the distributions of
returns is one of the key technical issues. Once we have these
distributions, by drawing a return every month, we get the
monthly change of value for each asset class, and from these
we compute the values of the three portfolios.

¢See “RiskMetrics—Technical Document,” fourth edi-
tion, 1996, chapter 5.

"In order to justify the 0.99 value note that with the fre-
quently used A = 0.97, the 1991-2000 and 20012010 periods
would have had weights of 2% and 97%, respectively; with
A =0.95, the same two periods would have had weights of 0.2%
and 99.8%. We have explored the sensitivity of our results to
changes in A and found that they are not substantially affected.
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