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Preface

Homological algebra is a well-established tool in ring theory and has been so for
half a century. Hyperhomological algebra is a more powerful tool with important
applications in ring theory. The use of hyperhomological methods has been growing
steadily but slowly for the past 25 years. One reason for the low speed, no doubt,
is the absence of an accessible introduction or reference to the theory and its ap-
plications. To be an effective practitioner of hyperhomological algebra one must be
well-versed in a series of research articles and lecture notes, including unpublished
ones. To get an overview of the applications of the theory the series grows further.

The purpose of the book is to remedy this deficiency. We make the case that
hyperhomological methods provide stronger results and, in general, shorter and
more transparent proofs than traditional homological algebra; this to an extent
that far outweighs the effort it takes to master this tool.

The book is divided into three parts FOUNDATIONS, APPLICATIONS, and TECH-
NIQUES. In FOUNDATIONS we introduce the concepts and terminology of homolo-
gical algebra and construct the derived category over a general ring. TECHNIQUES
continues this systematic development of hyperhomological algebra. In APPLI-
CATIONS we apply FOUNDATIONS and TECHNIQUES to the study of commutative
noetherian rings.

This division serves several purposes. Readers familiar with the language of
derived categories may skip FOUNDATIONS. TECHNIQUES is developed in a higher
generality than needed for APPLICATIONS; we expect this to make TECHNIQUES
a useful reference for researchers, not only in commutative algebra, but also in
neighboring fields. APPLICATIONS can serve as an introduction to homological
aspects of commutative algebra for graduate students in algebra and researchers in
other fields.

The parts are ordered as follows: FOUNDATIONS — APPLICATIONS — TECH-
NIQUES. This order is chosen to get to applications of the theory fast. Thus, AP-
PLICATIONS builds on technical constructions and results from TECHNIQUES and
can be read after FOUNDATIONS, using TECHNIQUES as an appendix.

iii
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Introduction

The appearance in 1956 of the book “Homological Algebra” by Henri Cartan and
Samuel Eilenberg initiated homological algebra. The first applications came the
very same year with notable papers by David Buchsbaum, Maurice Auslander and
Jean-Pierre Serre containing a homological characterization of regular local rings;
this made proofs of the Krull conjectures possible. Homological algebra has ever
since been an important tool in many areas in mathematics, in particular, in ring
theory (commutative and non-commutative), algebraic geometry, algebraic topol-
ogy, group theory, and Lie group theory to name a few.

CLASSICAL HOMOLOGICAL ALGEBRA studies the behavior of additive module
functors by determining the behavior—mnotably vanishing—of its derived functors.
To describe the construction of these derived functors, assume that R and S are
rings, and that T: M(R) — M(S) is an additive functor from the category of
modules over R and their homomorphisms to the same over S. Assume, for example,
that it is covariant and that we want the ith left derived functor L,T(—). Its value
at a given module M is obtained as follows:

(1) Chooses any projective resolution P, of M over R.
(2) Apply the functor T to the resolution to get a complex of S-modules T'(P,).

(3) Form the ith homology H;(T'(P.)); this is the desired value of L;T at M.
Actually, this module is only uniquely determined up isomorphisms, so one
has to adjust for this.

This three-step procedure can be extended to homomorphisms.

HYPERHOMOLOGICAL ALGEBRA studies—for given rings R and S—the behav-
ior of additive functors T from the category C(R) of complexes M, of R—modules
and their morphisms into the corresponding category C(S) over S. Any R—module
is viewed as a complex of R-modules, namely one that is concentrated in degree
zero, and any homomorphism of R-modules is viewed as a morphism of the corre-
sponding complexes. From this point of view, hyperhomological algebra becomes
an extension of classical homological algebra.

If, say, T is covariant, then the value of the left derived functor LT at an
R—complex M, is obtained as follows:

(1) Choose any semiprojective resolution P, of M, (to be described later). If M,
is a module, then any usual projective resolution is a semiprojective one.

(2) Set LT(M,) equal to T(P,). Actually, this complex of S—modules is only
uniquely determined up to, so-called, quasi-isomorphisms (to be explained
later). Adjustment for this is a procedure that involves the construction of
derived categories.
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This two step procedure can be extended to morphisms.

In hyperhomological algebra, the construction of a derived functor has two
steps, while the construction in classical homological algebra has three steps. In
the third step, valuable information is lost: One cannot retrieve a complex from
its homology modules. While this is a technical point, it is also an important
one; hyperhomological methods yield broader and stronger results. For example,
many results in the theory of local flat homomorphisms have been extended to local
homomorphisms of finite flat dimension, and new insight in the flat case has been
gained in the process.

While hyperhomological algebra was mentioned and named already in the final
chapter of “Homological algebra” by Cartan and FEilenberg, it was the work of
Grothendieck that brought it to ring theory. Subsequent work by Iversen and
Roberts demonstrated the utility of hyperhomological algebra in commutative ring
theory, where it is now firmly established as a research tool.

The aim of this book is to provide a systematic development of hyperhomo-
logical algebra: This includes the construction of the derived category over an
associative ring and a careful study of the functors of importance in ring theory.
To demonstrate the utility of the theory and to motivate the choice of topics, the
book includes a short course in homological aspects of commutative ring theory.
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Synopsis

This synopsis caters for readers with some background in homological algebra.
However, all notions discussed here will be defined in the main text, also those that
belong to classical homological algebra.

The first section provides a brief introduction to hyperhomological algebra.
{In bold braces some items are compared to the corresponding ones from clas-
sical homological algebra.} The remaining seven sections present applications of
hyperhomological algebra { followed—when possible—by special cases that can be
phrased within classical homological algebra }.

The organization of this synopsis does not follow that of the book, and no
references to the main text are given.

Hyperhomological algebra

This section is a short introduction to hyperhomological algebra { pointing out how
it extends classical homological algebra and mentioning the differences between the
two versions of homological algebra }.

Hyperhomological algebra { versus classical homological algebra }. For
given rings R and S, hyperhomological algebra studies derived functors of additive
functors from the category C(R), of complexes M, of Rfmoduleéﬂ and their mor-
phisms, into the corresponding category C(S). { Any R—module can be viewed as
a complex of R—modules concentrated in degree zero, and any homomorphism of
R-modules can be viewed as a morphism of the corresponding complexes. Thus,
the category M(R) of R—modules and their homomorphisms is a full subcategory
of C(R). Any additive module functor T': M(R) — M(S) extends to an additive
functor T': C(R) — C(S5), and it will follow, that hyperhomological algebra is an
extension of classical homological algebra. }

If the functor T is, for example, covariant, then hyperhomological algebra deter-
mines the value of, for example, the left derived functor, LT, of T' at an R—complex
M, in two steps:

(1) Choose any semiprojective resolution P, of M,. {If M, is a module M,
then any usual projective resolution of M is also a semiprojective resolu-
tion of M viewed as a complex }.

(2) Set LT(M,) equal to T(P,); this complex is uniquely determined up to
quasi-isomorphisms, so one has to adjust for these. This procedure in-
volves the construction of the derived category D(R) over R.

{In classical homological algebra, there is a third step:

1 Module means left module.

xi
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(3) Take the ¢th homology module H,(T'(P.)), which is the desired module
L,T(M); it is uniquely determined up isomorphisms. }

The two-step procedure in hyperhomological algebra can be extended to mor-
phisms: Any morphism «a,: M, — N, of R—complexes induces a morphism
LT(a,): LT(M,) — LT(N,) of S—complexes, and the latter is uniquely determined
up to quasi-isomorphisms. { The three-step procedure in classical homological al-
gebra can be extended to homomorphisms. Any homomorphism «a: M — N of
R-modules yields a homomorphism L,T(o): LT (M) — L/T(N) of S—modules,
which is uniquely determined up to isomorphism. }

Comparison. The procedure in hyperhomological algebra has two steps { while
the procedure in classical homological algebra has three steps, and in this extra
step valuable information is lost: One cannot retrieve a complex from its homology
modules. Examples of this are to follow. }

On the other hand, there are two items in hyperhomological algebra that are
harder to take care of than the corresponding the ones in classical homological
algebra. First, it requires more work to prove, say, the existence of a semiprojective
resolution of a complex than to prove existence of a (classical) projective resolution
of a module. Second, the derived category D(R) is structurally more complicated
than the module category M(R). However, these issues need only be dealt with
once and for alll

The derived category. The first step is to describe the category of R—complexes
C(R) in further detail. An object M in C(R) is an R—complex, that is, a sequence
of homomorphisms of R—modules

7 8"
M= — My =53 My =5 My_q —> -+
such that 979}, = 0 for all £ € Z. The family {0} }scz is the differential of M.

From now on, complexes are our primary objects of study, and we no longer
indicate complexes by subscript dots (as used above, for example in M, ). As
indicated earlier, a complex M is identified with the module My , if and only if the
complex M is concentrated in degree zero; that is, My = 0 for £ # 0. A morphism
a: M — N in C(R) is a family (Ozg: My — N‘)Zez of R-linear maps such that
ONap = ap_10M for all £ € Z. If M and N are R-modules, then « is a morphism
in C(R) if and only if ag: My — Ny is one in M(R), that is, a homomorphism of
R-modules. Thus, M(R) is a full subcategory of C(R).

Any morphism a: M — N in C(R) induces for all £ € Z a homomorphism
Hy(ar): He(M) — Hy(N), and « is said to be a quasi-isomorphism, when Hy(«) is
an isomorphism for all ¢ € Z. The symbol ~ indicates quasi-isomorphisms, and we
write a: M —— N to signal that « is a quasi-isomorphism. The notation M ~ N
has a (slightly) different meaning—to be described shortly.

The next step is to present the derived category D(R) over R. It has the same
objects as C(R), that is, all R—complexes. In this synopsis, we shall not need the
precise definition of the morphisms in D(R). It suffices to note the following facts:

(1) The objects of D(R) are exactly the R—complexes, that is, the classes of
objects in the two categories C(R) and D(R) are identical.

(2) Any morphism « in C(R) is a morphism in D(R), and it is an isomorphism
in D(R), if and only if it is a quasi-isomorphism in C(R).
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(3) The symbol ~ is the sign for isomorphism in D(R) as well as a symbol
that can be attached to quasi-isomorphisms in C(R).

(4) For any R—complexes M and N the following are equivalent.

(i) M and N are isomorphic in D(R).

(ii) There exist quasi-isomorphisms a: M —— X and 8: N — X.
(iii) There exist quasi-isomorphisms y: Y —— M and §: ¥ —— N.

(5) If M ~ N (that is, M and N are isomorphic in D(R)), then for each
¢ € 7 there is an induced isomorphism Hy(M) = H,(N) in M(R).

(6) If « is a homomorphism of R—modules, then « is an isomorphism in D(R),
if and only if it is an isomorphism in M(R).

Homomorphism functor. Any two R—complexes K and M induce a Z—complex
Homp (K, M) called their homomorphism complex; its £th module is

Homp(K, M), = | [ Hompg (K, Myis),
pEZ
and its differential is induced by those of K and M. For any R—complex K this
yields a functor Hompg(K, —): C(R) — C(Z). {If K and M are modules, then so
is the complex Hompg (K, M); it is the Z-module of R—homomorphisms K — M.}

Resolutions. An R—complex P is said to be semiprojective, when the functor
Hompg(P,—): C(R) — C(Z) preserves surjective quasi-isomorphisms. That is,
if a: M — N is a surjective quasi-isomorphism, then the induced morphism
Hompg (P, «): Homp(P, M) — Hompg(P, N) is a surjective quasi-isomorphism. {If
P is bounded below, that is, P, = 0 for ¢ <« 0, then P is semiprojective, if and
only if the R—module P, is projective for all £. } It turns out that any R—complex
K has a semiprojective resolution, that is, a quasi-isomorphism n: P — K with P
semiprojective. {If M is an R-module, then any classical projective resolution P
of M yields a semiprojective resolution of M viewed as an R—complex. } However,
if P is a projective object in the category C(R), then H(T'(P)) = 0 for all additive
functors C(R) — C(Z); thus, the object P is of no utility in homological algebral!
An R-complex I is said to be semi-injective, when Homp(—,I): C(R) — C(Z)
takes injective quasi-isomorphisms into surjective quasi-isomorphismsﬂ {If I is
bounded above, then T is semi-injective, if and only if I, is a injective for all £. } Tt
turns out that every R—complex M has a semi-injective resolution, i.e. a quasi-iso-
morphism ¢: M — I with I semi-injective. {If M is a module, then any classical
injective resolution I of M yields a semi-injective resolution of the complex M. }

Derived homomorphism functor. For any R-complex K, the covariant
homomorphism functor Hompg(K,—): C(R) — C(Z) has a derived functor
RHompg(K,—): D(R) — D(Z) defined on an R—complex M by

RHompg (M, K) = Homg(K,I)
whenever ¢: M — [ is a semi-injective resolution. Dually, for any R—complex

M, the contravariant homomorphism functor Homg(—, M): C(R) — C(Z) has a
derived functor RHomp(—, M): D(R) — D(Z) defined on an R—complex K by

RHompg (K, M) = Homg(P, M)

2 Like the projective ones, injective objects in the category C(R) are not interesting from a
homological viewpoint.
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whenever m: P — K is semiprojective resolution. It turns out there are induced
quasi-isomorphisms

Hompg (P, M) —— Hompg(P,I) «—— Hompg(K,I).

Thus, there is an isomorphism Hompg (P, M) ~ Hompg(K,I) in D(R), and hence
RHomp(—,—) can be derived from Hompg(—, —) in either variable. {Let K and
M be modules. The bifunctors H_,(RHomg (K, M)) and Ext%(K, M) in K and
M are isomorphic, in particular, so are Hy(RHompg(K, M)) and Homp (K, M). If
Exts (K, M) = 0 for £ > 0 then RHomg (K, M) ~ Homg(K, M). }

To define tensor products we need the opposite ring R°; it has the same addition
as R and multiplication R° x R® — R° given by (r,7’) — r’rﬂ

Tensor product functors. Let K be an R°—complex and M be an R—complex.
The tensor product K @ M is then a Z-complex whose ¢th module is

(K®r M) = H Ky @p My—p,
PEL
and whose differential is induced by those of K and M. {If K and M are modules,
then the tensor product complex is the Z-module K ® g M.}

This construction yields an additive functor K ® p —: C(R) — C(Z). The
derived tensor product functor, denoted K ®% —: D(R) — D(Z), is defined an
object M in D(R) as follows: Choose a semiprojective resolution 7: P — M, and
set

K@% M=K ®gP.

It is uniquely determined up to isomorphism in D(Z). Furthermore, if £: Q — K is
a semiprojective resolution of R°~modules, there turn out to be quasi-isomorphisms
Q®rM —— Q&P —— K ®g P.

Thus, there is an isomorphism Q®r M =~ K®grP in D(Z), so —®%—
can be derived from — ®g — in either variable. {If K and M are mod-
ules, then H (K@% M) = Torf(K,M) functorially in K and M, and
hence Ho(K ®% M) = KorM. 1If Torf(K,M) = 0 for £ > 0, then

K@Y M~K®r M.}

An R°—complex F is said to be semiflat, when the functor F ® —: C(R) —
C(Z) preserves injective quasi-isomorphisms. {If F is bounded below, then F is
semiflat, if and only if the R°~module Fyis flat for all £. } If p: F — K is a semiflat
resolution, then the functors K ®% — and F ®pk — are isomorphic.

Application 1: Homological dimensions

Boundedness and Finiteness. For M in D(R) the supremum and infimum of
the set {i € Z | H;(M) # 0} are denoted sup M and inf M. The category of
bounded complexes, denoted D5(R), is the full subcategory of D(R) of complexes
with sup M and inf M finite. A bounded R-complex M is said to be finite, when
Hy(M) is finitely generated for all ¢ € Z, and the full subcategory of D(R) consisting
of these complexes is denoted ’DfD(R).

3 Some refer to R°~modules as right R—modules. This nomenclature is not used in this text;
here module means left module.
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Homological dimensions. For a complex M € D(R) the projective dimension
pdr M, the flat dimension fdr M, and the injective dimension idgr M are defined
as follows.

pdr M = inf{s € Z | M has semiprojective resolution P with P, =0 for £ > s }.
fdr M = inf{ s € Z | M has semiflat resolution F' with F; =0 for £ > s }.
idg M = inf{i € Z | M has semiinjective resolution I with I, =0 for — ¢ >i}.

These numbers belong to the extended integers Z* = Z U { —o0,00 }. {If M is a
module, then these numbers are the usual homological dimensions. }

Depth and Width. Let (R,m,k) be a local ring, that is, R is a commutative
Noetherian ring with a unique maximal ideal m, and residue field ¥ = R/m. For
M € D(R) we define the next numbers in Z*:

depthp M = —supRHompg(k, M)  and  widthg M = inf(k @% M).
It turns out that the following are equivalent for M € Do(R):
(i) depthyp M < co; (i) widthg M < co; (iii) depthyp M + widthg M < dim R.
Furthermore, H(M) # 0 if and only if depthp M, < oo for some p € Spec R.
{Let M be an R—module. The above depth is then the usual concept, that is,
depthp M = inf{¢ € Ny | Ext%(k, M) # 0}. If there is an M regular sequence
Z1,...,2q4 € m with d = dim R and (z1,...,24)M # M, then depthy M = d. If
M is finitely generated, then depthp M is the maximal length n of an M-regular
sequence r1,...,T, in m. In classical homological algebra, the width of M is the

number inf{¢ € Ny | Torf(k, M) # 0}; if M is finitely generated and non-zero,
then widthp M = 0.}

Auslander—Buchsbaum Equalities. If R is a local ring, M and N belong to
Do(R), and fdg N < oo, then the next equality in Z* hold.

depthr(M ®% N) = depthy M + depthp N — depth R.
If, in addition, N € DL (R) and H(N) # 0, then
pdr N + depthp N = depth R.
{Let N be a non-zero finitely generated R-module with pdy N finite. The latter
formula is then the classical Auslander—-Buchsbaum Equality. If M is a finitely

generated R-module such that Torf'(M, N) = 0 for £ > 0, then the former is the
equality depthp(M ®r N) = depthy M + depthp N — depth R. }

Gorenstein local rings. A local ring R is Gorenstein, if idg R is finite.
The following are equivalent for a local ring R.
(i) R is Gorenstein.
(ii) For all N € Dg(R), fdr N is finite if and only if idgr N is finite.
(iii) There exists N € D5(R) such that fdr N, idr N, and depth N are finite.

Dimension. Let R be a commutative ring. Its Krull dimension, dim R, is the
supremum of the set of n € Ny such that there exists a chain py C - -+ C p,, of prime
ideals in R. The Krull dimension, dimg M, of M € D(R) is defined as

dimp M = sup{dim(R/p) —inf M, | p € SpecR }.

If depthy M is finite, then there is an inequality depthp M < dimg M. {If M is
an R-module, then dimp M = sup{dim(R/p) | p € Suppr M } is the usual Krull
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dimension of a module. Here, dim(R/p) is the Krull dimension of the ring R/p
(which equals the dimension dimp(R/p) of the R—module R/p). }
The dimension of a complex is given by the dimension of its homology modules:

sup{dimp Hy(M) — (| L € Z}.
If M and N are R-modules, then dimp(M ®% N) = dimg(M ®r N).

Application 2: Duality

In this section (R, m, k) is a local ring. By definition, a complex D in Dé (R)
is dualizing for R if the injective dimension idr D is finite, and the homothety
morphism R — RHompg(D, D) is an isomorphism in D(R). In this section we
assume that R has a dualizing complex. { If D is a finitely generated R-module,
then D is a dualizing complex, if and only if it is a dualizing module, which means,
that Ext%(D,D) = 0 for £ > 0, the homothety map R — Hompg(D, D) is an
isomorphism, and idg D < oco. If R admits a dualizing module, then it is Cohen—
Macaulay. The ring R is a dualizing R—complex, if and only if it is Gorenstein. }

Duality morphism. There is a natural morphism
eM: M — RHomg(RHompg(M, D), D)

called the duality morphism. {If R is artinian, then the injective hull Er(k) is a
dualizing module for R, and for an R-module M the morphism ¢ maps M to the
double Matlis dual: M — Hompg(Hompg(M,Er(K)),Er(k)). }

Duality Theorem. The duality morphism ™

M e DQ(R), and there is a duality:

is an isomorphism in D(R) for all

RHompg(—,D)

e

Shift. For M € D(R) and n € Z the complex ="M € D(R) is defined by (="M ), =
My_,, and 97" M = (—1)"9}" . The complex ="M is said to be M shifted n degrees
(against the differential).

Existence and uniqueness of Dualizing complexes. The ring R possesses a
dualizing complex, if and only if it is a homomorphic image of a Gorenstein local
ring. An R-complex D € DL (R) is dualizing for R, if and only if RHompg (k, D) ~
="k for some m € Z. If D and D’ are dualizing complexes over R, then there exists
an n € Z, such that D’ ~ s"D.

Dagger Duality. A dualizing complex D is said to be mnormalized, when
RHompg(k,D) ~ k. In that case inf D = depthR and supD = dim R. If R is
Cohen-Macaulay, and C is a dualizing R-module, then =™ 2C is a normalized
dualizing R—complex.

The dagger dual of M € D(R) is defined as MT = RHomg(M, D). By the
Duality Theorem Mt ~ M for M € Dé (R). Furthermore, the following hold:

sup M = dimp M and inf MT = depthp M.
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Local Duality. The local section functor, with support on m, is defined as
I'm(=) = lim Hompg(R/m",—). Its right derived functor is denoted RI'n(—).
There is a natural isomorphism of functors

RI,(—) ~ Homg(—T, Eg(k))

{If R is a Cohen—Macaulay ring, then the nth right derived functor of I'y,(—) is
Hompg(Extg ™(—, D), Er(k)). }

Application 3: Intersection results
In this section (R, m, k) is a local ring.

Intersection Theorem. If M, N € D{;(R) have non-zero homology, then
dimg M < dimg(M ®% N) + pdyp N.
{If M and N are non-zero finitely generated R-modules, then dimp M <

dimg(M ®g N) + pdgr N. In particular, if also Suppz M N Suppr N = {m}, then
dimpr M < pdy N. This has been known as the Intersection Conjecture. }

New Intersection Theorem. If FF =0 — Fy, — --- — Fy — 0 is a non-trivial
complex of finitely generated free R—modules such that dimg Hy(F) < ¢ for all £,
then dim R < s.

Cohen—Macaulay—defect. The Cohen—Macaulay—defect of an R—complex M is
cmdr M = dimg M —depthy M (€ Z*). If M € D5(R) has finite depth M, then
it turns out that depthp M < dimp M, that is, cmdr M > 0. The Intersection
Theorem above and the Auslander-Buchsbaum equality yield the next Cohen—
Macaulay—defect Inequality:

ecmdr M < emdg(M ®@% N),

provided M, N € DfD(R), pdp N is finite, and H(N) # 0. For M = R the inequality
is cmdg N > cmdgr R. { A finitely generated R—module N is said to be Cohen—
Macaulay, when cmdr N = 0. It follows from the above, that R is Cohen—-Macaulay,
if it admits a Cohen—-Macaulay module of finite projective dimension. }

Amplitude. For M € D(R) we set ampM = supM — inf M (€ Z*). { Thus,
if M is a non-zero R—module, then amp M = 0.} The Cohen-Macaulay—defect
Inequality above implies the next Amplitude Inequality:

amp M < amp(M ®@% N),
provided M, N € Dg (R), pdg N is finite, and H(N) # 0. {If N is a non-zero finite-
ly generated R—module with pdy N finite, and if zq,...,2, € m is an N-regular
sequence, then this sequence is also R-regular. This was known as Auslander’s
zero-divisor conjecture. }
Note from Dagger Duality that cmdg M = amp MT for M in Dé (R).

Intersection Theorem, Special Dual Version. If N € Dé (R) has idg N finite
and H(N) # 0, then

cmdp R <amp N .
{If N is a finitely generated module with idg N finite, then R is Cohen—Macaulay.
This was known as Bass’ Conjecture. }
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Grade. The grade (or codimension) of M € D(R) is given as
gradep, M = —sup RHompg(M, R).

{If M is a finitely generated R—module, then gradey M equals the largest n such
that there exists an R-regular sequence 1, ...,z, in Anng M.}

If the local ring R is equidimensional and catenary, then it turns out that the
next equality holds for M € Dé (R) with H(M) # 0 and pdp M finite.

dimp R = dimrp M + gradep M.
{ This provides a partial confirmation of Auslander’s Codimension Conjecture. }
Regular local rings. Assume R is regular, that is, the maximal ideal m can be

generated by dim R elements. This is known to be tantamount to pdp N being
finite for all R—modules N. In this case, Serre proved the inequality

dimp M + dimg N < dim R

for finitely generated R—modules M and N with dimgp(M ®z N) = 0. This yields
the next inequalities for all M, N € Dé (R):

dimg M + dimg N < dimg(M ®% N) + dim R;
amp M 4+ amp N < amp(M @% N).
Note that these strengthen the Intersection Theorem and the Amplitude Inequality.
Intersection Theorem, Infinite version. Assume that R is equicharacteristic,

that is, R and k have the same characteristic. If M € D{;(R), N € Do(R),
fdr N < 0o, and H(IV) # 0, then the next inequalities hold.

dimp M < dimg(M ®% N) +sup (k @% N) < dimp(M @% N) +fdg N

Application 4: Bass and Betti numbers

In this section (R, m, k) is a local ring. For M € DfD(R) the Bass and Betti
numbers, % (M) and BE(M) are non-negative integers defined as

pr(M) = [H_y(RHomp(k, M))|x € No and G (M) = [He(k @3 M)|x € No,
where | — | means vector space dimension over the residue field k.
Bass Series and Poincaré Series. The ring of formal power series with integer
coefficients is denoted Z[[t]]; the ring of formal Laurent series Z([t]) = Z|[t]][t™] is
obtained by inverting ¢. Elements of the latter are of the form a = %ycz apt with
a¢ € Z and ap = 0 for £ <« 0. The subset Ny([t]) of Z([t]) consists of the series

a = Yyez agt? with ap > 0 for all £; it is closed under addition and multiplication.
The Bass series and Poincaré series of M € Dé (R),

() = Seen (M)t and PR (1) = e BRODE
belong to Ny([t]). Their degree and order carry information about M:
idg M = deg I}/ (t)  depthy M = ord I (t)
pdp M = deg P%, (1) inf M = ord P, (t).
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If D belongs to Dé(R), then D is a normalized dualizing R—complex, if and only
if 12 (t) = 1, and when this is the case, the next formulae hold for M € DfD(R).

B0 =Pl and IR0 =Pl ().
Derived functors. For M, N € DfD(R) there are equalities:
PP () = PE (0 PE()
M ) = PR (0 I (1)

R (t)
PgHomR(M,N)(t) =IFINE") if idp M < oo
Iy Y () = 1Y

t)
R t PR if pdp M < oc.

Localization. For M € DfD(R) and p a prime ideal in R the next hold.
PP (t) = PR(t) and T (trtime /) <1l (1),

Here, Yycz apt = Ypez bit <= ap < by forall ¢ € Z. {If M is a finitely gene-
rated R-module and p € Spec has n = dimg R/p, then M%p (M,) < ug"(M); in
particular, if u%{p (M) # 0 then p'5™ (M) #0.}

Type. For M € DL(R) with H(M) # 0 the number pEmE M N s called the
type of M. If dimp M = dimpg Hyyp (M) — sup M (as is the case, when M is
a module) and M has type 1, then there is an ideal a in R such that M is a
dualizing complex over R/a. {If M € M/ (R) is non-zero, then u&% (M) > 2 for

depthp M < ¢ <idr M, and when_ M has type one, then M is a dualizing module
for R/ Anng M. If the ring has u%‘mR R(R) =1, then R is Gorenstein. }

Application 5: Auslander and Bass categories

In this section (R, m, k) is a local ring with normalized dualizing complex D.
For each M € D(R) there are two natural morphisms

ay: M — RHomp(D, D ®@% M) and Sy : D ®% RHomp(D, M) — M.
Two full subcategories A(R) and B(R) of D5(R) are defined as follows:
M € A(R) <= M ®% D € D5(R) and a,; is an isomorphism.
N € B(R) < RHomg(N, D) € D5(R) and Sy is an isomorphism.
There is an equivalence of categories:
D% —

A(R) B(R).

RHompg(D,—)

Auslander’s G—dimension. To every finitely generated R—module M, Auslander
associated a number G-dimp M € Nj U { —occ }, known as the G-dimension of M.
This homological dimension can be extended from M7 (R) to ’Dé (R) as follows.
There is a map G—dimpg: Dé(R) — Z* with the following properties.
(1) G-dimgp M < pdp M with equality, if pdy M is finite.
(2) The following are equivalent:
(i) R is Gorenstein.
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(#9) G—dimp M is finite for all finitely generated R—modules M.
(#31) G-dimpg k is finite.
(3) The following are equivalent for M € DL (R).
(1) G-dimpg M is finite.
(7i) M belongs to the Auslander category A(R).
(73i) G-dimp M = depth R — depthyp M.
(tv) RHompr(M, R) is bounded and the canonical morphism M —
RHomp(RHompg (M, R), R) is an isomorphism.

This G-dimension can be extended to all of D5(R) in the following two ways.

Gorenstein Projective Dimension.
There is a map Gpdgy: Dg(R) — Z* with the following properties.
(0) If M € DL(R), then Gpdp M = G-dimg M.
(1) If M € D5(R), then Gpdr M < pdp M with equality if pdy M < oc.
(2) If M € Dg(R), then Gpdr M < oo if and only if M € A(R).
(3) R is Gorenstein, if and only if Gpdy M is finite for all M € Do(R).

Gorenstein Flat Dimension.
There is a map Gfdg: D5(R) — Z* with the following properties.

(0) If M € DL(R), then Gfdr M = G-dimg M.
(1) If M € Dg(R), then Gifdg M < fdr M with equality if fdr M < oco.
(2) Gfdg M < Gpdp M for all M € D(R).
(3) For M € D(R) the following are equivalent.
(i) Gidr M is finite.
(¢') Gpdg M is finite.
(1) M € A(R).
(4) R is Gorenstein, if and only if Gfdg M is finite for all M € Dg(R).

There is also a dual notion.

Gorenstein Injective Dimension.
There is a map Gidg: D5(R) — Z* with the following properties.
(1) If N € Dg(R), then Gidg N <idr N with equality if idgp N < oc.
(2) If N € Do(R), then Gidgp N < oo if and only if N € B(R).
(3) R is Gorenstein, if and only if Gidg N is finite for all N € Do(R).
(4) Gidg N 4 inf N = depth R if N € DL(R) has H(N) # 0.

Cyclic Modules. If R possess a dualizing complex and a non-zero cyclic module
of finite Gorenstein injective dimension, then R is Gorenstein. {If there exists a
non-zero cyclic R—module of finite injective dimension, then R is Gorenstein. }

Application 6: Local homomorphisms

In this section, (R, m,k) and (S,n,¢) are local rings, and ¢: R — S is a local
homomorphism, that is, ¢(m) C n. The homomorphism gives S an R-module
structure, and it is said to be flat, if S, with this structure, is a flat over R. Similarly,
@ is of finite flat dimension (written fd ¢ < 00), and of finite Gorenstein flat
dimension (written Gfd ¢ < 00), when fdg S < 0o and Gfdg S < oo, respectively.

Assume D is a normalized dualizing complex for R.
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Base Change. If ¢ is of finite flat dimension, then there exists a formal Laurent
series I(p) € No([t]) such that the next equality holds for all M € DL (R):

() 150 = 1 (01(¢)

If ¢ is of finite Gorenstein flat dimension, then there exists a formal Laurent
series I(p) € Ny([t]) such that (x) holds for all M € Dé(R).

In particular, 13(t) = I%(t) (). Moreover, if M # 0 then

depthg(M ®@% S) — depthy M = ordI(p) = depth S — depth R

and ‘u'r;;»depth R(M) S ungdepth S(M ®% S)

Gorenstein Local Homomorphisms. Let ¢: R — S be a local homomorphism.
It is said to be quasi-Gorenstein, respectively, Gorenstein, when I(y) = t¢ for some
¢ € Z, and Gfd ¢ < oo, respectively, fd ¢ < oco. {If ¢ is flat, that is, S is a flat
R-module, with closed fiber R/mR, then there is an equality I(p) = Ig?nmlg(t) ; and
hence the homomorphism ¢ is Gorenstein in the above sense, if and only if it is
Gorenstein in the classical sense. }

There are two Gorenstein Ascent—Descent Theorems:

R Gorenstein and ¢ quasi-Gorenstein <= S Gorenstein and Gfd ¢ < co.
R Gorenstein and ¢ Gorenstein <= S Gorenstein and fd ¢ < co.

{ Assume ¢ is flat. The target S is then Gorenstein, if and only if both the source
R and the closed fiber R/mR are so. Assume furthermore that the formal fiber
k(p) ®r R is Gorenstein for all p € Spec R. If the closed fiber S/mS is Gorenstein,
then the fiber k(p) ® g S is Gorenstein for all p € Spec R. }

Cohen—Macaulay Local Homomorphisms. Let ¢: R — S be local homomor-
phism. It is said to be quasi-Cohen—Macaulay, when ordI(¢) = degl(y) and
Gfdp < oo, and it is said to be Cohen—Macaulay when ordI(p) = degl(yp)
and fd o < oco. {If ¢ is flat with closed fiber R/mR, then there is an equality
I(p) = Igr‘:g(t); the homomorphism ¢ is Cohen-Macaulay in the above sense, if

and only if it is Cohen—Macaulay in the classical sense. }
There is a Cohen—Macaulay Ascent—Descent Theorem:

R CM and ¢ quasi-CM — S CM and Gfd p < c0.
S CM and Gfd ¢ < co — ¢ quasi-CM..
RCMand ¢ CM <= S CM and fdy < 0.

{Let ¢ be flat. The target S is then Cohen—-Macaulay, if and only if both R and
R/mR are so. Furthermore, let the formal fiber k(p) ®z R be Cohen-Macaulay
for all p € Spec R. If the closed fiber S/mS is Cohen-Macaulay, then the fiber
k(p) ®r S is Cohen—Macaulay for all p € Spec R. This answers a question of
Grothendieck. }

Frobenius Endomorphism. Let R be of prime characteristic, and consider the
Frobenius endomorphism ¢: R — R. For n € N let R, denote R viewed as an
R-module via ¢". If R,, has finite Gorenstein flat dimension for some n, then R is
Gorenstein. {If R,, has finite flat dimension for some n, then R is regular. } If R,,
has finite injective dimension for some n, then R is regular. If R is a homomorphic
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image of a Gorenstein ring, then R is Gorenstein, provided R,, has finite Gorenstein
injective dimension for some n.

Application 7: Fundamental isomorphisms

In this section @ is a commutative ring with 1 # 0, and R and S are associative
Q-algebras. The category of R—S—bimodules and —bihomomorphisms is denoted
M(R,S), while D(R, S) denotes the corresponding derived category.

Fundamental Isomorphisms. There are natural isomorphisms in D(Q):

(Comm) L &% M ~ M @%, L for L € D(R°) and M € D(R).
(Assoc) For L € D(R°), M € D(R,S°), and N € D(S):

(L&k M) @5 N =~ Lk (M5 N).
(Adjun) For L € D(R°,S), M € D(R), and N € D(S5):

RHomg(L ®% M, N) ~ RHomp (M, RHomg(L, N)).
(Swap) for L € D(R), M € D(S), and N € D(R,S):
RHompg (L, RHomg(M, N)) ~ RHomg (M, RHompg(L, N)).

{Let L, M, and N be modules. The classical isomorphisms are then obtained
from the four above by taking the Oth homology. If R = S and N is an in-
jective R—module, then for all ¢ € Z (Swap) and (Adjun) yield isomorphisms
Ext% (L, Homg (M, N)) = Ext’ (M, Homg(L, N)) 2 Homg(Tors (L, M), N). }

Evaluation Isomorphisms. For L € D(R), M € D(R,S°), and N € D(S) there
is an Z-morphism (Tensor evaluation)

WLMN - RHOHIR(L, M) ®g N — RHOHIR(L, M ®g N)

It is functorial in L, M, and N and an isomorphism if L € DL (R), M € Do(R, 5°),
N € D5(S), R is Noetherian (as an R-module), and either pdy L or fdr N finite.

Hom evaluation. For L € D(R), M € D(R,S), and N € D(S) there is an
Z—morphism, functorial in L, M, and N,

Oran: L @% RHomg(M, N) — RHomg(RHompg(L, M), N).

It is an isomorphism if L € DfD(R), it M € Dg(R,S), N € Dg(5), R° is Noetherian
(as an R°—module), and either pdg L or idg N finite.

{For modules L, M, and N one has the classical evaluation homomor-
phisms Hompg(L, M) ®s N — Hompg(L,M ®¢ N) and L ®go Homg(M,N) —
Homg(Hompg(L, M), N); these induce the two above. }

{Let R be commutative and Noetherian, and let L, M, and N be R-mo-
dules such that L is finitely generated. If IV is flat, then Ext‘;]%(LM) RQr N =
EXt%(L, M ®pg N) forall £ € Z, and hence idr(M ®r N) <idr M. If N is injective,
then Tor?(L,Homg(M,N)) = Hompg(Ext% (L, M), N) for all £ € Z, and hence
idR(HomR(M, N)) < idR M. }
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CHAPTER 1
Modules and Homomorphisms

1.1. Basic concepts
1.2. Exact functors and special modules

FREE MODULES

(1.2.1) Definition. An R-module L is free if it has a basis, i.e. there is a set A
such that L = RW),

PROJECTIVE MODULES

(1.2.2) Definition. An R-module P is projective if the functor Hompg (P, -) is exact.

INJECTIVE MODULES

(1.2.3) Definition. An R-module I is injective if the functor Hompg(-, I) is exact.

FLAT MODULES

(1.2.4) Definition. An R-module F is flat if the functor - @ F' is exact.

1.3. Canonical homomorphisms

IDENTITIES
For any R-module M there are natural isomorphisms

(1.3.0.1) M —=— Hompg(R,M) and M —— R@p M.

STANDARD ISOMORPHISMS
(1.3.1) Lemma (Commutativity). The (tensor) commutativity homomorphism
TunN: M @r N — NQ@rM
is given by
Tun(men) = (n®m).
It is invertible, and it is natural in M and N.
(1.3.2) Lemma (Associativity). The (tensor) associativity homomorphism
orun: (LOg M)®g N — L®r (M ®r N)
is given by
orun(l@m)®@n) =1 (men).
It is invertible, and it is natural in L, M, and N.

1
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(1.3.3) Lemma (Adjointness). The (Hom-tensor) adjointness homomorphism
pryn: Homp(L ®p M,N) — Hompg(L, Hompr(M, N))
is given by
prvn (@) (D)(m) = Pl @m).

It is invertible, and it is natural in L, M, and N.

(1.3.4) Lemma (Swap). The (Hom) swap homomorphism
seymny: Hompg(L,Hompr(M,N)) — Hompg(M,Hompg(L, N))
is given by
seun (¥)(m)(1) = p(l)(m).

It is invertible, and it is natural in L, M, and N.

Proof. Straightforward to verify naturality. Invertible because map is own inverse.
O

EVALUATION (ISO)MORPHISMS
(1.3.5) Lemma (Tensor evaluation). The tensor evaluation homomorphism
wrmn: Homg(L,M) @ g N — Hompg(L,M ®r N)
is given by
wrmn (Y @ n)(l) = ¢(l) @ n.

It is natural in L, M, and N. It is invertible under each of the next extra conditions:

(a) L is finite and projective;

(b) L is finite and N is flat.
Proof. Straightforward to verify naturality.

(a): For L = R by inspection. For finite free modules and summands of such

by additivity of functors.
(b): Choose presentation of L by finite free modules

F1—>F0—>L—>O

Apply Hompg(-, M) and - ®g N in succession to obtain top row in commutative
diagram

0*)HOH13(L,M) ®RN*>HOHIR(F0,M) ®RN*>HOHIR(F1,M) Rr N

| J §

0*)HOHIR(L,M®R N) *)HOHIR(F(),M(X)R N) *)HOHIR(FDM@R N)

IR

The vertical isomorphisms are by part (a). Conclude by the 5-lemma or diagram
chase. 0

(1.3.6) Lemma (Homomorphism evaluation). The homomorphism evaluation
homomorphism
Ormn: L ®g HOIHR(M, N) — HomR(HomR(L, M), N)

is given by
Omn (I ®1)(9) = I(l).
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It is natural in L, M, and N. It is invertible under each of the next two extra
conditions:

(a) L is finite and projective; or

(b) L is finite and N is injective.

Proof. Straightforward to verify naturality.
(a): For L = R by inspection. For finite free modules and summands of such
by additivity of functors.

(b): See (E1.3.3). O

EXERCISES
(E 1.3.1) Prove that Hom-tensor adjointness(1.3.3) is a natural homomorphism of
R-modules.

(E 1.3.2) Give an alternative proof of swap (1.3.4) based on Lemma (|1.3.3]).
(E 1.3.3) Prove Lemma (1.3.6)(b).

(E 1.3.4) Let F be a flat R-module and I an injective one. Prove that Hompg(F, )
is an injective R-module.
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CHAPTER 2
Complexes and Morphisms

2.1. Basic concepts

COMPLEXES
(2.1.1) Definition. An R-complex M is a sequence of R-modules (M, ),ez together
with R-linear maps (0M: M, — M,_1)vez,
et a)r
M= — My — My —— My_q — -~
such that 9M9M, =0 for all v € Z.
The module M, is called the module in degree v, and the map ijwz M, — M,_1
is the vth differential. The degree of an element m is denoted by |m|, i.e.,
m| =v <= m € M,,.
Forgetting about the differentials on M one gets a graded R-module denoted
M°.
Let v > w be integers. A complex M is said to be concentrated in degrees
U, ..., w if M, =0 when v > u or v < w; it is written

M=0—M, —M,_1 — - — Myy; — M, — 0.

In particular, the zero complex is written 0.

A complex M is said to be bounded above if M, =0 for v > 0, bounded below
if M, = 0 for v <« 0, and simply bounded if it is bounded above and below, i.e.
M, =0 for |v| > 0.

(2.1.2) Remark. A complex M concentrated in degree 0 is identified with the
module My. A module M is considered as a complex, namely
M=0—-M-=—0

concentrated in degree 0.

(2.1.3) Definition. A morphism «: M — N of R-complexes is a sequence a =
(ay)vez of R-module homomorphisms «,: M, — N, such that

N M
0, ay = y_10,

for all v € Z.

For an element r € R and an R-complex M the morphism ™ : M — M is the
homothety given by multiplication by r. In line with this, we denote the identity
morphism on M by 1M,

(2.1.4) Remark. R-complexes and their morphisms form a category that we denote
C(R).
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(2.1.5) Definition. A morphism «: M — N of R-complexes is said to be an iso-
morphism when there exists a morphism o~ !': N — M such that o 'a = 1™ and
aa~ ! =1V, Isomorphisms are indicated by the symbol 2 next to their arrows, and
two complexes M and N are isomorphic, M = N in symbols, if and only if there

exists an isomorphism M —— N.

(2.1.6) Remark. It is clear that two modules are isomorphic as complexes if and
only if they are so as modules.

It is an elementary exercise to verify that a morphism a: M — N of
R-complexes is an isomorphism if and only if all the homomorphisms a,, : M, — N,
are isomorphisms of R-modules.

(2.1.7) Definition. A sequence (K, C M,),cz of submodules constitute a subcom-
plex of M if the differentials M restrict to homomorphisms between the submod-
ules K.

If K is a subcomplex of M one can form the quotient complex M /K in the
obvious way.

(2.1.8) Definition. A short exact sequence of R-complexes is a diagram in C(R)
0— M = M2 M — 0,

where o is injective, « is surjective, and Ima’ = Kera. Equivalently, 0 —
M o M, 2 M” — 0 is a short exact sequence of R-modules for each v € Z.
HoMmoLoGy
(2.1.9) Definition. For an R-complex M set

Zo(M) = Ker 0M,

B, (M) =Imo}),,

Cy(M) = Coker 92 ,, and

H, (M) = 7, (M) By (M).
Elements in Z, (M) are called cycles, and elements in B, (M) are called boundaries.
For each v the condition 9}9M | = 0 ensures that B, (M) C Z,(M). The complex

M is exact in degree v if B,(M) = Z, (M), equivalently H, (M) = 0. The complex
is exact if it is exact in each degree. An exact complex is also called acyclic.

(2.1.10) Remark. The sequences (B,(M))vez, (Zo(M))vez, (Co(M))ypez, and
(Hy(M))yez form complexes with 0 differentials. These are denoted B(M), Z(M),
C(M), and H(M), respectively.

(2.1.11) Definition. Let M be an R-complex. The supremum, infimum, and am-
plitude of M capture the homological position and size of M. These numbers are
defined as follows:

supM =sup{v €Z|H,(M)#0},
inf M =inf{veZ|H,(M)#0}, and
amp M = sup M — inf M.
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(2.1.12) Remark. It follows straight from the definition (2.1.3)) that a morphism
a: M — N of R-complexes maps boundaries to boundaries and cycles to cycles;
thus, it induces a morphism H(«) in homology

0 B(M) Z(M) ——H(M) ——0
(2.1.12.1) Ja Ja JH(Q)
0 B(N) Z(N) —— H(N) —— 0.

(2.1.13) Lemma. For every short exact sequence of R-complexes,
0 — M 21 M 2 M7 — 0,
there is a long exact sequence of homology modules

Hv(a/) H, (O‘)
- LA AN

M HU(M,) H?)(M) HT)(M”) i} Hv—l(M/) —

The connecting homomorphism ¢ is natural in the following sense: Given a com-

mutative diagram of R-complexes

’
[e3 [0}

0 M M M" 0
J(pl Jtp \w//
0 N Lo N L N 0,

there is a commutative diagram of R-modules

H'u(a/)

S H (M) 2D, () 2

O H (M) —2 s Hy (M) ——— -+
JH(W/) JH ) JH(sO") JH(W)
H

(V) 2 g (v 2 g (v (V) —— -

Proof. The connecting homomorphism is constructed through three applications
of the Snake Lemma. Chase a diagram to see that it is natural. O

(2.1.14) Definition. A morphism a: M — N of R-complexes is called a quasiiso-
morphism if the induced map H(a): H(M) — H(N) is an isomorphism. A quasi-
isomorphisms is marked by a ~ next to the arrow.

(2.1.15) Example. Let M be an R-module and P a projective resolution of M.
Considered as a morphism of complexes, the surjective homomorphism Py — M is
a quasiisomorphism from P to M.

Given a quasiisomorphism «: M — N there need not exist a morphism
B: N — M such that H(8) = H(a)™!.

(2.1.16) Example. The projective resolution of Z/(2) over Z yields a quasiisomor-
phism

—
[\v]
— O

N
~
©
=
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but there is not even a morphism in the opposite direction, as there are no homo-
morphisms from Z/(2) to Z.

(2.1.17) Example. Set R = k[X,Y]. The complexes
M =0— R/(X) 5 R/(X) —0
N=0—R/Y)5R/(Y)—0

concentrated in degrees 1 and 0 have isomorphic homology complexes H(M) = k =
H(N), but there are no morphisms between them and hence no quasiisomorphism
M —— N.

(2.1.18) Observation. It is immediate from Definition that a surjective
morphism is surjective on boundaries. An application of the Snake Lemma to the
diagram shows that a surjective quasiisomorphism is surjective on cycles
as well. On the other hand, a quasiisomorphism that is surjective on cycles is also
surjective on boundaries and hence surjective by the diagrams

0—Z,M)—— M, — B,_1(M)——0

(2.1.18.1) \a Ja Ja

0 Z,(N) N, By—1(N) ——0.

That is, a quasiisomorphism is surjective if it is surjective on boundaries or cycles
and only if it is surjective on boundaries and cycles.

(2.1.19) Proposition. Assume R is semisimple. For every R-complex M there is
a quasiisomorphism H(M) —— M.

Proof. Every R-module is projective. For each v the surjective homomorphism
Z,(M) - H,(M) has an inverse o,: H,(M) — Z,(M). Let a, be the composite
H, (M) 2 Z,(M) < M,. It is clear that ¢ = 0, so « is a morphism. It is also
clear that H(a) = 1H(M), O

HomoTopry

(2.1.20) Definition. A morphism of R-complexes a: M — N is null-homotopic if
there exists a sequence of homomorphisms (o,,: M, — Ny41)pez such that a, =
5’1])\;1011 + Uv—laqjjw-

Two morphisms a: M — N and o’: M — N are homotopic, in symbols a ~ o/,
if the difference a@ — o' is null-homotopic.

(2.1.21) Remark. If « is null-homotopic, then the induced map H(«) is the 0 map.
Because H(-) is a functor this means that homotopic morphisms induce the same
morphism in homology.
(2.1.22) Example. Consider a complex

M = 0—>M2—>M1—>M0—>0.

It is immediate that H(1*) = 0 if and only if M is exact, while 1* is null-homotopic
if and only if M splits.
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(2.1.23) Definition. A morphism of R-complexes ov: M — N is a homotopy equiv-

alence if there exists a morphism N P M such that 1M — Ba and 1V — a3 are
null-homotopic.

(2.1.24) Remark. It is straightforward to verify that

« is an isomorphism = « is a homotopy equivalence

= « is a quasiisomorphism.

EXERCISES

(E2.1.1) Let 8: K — M and a: M — N be morphisms of complexes; show that
the composite a3: K — N is a morphism.

(E 2.1.2) Let a: M — N be a morphism of R-complexes. Show that « is an iso-
morphism if and only if all the homomorphisms «,,: M, — N, are iso-
morphisms of R-modules.

(E 2.1.3) Assume R is semisimple. Prove that for every R-complex M there is a
quasiisomorphism M —— H(M).

(E 2.1.4) Show that an injective morphism is injective on cycles. Show that a
quasiisomorphism is injective if it is injective on boundaries or cycles
and only if it is injective on boundaries and cycles.

2.2. Basic constructions

SHIFT
(2.2.1) Definition. The n-fold shift of a complex M is the complex XM given by

(Z"M),=M,, and I M= (-1)"0M .

(2.2.2) Remark. Note that - is a functor on C(R).

TRUNCATIONS

(2.2.3) Definition. Let M be an R-complex and n an integer. The hard truncation
above of M at n is the complex M, given by:

0 v>n M 0 v>n
M)y = and Oy " =
(Men) {Mv v<n {81{” v < n.

Similarly, the hard truncation below of M at n is the complex M., given by:

M, v> oM wv>
(MZn)v = ven and 61{\42” = v ven
0 v<n 0 v < n.

(2.2.4) Remark. For every n there is a short exact sequence of complexes

00— Meyy, — M — M.pt1 — 0.



10 2. COMPLEXES AND MORPHISMS 12 Dec 2006

(2.2.5) Definition. Let M be an R-complex and n an integer. The soft truncation
above of M at n is the complex M_,, given by:

0 v>n 0 v>n
(Mcn)y = ¢ Cp(M) v=n and  9)er =M y=n
M, v<mn oM v <,

where OM: C, (M) — M, is the induced homomorphism. Similarly, the soft
truncation below of M at n is the complex M-, given by:

M, v>n 81],\/[ v=n
(Msp)y = ¢ Zp(M) v=n and oMor = {0 v=n
0 v<n 0 v < n.

(2.2.6) Remark. There is a morphism of complexes
M — M_,,

and it induces an isomorphism in homology in degrees < n.

(2.2.7) Remark. There is a morphism of complexes
My, — M,

and it induces an isomorphism in homology in degrees > n.

CONE

(2.2.8) Definition. Let a: M — N be a morphism of R-complexes. The mapping
cone of « is given by
N, N
(Conea), = @ and lonea — [Q, av&l ] -
Mv71 0 — V-1

It is clear that Cone « is an R-complex.

(2.2.9) Observation. For every morphism of R-complexes a: M — N there is a
short exact sequence of R-complexes

(2.2.9.1) 0 — N - Conear == XM — 0.

(2.2.10) Lemma. A morphism of R-complexes a: M — N is a quasiisomorphism
if and only if Cone «v is acyclic.

Proof. The short exact sequence (2.2.9.1]) induces a long exact sequence

H, (¢) H, ()
— —_—

. H,(N) H, (Cone a) H,(EM) 220 Hy  (N) —

The connecting homomorphism 6: H,(X M) =H,_1(M) — H,_1(N) is H,_1(«)
and the claim follows by inspection. (I
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EXERCISES

(E 2.2.1) Prove that a morphism of R-complexes a: M — N is null-homotopic if

and only if the short exact sequence splits in C(R).

(E 2.2.2) Let M be an R-complex. Show that ™ : M — ¥ M is a morphism of
complexes. Show that the long exact sequence of homology modules
associated to is a direct sum of short exact sequences.

2.3. Homomorphisms

(2.3.1) Definition. For R-complexes M and N the homomorphism complex
Homp (M, N) is defined as follows:

Homp(M,N), = [[Hompg(M;, Niy.)
€7
and
Oemr(MN () = (ON s — (—1)"9h;—10M )iz

An element 1) € Hompg (M, N), is called a homomorphism of degree v.

(2.3.2) Remark. A morphism a: M — N is a homomorphism of degree 0. The
differential O™ is a homomorphism of degree —1. The family (o, : My — Nyi1)vez
in Definition (2.1.20)) is a homomorphism of degree 1.

(2.3.3) Proposition. A homomorphism a: M — N of degree 0 is a morphism if
and only if it is a cycle in Hompgr (M, N) and null-homotopic if and only if it is a
boundary. That is,
« is a morphism <= « € Zo(Homp(M,N)) and
« is null-homotopic <= a € Bo(Homp(M, N)).

Proof. For a € Homg(M, N) and o € Homp(M, N); the definition of the differ-
ential on Homp (M, N) yields

Ao M) () = (N — a;_10M )iz and

5?OHIR(M7N)(U) = (5'1'11101‘ + Ui—laiM)iGZ' -

(2.3.4) Definition. A cycle in Homg(M, N) is called a chain map. Two chain
maps v,v': M — N are homotopic, written v ~ +/, if v — 4" € B(Hompg(M, N)).

A morphism is a chain map of degree 0.

(2.3.5) Observation. Let v: K — M and (: M — N be homomorphisms of de-
gree m and n, respectively. The composite

Y = (CigmWi)icz

is a homomorphism of degree m + n, i.e. (¢ € Hompg (K, N)ypin-
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Moreover,
8HomR(K,N)(<¢) = 0N¢yp — (=)o
= PHomr(MLN) () 4 (=) M ap — (=1)" o
= PHomr(MN) (Yo 4 (—1)¢(OMep — (—1)™4pd ™)
:aHomR(M,N)(w)C+(_ )" waHomR(K,M)(C).

In particular, the composite of two chain maps is a chain map.

COVARIANT HOM
The purpose of the next construction is to make covariant Hom a functor on

complexes.

(2.3.6) Construction. Let M be a complex and (: X — Y a homomorphism of
R-complexes of degree m. For brevity write [M, X] = Hompg(M, X) and [M,Y] =
Hompg(M,Y). The map

[Mud: [MaX] - [MaY]
given by composition, that is [M, {](¢) = {4, is a homomorphism of degree m.

(2.3.7) Lemma. In the notation of (2.3.6), the differential on
Hompg([M, X],[M,Y]) maps [M,] to [M,oMemr(XY)(()]. That is,

8HomR([M,X],[M,Y])([M’ C]) — []\47 aHomR(X,Y)(C)}.

In particular,
¢ € Zm(Homp(X,Y)) = [M,(] € Zu(Homp([M, X
¢ € Bp(Homg(X,Y)) = [M, (] € By, (Homg([M, X],[M,Y]))

=
=
Q
=
Q.

Proof. First note that
ortomm (M ALBEYD ([0, () = GMYI[M, (] = (=1)™ M, (Jo,
For every ¢ € [M, X] one has
pHomr(IMXLIMYD ([0, ¢]) (1))

= oMM, () = (=)™ M, (Jo ()
= oMY (¢yp) — (=)™ [M, (0™ — (—1)Plpa™)
= 9"y — (=)™ TIgyloM — (=1)m (@M — (=) Iyd™)
=9V ¢y — (=1)"¢oMy
= (QMomrXY(())y
= [M, 0" =5 ()] ().

This proves the desired formula, and the remaining assertions follow. O

(2.3.8) Theorem. For every R-complex M, complex homomorphisms from M de-
fine a covariant functor, Hompr (M, -), on C(R). That is,

(a) to every R-complex X it associates a unique R-complex Homp(M, X);
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(b) to every morphism «: X —Y it associates a unique morphism
Homp(M,a): Homg(M,X) — Homg(M,Y);

(c) the equality Hompg(M, fa) = Homp (M, 8) Homg (M, «) holds for every pair
of morphisms a: X =Y and 8: Y — Z;

(d) The equality Hompg (M, 1%X) = 1Homr(M.X) holds for every R-complex X.

Proof. Part (a) is explained in Definition (2.3.1), part (b) follows from
Lemma ([2.3.7), and part (d) is immediate from Construction (2.3.6).

(c): Apply Construction ([2.3.6]) three times. O
(2.3.9) Proposition. Let M be an R-complex and (: X — Y be a chain map.

(a) If ¢': X =Y is a chain map homotopic to (, then also the induced chain
maps Hompg(M, ¢) and Hompg (M, (') are homotopic.

(b) If( is a homotopy equivalence, then so is the induced morphism Hompg (M, ¢).
Proof. (a): By assumption ¢ — ¢’ belongs to B(Hompg(X,Y")). By functoriality of
Homp (M, -) and by Lemma (2.3.7) also

Homp(M, () — Homp(M, (") = Homp(M,( - (')

is a boundary.
(b): There exists a ¥: Y — X such that 9¢ ~ 1% and ¢J ~ 1¥. Because
Homp(M, -) is a functor it follows from (a) that

Homp (M, ¢) Hompg (M, ¥) = Homp(M, (0) ~ Hompg(M, 1Y) = 1Hemr(MY),
A similar argument yields Hompg (M, 9) Hompg (M, ) ~ 1Homa(M.X), O

(2.3.10) Lemma. For R-complexes M, X and n € Z there is an identity of com-
plexes

Hompg(M,X"X) = Y"Homp (M, X).
Proof. A straightforward inspection. (]
(2.3.11) Lemma. For an R-complex M and a morphism a: X — Y there is an

identity of complexes

Cone Homp (M, o) = Hompg(M, Cone ).

Proof. A straightforward inspection. O

CONTRAVARIANT HOM

The purpose of the next construction is to make contravariant Hom a functor
on complexes.

(2.3.12) Construction. Let N be a complex and ¢: X — Y a homomorphism of
R-complexes of degree m. For brevity write [X, N] = Hompg(X,N) and [Y,N] =
Hompg(Y, N). The map

given by [¢, N](¢)) = (=1)"™¥l¢ is a homomorphism of degree m.
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(2.3.13) Lemma. In the notation of (2.3.12), the differential on
Homg([Y, N, [X, N]) maps [¢, N] to [0Hemr(XY)(¢) N]. That is,

Homn(VNIXND (¢, N) = [pHomsX¥)(¢), )
In particular,
¢ € Zm(Hompg(X,Y)) = [(,N] € Zn(Homg([Y, N],[X,N])) and
¢ € B,(Homp(X,Y)) = [(, N] € B,,(Homg([Y, N], [X, N))).
Proof. First note that
oHtems(ENHEERI ([, N]) = OFONIIG N] = (=1)™[¢, N]oM .
For every ¢ € [Y, N] one has

Homr (VNN (16 N1 ()

= NG NI(W) — (=1)™[¢, NN ()

= OPN((=1)™lp¢) — (=)™ ¢ NV — (1) Vyd")

= (=)™ N y¢ — (=)o)

_ (,1)m+m(\w\71)(31\’¢ _ (,1)\w|¢3y)¢

— (_1)7n|1/)|+\w\,¢}aY< _ (_1)m\w‘+nL+|w\,{/}C8X

= (=)= @Y ¢ — (-1)"¢o%)

= [ (), N ().
This proves the desired formula, and the remaining assertions follow. O
(2.3.14) Theorem. For every R-complex N, complex homomorphisms to N define
a contravariant functor, Homg(-, N),on C(R). That is,

(a) to every R-complex X it associates a unique R-complex Hompg (X, N);

(b) to every morphism «:X —Y it associates a unique morphism
Hompg(a, N): Hompg(Y, N) — Hompg (X, N);

(c) the equality Hompg(Ba, N) = Hompg(a, N) Hompg(5, N) holds for every pair
of morphisms a: X =Y and 8: Y — Z;

(d) the equality Homp (1%, N) = 1Homr(X:N) holds for every R-complex X.

Proof. Part (a) is explained in Definition (2.3.1)), part (b) follows from

Lemma ([2.3.13), and part (d) is immediate from Construction (2.3.12)).
(c): Apply Construction (2.3.12)) three times. O

(2.3.15) Proposition. Let N be an R-complex and (: X — Y be a chain map.

(a) If ' X =Y is a chain map homotopic to ¢, then also the induced chain
maps Hompg (¢, N) and Homg(¢', N) are homotopic.

(b) If ¢ is a homotopy equivalence, then so is the induced morphism Hompg (¢, N).

Proof. Similar to the covariant case. O
(2.3.16) Lemma. For R-complexes N, X and n € Z there is an isomorphism of

complexes
Hompg(X"X,N) = ¥ "Hompg(X, N).
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Proof. A straightforward inspection. O

(2.3.17) Lemma. For an R-complex N and a morphism «: X — Y there is an
isomorphism of complexes
Cone Homp (o, N) = XHompg(Cone a, N).

Proof. A straightforward inspection. O

BOUNDEDNESS AND FINITENESS

(2.3.18) Observation. Let M and N be R-complexes. Suppose there exist integers
u and w such that M, = 0 for v < w and N, = 0 for v > u. For each v € Z the
module Hompg (M, N), is then a finite product

u—"v
(2.3.18.1)  Homp(M,N), = [[Homg(M;, Niy,) = € Homp(M;, Ni).
1€EZ i=w

(2.3.19) Lemma. Let M and N be R-complexes. If M is bounded below and N is
bounded above, then Hompg(M, N) is a bounded above R-complex. More precisely,
if M, =0 for v < w and N, =0 for v > u, then

(a) Homg(M,N), =0 for v > u —w,
(b) Homg(M, N)y—w = Hompg(M,, N,), and
(¢) Hy—w(Homp (M, N)) =2 Homp(H,, (M), H,(N)).
Proof. Parts (a) and (b) are immediate from Observation (2.3.18).

(¢): By Lemmas ([2.3.10) and (2.3.16)) there is an isomorphism
Hy—w(Hompg(M,N)) = Ho(X¥ " “Hompg (M, N)) =2 Hy(Homg (XM, L~ "N)).
The complexes XM and X~ “N are concentrated in non-negative and non-

positive degrees, respectively, so by there is an isomorphism
Ho(Homp(X M, X7"N)) =2 Homp(Ho(X7“M),Ho(X7“N))
= Hompg(H,, (M),H,(N)). O

(2.3.20) Lemma. If M and N are complexes of finitely generated R-modules, such
that M is bounded below and N is bounded above, then Hompg(M, N) is a complex
of finitely generated R-modules and bounded above.

Proof. For every v € Z and i € Z the module Hompg(M;, N;1,,) is finitely gener-
ated. There exist integers v and w such that M, = 0 for v < w and N, = 0
for v > u, so it follows from that the module Hompg(M, N), is finitely
generated for every v, and by Lemma it vanishes for v > u — w. O

EXERCISES
(E 2.3.1) Prove that a chain map M — N of degree m is a morphism M — ~X~™N
and vice versa.

.3. or R-complexes an consider the three degree —1 homomor-
E 2.3.2) For R 1 M and N ider the three d 1 h
phisms 9Homr(MN) Homp(9M | N), and Homp(M,9V) from the com-
plex Hompg (M, N) to itself. Prove the identity

Hemr(MN) — Homp(M, V) — Homp (0™, N).
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2.4. Tensor product

(2.4.1) Definition. For R-complexes M and N the tensor product complex
M ®pr N is defined as follows:

(M &g N)y = [[ M ®r Ny
i€l
and _
819N (my @ my—i) = O] (my) @y + (=1)'mi @ 0,74 (1)
(2.4.2) Observation. Let M and N be R-complexes and ¢: X — Y be a homo-
morphism of R-complexes. The maps
MRr(- M@rX — M®grY and (RRN: XQr N — Y ®r N
with vth components given by
(M @p Q)v(m; ® zy—i) = (=1)Im; @ ¢, _i(zy—i) and
(C®OR N)op(r; @ny—i) = Gi(2i) @ Ny
are homomorphisms of degree |(].

(2.4.3) Lemma. The differential on Homr(M ®@r X, M ®r Y) maps the induced
homomorphism M &g ¢ to the homomorphism induced by 1™ r(XY)(¢). That is,
aHomR(M®RX,M®RY)(M ®r C) - M R 8H0mR(X’Y)(C).

In particular,
¢ €ZyHomg(X,Y)) = M ®r( € Zp(Homg(M ®r X,M ®@rY))
¢ € Bpy(Homp(X,Y)) = M ®gr (< By (Homp(M ®r X, M QrY)).
Proof. Straightforward computation. O
(2.4.4) Lemma. The differential on Hompr(X ®p N,Y ®g N) maps the induced
homomorphism ¢ @ N to the homomorphism induced by 9Homr(X.Y) (¢). That is,
aHomR(X®RN,Y®RN)(C QR N) _ aHomR(X,Y)(C) ®r N.
In particular,
¢ € Zp(Homp(X,Y)) = (Qr N € Z,,(Homgr(X g N,Y ®g N)) and
C S Bm(HomR(X, Y)) = (®r N € Bm(HomR(X ®r N,Y ®gr N))
Proof. Straightforward computation. O
(2.4.5) Theorem. For every R-complex M, the tensor product defines a covariant
functor M @ - on C(R). That is,

(a) to every R-complex X it associates a unique R-complex M ®pr X;

(b) to every morphism «:X —Y it associates a unique morphism
M@ra: M@r X — M QRrY;

(¢) the equality M ®g fa = (M ®r 3)(M ®g «) holds for every pair of mor-
phisms a: X - Y and 3:Y — Z;

(d) the equality M @ 1% = 1M@rX holds for every R-complex X.
Proof. Follows from Observation (2.4.2)) and Lemma (2.4.3). O
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(2.4.6) Proposition. Let M be an R-complex and (: X — Y be a chain map.

(a) If ' X — Y is a chain map homotopic to (, then also the induced chain
maps M ®r ¢ and M Qg ¢’ are homotopic.

(b) If ¢ is a homotopy equivalence, then so is the induced morphism M &g (.
Proof. Straightforward verification. (|

(2.4.7) Theorem. For every R-complex N, the tensor product defines a covariant
functor - @ g N on C(R). That is,

(a) to every R-complex X it associates a unique R-complex X ®p N;

(b) to every morphism «:X —Y it associates a unique morphism
04®RNZX®RN—>Y®RN,'

(¢) theequality Ba @g N = (8 ®r N)(a ®r N) holds for every pair of morphisms
a: X —Yand 3:Y — Z;
(d) the equality 1% @ g N = 1X®=N holds for every R-complex X.

Proof. Follows from Observation (2.4.2) and Lemma (2.4.4]). O

(2.4.8) Proposition. Let N be an R-complex and (: X — Y be a chain map.

(a) If ¢: X — Y is a chain map homotopic to ¢, then also the induced chain
maps ( ®g N and (' ® g N are homotopic.
(b) If ¢ is a homotopy equivalence, then so is the induced morphism ¢ g N.

Proof. Straightforward computation. ([l

(2.4.9) Lemma. For R-complexes M,X and n € Z there is an isomorphism of
complexes

M@rY"X = ¥"(M ®g X).
Proof. A straightforward inspection. (]

(2.4.10) Lemma. For R-complexes X, N and n € Z there is an identity of com-
plexes

Y"X@r N = ¥"(X ®g N).
Proof. A straightforward inspection. (Il

(2.4.11) Lemma. For an R-complex M and a morphism «: X — Y there is an
isomorphism of complexes

Cone(M ®@p o) 2 M ®pg Conea.
Proof. A straightforward inspection. O

(2.4.12) Lemma. For an R-complex N and a morphism a: X — Y there is an
isomorphism of complexes

Cone(a ®r N) = (Conea) ®p N.

Proof. A straightforward inspection. O
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BOUNDEDNESS AND FINITENESS

(2.4.13) Observation. Let M and N be R-complexes. Suppose there exist integers
w and t such that M, = 0 for v < w and N, = 0 for v < t. For each v € Z the
module (M ®g N), is then a finite sum:

v—t
(2.4.13.1) (M ®@gN), = HMZ» ®r Ny—i = P M; @ Ny
i€Z i=w

(2.4.14) Lemma. If M and N are bounded below R-complexes, then M ®p N is
a bounded below R-complex. More precisely, if M, = 0 for v < w and N,, = 0 for
v < t, then

(a) M ®rN),=0forv<w+t,

(b) (M ®r N),,,, = My, ®r Ny, and

(¢) Hytt(M ®g N) 2 H,, (M) ®@g H¢(N).
Proof. Parts (a) and (b) are immediate from Observation (2.4.13). For part (c),
first note that

H,(M)=Cyu(M), Hy(N)=CiN), and

M, @r Ny
Bytt(M @ N)’
where the equalities in the second line follow from (a) and (b). The module

Bu+t(M ®g N) is generated by elements 0}, (m/) ® n and m @ 9., (n). It is
clear that

Hyt(M @r N) = Cyit(M @p N) =

m@n]—[m]©[n] and  [m]®[n]— [mcn|

well-define inverse homomorphisms of R-modules. (]

(2.4.15) Lemma. If M and N are complexes of finitely generated R-modules and
bounded below, then M ®@r N is a complex of finitely generated R-modules and
bounded below.

Proof. For every v € Z and ¢ € Z the module M; ® g N,_; is finitely generated.
There exist integers w and t such that M, = 0 for v < w and N, = 0 for v < t,

so it follows from ({2.4.13.1)) that the module (M ®pg N), is finitely generated for
2.4.14

every v, and by Lemma (2.4.14)) it vanishes for v < w + . O

2.5. Canonical morphisms
STANDARD ISOMORPHISMS
First we establish the (tensor product) commutativity isomorphism.
(2.5.1) Theorem. Let M and N be R-complexes. The assignment
m@n— (=1)™"n @ m,
for m € M and n € N, defines an isomorphism in C(R)
TMN: M®RNi>N®RM,

which is natural in M and N.
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Proof. The computation

N (MY (m @ n))
= run (@M (m) @ n 4 (=1)™lm @ oV (n))
- (_1)(\m|—1)\n\ (n® o™ (m)) + (_1)\m|+|m\(\nl—1)(3N(n) ® m)
= (="M@ (n) @ m + (=1)"(n © 9™ (m)))
= (=D)I™I(@NERM (n @ m))
= ONORM (73, 5 (m @ n))

shows that 7p;x is a morphism of complexes. It is clear that it has an inverse,
namely (Tan) " = Tvur-

Let a: M — M’ be a morphism of complexes. The following computation
shows that 7p;x is natural in M.

TM/N((OZ ®R N)(m® TL))

TM/N(a(m) X n)
(=Dl & a(m)
(=D)I™Imln @ a(m)

= (N ®@g a)((-D)I™"p @ m)
(N ®r a)(tmn(m @n))

A similar computation shows that 7y is natural in V. ([l
The next map is the (tensor) associativity isomorphism.

(2.5.2) Theorem. Let K, M, and N be R-complexes. The assignment
(kem)@nr— k® (m&n),
forke K, me M, and n € N, defines an isomorphism in C(R)
oxmn: (K@rM)@g N — K @ (M @g N),

which is natural in K, M, and N.
Proof. Straightforward verification similar to the next proof. O
The next map is the (Hom-tensor) adjointness isomorphism.

(2.5.3) Theorem. Let K, M, and N be R-complexes. The assignment
Y [k [m— ¢k om)],

fork € K, m € M, and ¥ € Homg(K ®r M, N), defines is an isomorphism in
C(R)

pryvn: Homp(K @p M, N) —— Hompg (K, Hompg (M, N)),
which is natural in K, M, and N.
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Proof. First note that
Homp(K @ M,N), = H Hompg (K ®r M)n, Nngo)

heL
= H HomR(H K; ®r Mp—i, Nn1o)
hel i€z
= H HHOHlR(Ki @R Mp—i; Npto)
heZiel
= H H Homp(K; ®r Mj, Nitjtov)
€L JEL
and
Hom (K, Homp(M, N)), = | [ Homp(K;, Homp(M, N);4,)
i€z
= HHOIDR(KZ‘, H HOIHR(Mj, Nj+i+v))
i€z JEL
= [ ][] Homg(K;, Homg (M;, Niyj12))-
V€L jEL
Next mnote that (pxmn)v = (Pr,M;N,. ;.. )iczjez 1S an isomorphism by
Lemma ([1.3.3).

The following computation shows that pxp/n is @ morphism, and hence an
isomorphism of complexes.

pren (9O REERMN) (1)) () (m)
= pran (O — (=1)Plpd @mM) (k) (m)
= Vy(k @m) — (—=1)Ipd"enM (k@ m)
=Nk @m) — (=) 0% (k) @ m + (—=1)*k @ 8™ (m))

gHomn (K Homu(MND) (4 (1)) (k) (m)
= (Momn N ey (1) = (= 1) PN W p ey (1)0%) (k) (m)
= (0" prear (W) (k) = (~)Rr OBy () ()M ) (m)
= (=115 (k) (m)
= Ny(k @ m) — (=1)"H Yk © 9M (m)) — (=1)*1p(9" (k) © m)
= 0Nk @m) — (=1)*1p(@" (k) @ m + (~1)*k © 0™ (m))
It is straightforward to verify that pgasn is natural. O
The next map is the (Hom) swap isomorphism.
(2.5.4) Theorem. Let K, M, and N be R-complexes. The assignment
) [m = [k = (=1 k) (m)]),

for k € K, m € M, and ¢ € Homg(K,Homg(M, N)), defines an isomorphism in
C(R)

skmn: Hompg (K, Homp(M, N)) =, Homp(M,Hompg (K, N)),
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which is natural in K, M, and N.

Proof. Straightforward verification similar to the proof of Theorem (2.5.3)). O

EVALUATION MORPHISMS
(2.5.5) Theorem. Let K, M, and N be R-complexes. The assignment

Y@ n— [k (=) (k) @ ],
fork € K, ne€ N, and ¢ € Homg(K, M), defines a morphism in C(R)
WKMN : HOIHR(K,M) XKr N — HOHIR(K,M@R N),

which is natural in K, M, and N.
This tensor evaluation morphism is an isomorphism under each of the following
conditions

(a) K is bounded below and degree-wise finitely generated, M and N are bounded
above, and K is a complex of projective modules or N is a complex of flat
modaules.

(b) K is bounded and degree-wise finitely generated, and K is a complex of
projective modules or N is a complex of flat modules.

Proof. For each v the module (Homg(K, M) ®g N), is generated by symbols
1 ® n, so it suffices to define wi sy on such symbols. The assignment is clearly
bilinear, so wi pn is a degree 0 homomorphism. It is straightforward to verify that
wi MmN 1s natural; it is a morphism of R-complexes as:

oHemn(EMERN) (145 & m)) ()
= MEN (Y @ n)(k) — (-1l (v @ n) (0" (k)
= (=)HMPMERN (4 (k) @ n) — (1) WIHIFTDRp0" (k) @ n
= (=) (9 (k) 1 + (~1) P Fp(k) © 0 ()
— (—=D)IPIHUR=DInly (9K (k) @ n
= (=1)*FIMMa (k) @ n + (—1)FIPIFRIHEL, (k) @ ON (n)
— (—=D)PIHUR=DIny (9K (k) @ n

and

w(@FomnUMORN (3, @ ) (1)

w (aHOmR(K M) V)@ n+ (_1>\w|¢ ® 8N(n)> (k)

w ( (M — (—=1)1pdF) @ n + (- )WW,@@N(”)) (k)

— (<1 )‘k”"laMw( )®&n — (_1)\w\+(|k|—1)|n\¢(81<(k)) ®n
+ (_1)|w|+|k\(|7l\*1)w(k) ® 8N(n).
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Note that
(Hompg(K, M) ®r N), HHOHIR K, M); ®r Ny_;
1E€EL
= H ([] Homp(Kj, Mjti)) ®r Ny—
icz JEL

and
Homp(K, M @ N), = | [ Homp(K;, (M @& N);j4v)
JEL
= H Hompg(Kj, H My ®R Njyo—n)
JEL heZ
= [[(J] Homr(K;, M;; @& Ny—i)).
JET i€
(a): Under the assumptions on K, M, and N there are integers ¢, u and w such
that
K;=0forj<w, Mj;=0forj+i>t, and N,_;=0forv—1i>u.

Therefore,
t—w

(Homp(K,M)®r N), = [] HHomR +i)) ®r Ny
i=v—u j=w

= @ @HOHIR Mji) ®r Ny—i

I=v—u j=w

and

-
JF
g
|
S|

-
\:

Homp(K,M ®r N), = HOIHR M ®r Ny—i))

=

IS

T
g &

~
|
o

= HomR(Kj,Mj+i @R No—i)-

s
i
I
S
<
I
S

Next note that

(WrKMN)v = (WK; M 1Ny ) o—u<i<t—w,w< <t —i

is an isomorphism by Lemma (|1.3.5]).
(b): Similar to (a), only easier. O

(2.5.6) Theorem. Let K, M, and N be R-complexes. The assignment
k@t — [0 — (_1)Ik\(\w|+w\>¢g(k)]7
fork € K, ¢ € Homg(M,N), and ¥ € Hompg (K, M) defines a morphism in C(R)
Oxnmn: K ®p Homp(M,N) — Hompg(Homg(K,M),N),

which is natural in K, M, and N.
This homomorphism evaluation morphism is an isomorphism under each of the
following conditions
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(a) K is bounded below and degree-wise finitely generated, M is bounded above
and N is bounded below, and K is a complex of projective modules or N is
a complex of injective modules.

(b) K is bounded and degree-wise finitely generated, and K is a complex of
projective modules or N is a complex of injective modules.

Proof. Similar to the proof of Theorem (2.5.5)). O

EXERCISES

(E 2.5.1) For R-complexes M and N consider the three degree —1 homomorphisms
OMOrN 9M @ N, and M ®g OV from the complex M &z N to itself.
Verify the identity

OMORN — M & N+ M @5 ON.
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CHAPTER 3
Resolutions

3.1. Semifreeness

(3.1.1) Definition. An R-complex L is semifree if the graded R-module L% has a
graded basis E'= | |, E" such that oL(E™) C R(E™1). Such a basis is called a
semibasis.

(3.1.2) Remark. If L is semifree, then L, is free for all v. If £ =] ., E" is a
semibasis for L, then R(E°) C Z(L).

(3.1.3) Example. An R-module L is semifree if and only if it is free.
If each module L, is free and 9% = 0 then L is semifree.
If each module L, is free and L is bounded below, then L is semifree.

(3.1.4) Example. Over R = Z/(4) consider the Dold complex
L= —7/4)257/4) 2 7/4) — -
of free R-modules. It has no semibasis, as no basis for L contains a cycle.

(3.1.5) Definition. A semifree resolution of an R-complex M is a semifree complex
L and a quasiisomorphism L — M.

(3.1.6) Theorem. Every R-complex has a semifree resolution \: L —— M, and
A can be chosen surjective.
The proof relies on the construction described below.

(3.1.7) Construction. Given an R-complex M we construct by induction onn > 0
a sequence of inclusions of R-complexes

e [ e Lyl
and compatible morphisms \": L™ — M.

For n = 0 choose a set Z° C Z(M) whose classes generate H(M). Let E° =
{e: : |es| = |z|}.ez0 be a linearly independent set over R. Set

(L% = R(E®)  and  0F =0;
this defines an R-complex L°. The map \°: L® — M defined by
Ne,) =z

and extended by linearity, is a morphism of complexes.
Let n > 0 and assume L"~! and A\"~1': L”~! — M have been constructed.
Choose a set Z™ C Z(L"!) whose classes generate Ker H(A"™1). Let E™ = {e, :

25
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le.| = |z] + 1}.ez» be a linearly independent set over R. An R-complex L™ is
defined by
(LM = (L") @ RE" and 0" (z+ 3 re)=0"" (2)+ 3 r.z
zeZn 2eZn

For each z € Z" there is an m, € M such that \"71(z) = 9™ (m,). The map
A" L™ — M defined by

Nz 4+ S re)=X"Ya)+ X rom.

zezZn zezZn

is a morphism of complexes that agrees with A»~! on the subcomplex L™~ 1.

Proof of Theorem (3.1.6)). Let (L"),cz and (A": L" — M),cz be the R-
complexes and morphisms constructed in . Note that each L™ is semifree
with semibasis Uzzg E'. Set L = colim,, L™ and A = colim, \": L — M. The
complex L is semifree with semibasis F = |_|n>0 E™.

For each n there is a commutative diagram

H(L®) —— H(L") —— H(L)

H(\"
H(\%) Y H(N)

H(M).

By construction, H(A?) is surjective and hence so is H(\). To see that H(\) is
injective, let I € Z(L) and assume that H(\)([I]) = 0. We can choose an integer n
such that [ € L™; now

0 =HX)([1)) = HA®@) = HA" (1)) = HA™)([1),
so [I] € Ker H(A\"). By choice of Z™"! there exists a y € L™ C L™ such that

I= Y r.z+0%y).

zeZn+1

Now

1=0"( ¥ re.+y)

Zezn+l
so [[] =0in H(L™) C H(L). Thus X is a quasiisomorphism.
If Z° generates Z(M) then A\° and therefore \ is surjective on cycles and hence

surjective by Observation (2.1.18)). d

(3.1.8) Proposition. Let L be a semifree R-complex. For every morphism
B: L — N and every surjective quasiisomorphism o: M —— N there exists a mor-
phism ~ that makes the the following diagram commutative

M

R
'Y l
o | =~
g

L——N.
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Proof. Choose a semibasis E = | |5, E? for L. Let L™ denote the semifree sub-
complex of L on the semibasis | |'_ E*. By induction on n we construct morphisms
A™: L™ — M compatible with the inclusions

Oc_>L0c_>c_)Ln71c_>an_>

Assume by induction that 4*~! has been constructed. For each element e of E,
there exists an m, € M such that a(m.) = (B(e). First compare v"~19L(e) with
oM (m.):

a(y" 19" (e) — M (me)) = 0" (e) — 9N a(me)

=N (B(e) — a(me))
=0.

This means that y*~19%(e) — 9 (m,) is in Ker ; it is easy to see that it is also
a cycle of M, and since « is a quasiisomorphism it must even be a boundary.
Choose m/, € M such that 0™ (m’) = v~ 19%(e) — 0™ (m.). Note that ONa(m) =
adM(m!) =0so a(m)) € Z(N) and there exists a m” € Z(M) such that a(m!) =

a(my,). For an element [ = 2 + ) _pn 7ee in L™ define

V) =" @)+ X re(me +mp —my).
ecEn

By construction,

ay"(l) = ay" @) + 3 rea(me +mg —mg) = B(z) + 3 reBle) = B(1),

ecE" eCcEn
and
O ~ M () = B ey o (o) - 0V (0))
eckn
= 3 re(y" 10 (e) — oM (me +my —my))
ecEn
=0.
Now v = colim,, v" is the desired morphism. ([l

BOUNDEDNESS AND FINITENESS

(3.1.9) Theorem. Let M be an R-complex. There exists a semifree resolution L
of M with L, =0 for v < inf M.

Proof. If inf M = oo, then M ~ 0 and the O-complex has the desired properties.
If inf M = —o0, then any semifree resolution will do. Suppose co > inf M > —o0
and set w = inf M. By Remark there is a quasiisomorphism M-,, —— M.
By Theorem the complex M-, has a semifree resolution L —— M-,,, and
it follows from Construction that L, = 0 for v < w. The composite of the
two quasiisomorphisms is the desired resolution L —— M. O

(3.1.10) Theorem. Every complex M with H(M) bounded below and degreewise
finitely generated has a semifree resolution L with L, finitely generated for all v
and L, = 0 for v < inf M.
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Proof. Set w = inf M and apply Construction to M-,,. The set
E° = {ex tlex| = [z]}zez0
contains only finitely many elements of any given degree v, and no elements of
degree less than w. For n > 1 the set
E" ={e,: |e;| = |z| + 1}.ezn

contains only finitely many elements of any given degree v and no elements of degree
less than w + n. Thus, for any v the set of basis elements in degree v

E,=(||E".=|]|E}
n=0

n=>0

is finite. As in the proof of Theorem (|3.1.9) the desired resolution is the composite
L —> M., — M. O

The requirement in the theorem that H(M) be bounded below cannot be re-
laxed.

(3.1.11) Example. Let (R, m, k) be a singular local ring. Set K =[], X k. If
K had a semifree resolution L with L, finitely generated for all v, then

Ho(k ®% K) = Ho(J] 7 (k @% k)) = [ Torl(k, k)
v2=20 v2=20

were finitely generated, and that is absurd.

EXERCISES

(E 3.1.1) Let L be a complex of free R-modules. Show that L is semifree if 9% = 0
for v < 0.

3.2. Semiprojectivity

(3.2.1) Definition. An R-complex P is semiprojective if the functor Homp (P, -)
preserves surjective quasiisomorphisms.

A semiprojective resolution of an R-complex M is a semiprojective complex P
and a quasiisomorphism P —— M.

(3.2.2) Theorem. If L is semifree, then Hompg(L, -) preserves exact sequences and
quasiisomorphisms.
In particular, every semifree R-complex is semiprojective.

Proof. Let L be a semifree R-complex and av: M — N a surjective morphism. The
induced morphism Homp(L, ) is surjective because L? is free.

Let 8: M — N be a quasiisomorphism; set C' = Cone (3 and consider the exact
sequence

0 — Homp(L,N) — Homp(L,C) — Homp(L, X M) — 0.

To see that Hompg(L,3) is a quasiisomorphism, it suffices to show that

H(Hompg(L,C)) = 0; see Lemma (2.2.10) and (2.3.11). Choose a semibasis
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E=l E® for L. Let L™ denote the semifree subcomplex of L on the semibasis

LI'=0' E. For each n > 0 there is an exact sequence
0— L" ' — L" — R(E"™) — 0.

The complex R(E™) is a sum of shifts of R, so H(Homg(R(E™),C)) = 0. Now
it follows by induction that H(Hompg(L",C)) = 0 for all n > 0. The maps in the
inverse system (Homp(L",C) — Hompg(L" !, C)),>0 are surjective and, therefore,

H(Hompg(L,C)) = H(Hompg(colim L™, C)) = H(lim Homgz(L",C)) =0
e.g. by [0, thm. 3.5.8]. O
The next corollary is now immediate in view of Theorem (3.1.6).

(3.2.3) Corollary. Every R-complex M has a semiprojective resolutionw: P — M,
and 7w can be chosen surjective. (|

The next theorem gives useful characterizations of semiprojective complexes.

(3.2.4) Theorem. The following are equivalent for an R-complex P.
(i) P is semiprojective.
(it) Homp(P, -) preserves exact sequences and quasiisomorphisms.
(#ii) Given a chain map «: P — N and a surjective quasiisomorphism 3: M — N
there exists a chain map v: P — M such that o = 3.
(iv) Every exact sequence 0 — M’ — M L. P —0 with H(M') = 0 splits.
(v) P is a direct summand of some semifree R-complex L.

(vi) P is a complex of projective R-modules and Hompg (P, -) preserves quasiiso-
morphisms.

Proof. (i)=(#4): The induced morphism Hompg(P, ) is a surjective quasiiso-
morphism. In particular, it is surjective on cycles, see Observation , SO
there exists a v € Z(Hompg (P, M)) such that & = Hompg (P, 8)(y) = 5.

(#i) = (iv): By Lemma the surjective morphism £ is a quasiisomor-
phism, so there exists a morphism v: P — M such that Ay = 17.

(iv) = (v): By Theorem there exists a semifree complex L and a sur-
jective quasiisomorphism A: L — P.

(v)==>(ii): Immediate by Theorem (3.2.2).

(#) = (i): Clear.

(vi)=>(i1): Use the lifting property of projective modules.

Finally, it is clear that () and (v) imply (vi). O

Up to homotopy, chain maps from semiprojective complexes factor through
quasiisomorphisms.

(3.2.5) Proposition. Let P be a semiprojective R-complex, a: P — N a chain
map, and B: M — N a quasiisomorphism. There exists a chain map v: P — M
such that o ~ 3y and v ~ +' for any other chain map ' with o ~ (37'.

Proof. The induced map Hompg(P,3): Homg(P, M) — Hompg(P, N) is a quasi-
isomorphism, so there exists a v € Z(Homp(P, M)) such that
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that is, « — 0y € B(Homg(P,N)). For any other ' with o ~ (7', i.e.
[a] = HHompg(P,F))['], it follows that [y —+'] = 0 because H(Hompg(P,3))
is an isomorphism. Thus, v — ' € B(Homg(P, M)). O

(3.2.6) Proposition. Let 3: M — P be a morphism of R-complexes.
(a) If P is semiprojective and (3 is a quasiisomorphism, then there exists a quasi-
isomorphism P = M.
(b) If P and M are semiprojective, then ( is a quasiisomorphism if and only if it
is a homotopy equivalence.

Proof. (a): By Proposition there is a morphism v: P — M such that 17 ~
By. In particular, 1"(*) = H(B) H(~) and since H(/3) is an isomorphism so is H(¥).

(b): Every homotopy equivalence is a quasiisomorphism. Assume [ is a
quasiisomorphism. By Proposition there are morphisms v: P — M and
8': M — P such that 1¥ ~ 8y and 1™ ~ ~f’, so 3 is a homotopy equivalence.

(Indeed, 1M ~ 5" =173 ~ vy ~ 4B1M =5.) O

EXERCISES
(E 3.2.1) Prove that a bounded below complex of projective modules is semipro-
jective.

(E 3.2.2) Prove that the tensor product of two semiprojective R-complexes is
semiprojective.

(E 3.2.3) Let P be a bounded below complex of projective modules. Prove that P
is contractible if and only if it is acyclic.

3.3. Semiinjectivity

(3.3.1) Definition. An R-complex I is semiinjective if the functor Hompg(-,T)
converts injective quasiisomorphisms into surjective quasiisomorphisms.

A semiinjective resolution of an R-complex M is a semiinjective complex I and
a quasiisomorphism M —— T.

(3.3.2) Theorem. Every R-complex M has a semiinjective resolution v: M — 1,
and ¢ can be chosen injective.

Proof. Omitted. O

The next theorem gives useful characterizations of semiinjective complexes.

(3.3.3) Theorem. The following are equivalent for an R-complex P.
(i) I is semiinjective.
(it) Homp(-,I) preserves exact sequences and quasiisomorphisms.
(#ii) Given a chain map a: M — I and an injective quasiisomorphism 3: M — N
there exists a chain map v: N — I such that o = ~0.
(iv) Every exact sequence 0 — I P M — M - 0 with H(M") = 0 splits.
(v) P is a complex of injective R-modules and Hompg/(-, I') preserves quasiisomor-
phisms.

Proof. Essentially dual to the semiprojective case. (I
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Up to homotopy, chain maps to semiinjective complexes factor through quasi-
isomorphisms.

(3.3.4) Proposition. Let I be a semiinjective R-complex, a: M — I a chain map,
and 3: M — N a quasiisomorphism. There exists a chain map v: N — I such that
a ~ B and v ~ +' for any other chain map v with o ~ ~'f3.

Proof. Dual to the semiprojective case. (|

(3.3.5) Proposition. Let 3: I — M be a morphism of R-complexes.
(a) If I is semiinjective and [ is a quasiisomorphism, then there exists a quasi-
isomorphism M =51
(b) If I and M are semiinjective, then (3 is a quasiisomorphism if and only if it is
a homotopy equivalence.

Proof. Dual to the semiprojective case. (I

(3.3.6) Proposition. If P is semiprojective and I is semiinjective, then Homp (P, I)
is semiinjective.

Proof. Let a: M — N be an injective quasiisomorphism. By the assumptions on
P and I, the induced morphism Homp(«, I) is a surjective quasiisomprhism, and
Homp(P, Hompg(«, I)) is the same. There is a commutative diagram in C(R)

Hompg (a,Hompg (P,I))

Homp(N,Hompg(P,I))

QNPI\E

Homp (P, Hompg(N,I))

Homp(M,Hompg (P, 1))

%JQAIPI

Homn(BHome(:D) | g0m o( P, Homp(M, T)).

It shows that Hompg(o, Hompg(P,I)) is a surjective quasiisomorphism, whence
Homp (P, I) is semiinjective. O

BOUNDEDNESS

(3.3.7) Theorem. Let M be an R-complex. There exists a semiinjective resolution
I of M with I, =0 for v > sup M.

Proof. Omitted. ]
(3.3.8) Lemma. A bounded above complex of injective R-modules is semiinjective.

Proof. Let I be a bounded above complex of injective R-modules. It is sufficient
to prove that Hompg(-, I) preserves quasiisomorphisms. It straightforward to verify
that Homp(C, I) is acyclic for every acyclic complex C'; apply this to C, the cone
of a quasiisomorphism. a

EXERCISES

(E 3.3.1) Let I be a bounded above complex of injective modules. Prove that I is
contractible if and only if it is acyclic.
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3.4. Semiflatness

(3.4.1) Definition. An R-complex F' is semiflat if the functor - @ g F' preserves
injective quasiisomorphisms.

(3.4.2) Remark. An R-complex F' is semiflat if and only if the functor F ®p -
preserves injective quasiisomorphisms; this is immediate by commutativity of tensor

products (2.5.1)).

(3.4.3) Theorem. Let E be a faithfully injective R-module. An R-complex F is
semiflat if and only if Hompg(F, E) is semiinjective.

Proof. Let a: M — N be an injective quasiisomorphism. There is a commutative
diagram in C(R)

Hompg(« F.E
Homp(N @x F, E) 2la®aF,F)

pNFEJE ZJ//)MFE
Hompg(a,Homg (F,E))

Homp(N,Hompg(F, E)) Homp(M,Hompg(F, E)).

HomR(M QR F, E)

If F is semiflat, then a®pgrF is an injective quasiisomorphism and
Homp(a ®pg F, E) is then a surjective quasiisomorphism, as F is semiinjective. By
commutativity of the diagram, Hompg(a, Hompg(F, E)) is now a surjective quasiiso-
morphism, whence Hompg(F, F) is semiinjective.

If Hompg(F, E) is semiinjective, then Hompg(o, Homg(F, E)) is a surjective
quasiisomorphism, and by commutativity of the diagram, Hompg(a ®g F, E) is the
same. By faithful injectivity of E this implies that @ ® g F' is an injective quasiiso-
morphism. (Il

The next corollary is immediate in view of Proposition ([3.3.6)).

(3.4.4) Corollary. Every semiprojective complex is semiflat. O

The next theorem gives useful characterizations of semiflat complexes.

(3.4.5) Theorem. The following are equivalent for an R-complex F.
(i) F is semiflat.
(i) - ®g F preserves exact sequences and quasiisomorphisms.
(iit) F is a complex of flat R-modules and - ® g F' preserves quasiisomorphisms.

Proof. Immediate from Theorem (3.4.3)) and adjointness (2.5.3). O

A quasiisomorphism of semiflat R-complexes need not be a homotopy equiva-
lence.

(3.4.6) Example. The Z-module Q has a semifree resolution \: L —— Q with
L, =0 for v # 0,1. Both Z-complexes Q and L are semiflat. Suppose 3: Q — L
were a homotopy inverse, then A3 ~ 12 and hence A3 = 19 as 9¢ = 0. This would
make Q a direct summand of Ly and hence a free Z-module. Contradiction!

(3.4.7) Proposition. Let «: F — F' be a quasiisomorphism of semiflat R-
complexes.
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(a) For every R-complex M, the induced morphism M ®p o is a quasiisomor-
phism.

(b) For every R-complex N, the induced morphism o ®g N is a quasiisomor-
phism.

Proof. (a): Let E be a faithfully injective R-module. By Theorem (3.4.3]) the

induced morphism Hompg(«, F) is a quasiisomorphism of semiinjective modules

and hence a homotopy equivalence by Proposition (3.3.5). By Proposition (2.3.9)
the top horizontal map in the diagram below is also a homotopy equivalence.

Hompg(M,Hompg (o, E))

~

Hompg(M,Hompg(F', E))

FU»H-“’E\u

HOHIR(M QR F/,E)

Homp(M,Hompg(F, E))

NJ/PMFE

Homp(M®gra,E) HomR(M ®p F. E)

The diagram is commutative and shows that Homg(M ®g «, E) is a quasiisomor-
phism, and by faithful injectivity of F it follows that M ®pg «a is a quasiisomorphism.
(b): Follows from (a) by commutativity (2.5.1)). O

(3.4.8) Lemma. Let F" be a complex of flat R-modules and 0 — F' — F — F" —
0 a short exact sequence of R-complexes. If two of the complexes are semiflat, then
so is the third.

Proof. The class of flat R-modules is projectively resolving, so F’ is a complex
of flat modules if an only if F' is so. Let a: M — N be a quasiisomorphism. The
conclusion follows by application of the Five Lemma and Lemma (2.1.13)) to the

commutative diagram

0— F'Qpr M — FQpM —— F"Qpr M —— 0

JF’@ROL \F®Ra \F”@Ra

0— FF@p N—— FQr N —— F"®@zr N —— 0. O

BOUNDEDNESS
(3.4.9) Lemma. A bounded below complex of flat R-modules is semiflat.

Proof. Let E be a faithfully injective R-module. If F' is a bounded below complex
of flat R-modules, then Hompg(F, E) is a bounded above complex of injective R-
modules and hence semiinjective by Lemma (3.3.8). The claim now follow by

Theorem ((3.4.3)). O

EXERCISES

(E 3.4.1) Prove that the tensor product of two semiflat R-complexes is semiflat.
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CHAPTER 4
The Derived Category

4.1. Construction and properties

The construction of the derived category D(R) was one topic covered in Greg’s
class. Here is a recap.

(4.1.1) The homotopy category K(R) has the same objects as C(R), and the
morphisms are homotopy equivalence classes of morphisms in C(R). That is,
K(R)(M,N) = Hy(Hompg (M, N)).

A morphism in K(R) is a quasiisomorphism if the induced morphism in homo-
logy is an isomorphism. This makes sense, as null-homotopic morphisms in C(R)
induce the 0-morphism in homology. The quasiisomorphisms in K(R) are exactly
the classes of quasiisomorphisms in C(R).

The quasiisomorphisms in K(R) form a multiplicative system. The derived
category D(R) is the localization of K(R) with respect to this system.

(4.1.2) From the construction outlined above, it is not clear that D(R)(M, N) is a
set for given complexes M and N. However, restricted to semiprojective complexes,
localization does nothing as every quasiisomorphism is already invertible in K(R),

cf. Proposition (3.2.6)). In view of Corollary (3.2.3) it follows that K(R)|semiproj is
a model for D(R).

OBJECTS AND MORPHISMS
(4.1.3) The objects in D(R) are the same as in K(R) and C(R), i.e. all R-complexes.
(4.1.4) Given two R-complexes, the morphisms M — N in D(R) are equivalence
classes of pairs (a,v), where

M2 N2 N and M -2 Ny <2 N

are equivalent, if there exists a commutative diagram in K(R)

Ni

AN

M—"5Nje——N
] A
N,

That is, the diagram is commutative up to homotopy in C(R). The equivalence
class of a pair («a,v) is called a fraction and written «/v.

35
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(4.1.5) Under localization, a morphism a: M — N of complexes corresponds to the
fraction o /1%,

(4.1.6) Given two pairs («, v) and (8, 7) there exists a morphism «’ and a quasiiso-
morphism 7/, such that the diagram

N//
M’ / \ N’
K M N
is commutative. The composite of the corresponding fractions is (well-)defined by

ajvo B/t =d B/Tv.

(4.1.6.1)

ISOMORPHISMS

(4.1.7) Definition. Two R-complexes are isomorphic in D(R) if there exists an
invertible morphism «/v: M — N in D(R). The notation M ~ N means that

there exists an isomorphism M —— N in D(R).

(4.1.8) Remark. If a: M — N is a quasiisomorphism, then it is straightforward
to verify that

a/1N o1V ja =1V /1N and
V/jaoa/1N =aja=1"/1M,
Thus, /1" is an isomorphism in D(R).
(4.1.9) Lemma. If a/v: M — N is an isomorphism in D(R), then « is a quasiiso-
morphism in C(R). That is, there are diagrams
M——N&~N and M——N' —N
in C(R). In particular, H(M) = H(N).

Proof. If «/v: M — N is an isomorphism in D(R), then there exists 3/7: N — M
such that

afvof/r=d'B/Tv=1"/1Y and B/roa/v=pFa/v'T=1"/1M",

That is, there are commutative diagrams

N// M//
N N
N ——Nje——N and M ——— M3 ——— M.

AN]A N

N M
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It follows from the first diagram by comparison to (4.1.6.1) that
H(v)"'H(a)H(r)"*H(B) = 1H™); in particular H(a) is surjective. It fol-
lows from the second diagram that ('« is a quasiisomorphism; in particular
H(w) is injective. Thus, there is a diagram M % N’ <'—~) N, and because the

quasiisomorphisms constitute a multiplicative sy;,tem, there is also a diagram
M «= N" = N. O

(4.1.10) Proposition. If P is semiprojective and P ~ M in D(R), then there is a
quasiisomorphism P —— M in C(R).

Proof. By the lemma there is a diagram P —— M’ «—— M. Apply Proposi-
tion (3.2.5) to it. O

(4.1.11) Proposition. If I is semiinjective and M ~ I in D(R), then there is a
quasiisomorphism M —— I in C(R).

Proof. By the lemma there is a diagram M «—— I” —=— I. Apply Proposi-
tion (3.3.4) to it. O

Complexes with isomorphic homology need not be isomorphic in the derived
category.

(4.1.12) Example. Over the ring Z/(4) consider the complexes

M=0—2Z/4)25Z/(4) —0  and

N = 0—Z/(2) =5 Z/(2) — 0.

It is clear that H(M) = N, so the two complexes have isomorphic homology. The
complex M is semiprojective, so if M ~ N in D(R), then there would be a quasi-

isomorphism M —— N in C(R). It is straightforward to verify that any morphism
M — N in C(R) induces the 0-morphism in homology.

(4.1.13) For convenience we will often write a morphism in D(R) as a.: M — N.

TRIANGLES
(4.1.14) The derived category D(R) is triangulated. The distinguished triangles are
M 25 N — Coneav — ¥ M,

where « is a morphism of complexes.

BOUNDEDNESS AND FINITENESS

(4.1.15) Definition. The full subcategories D (R), D5(R), and Dg(R) of D(R)
are defined by specifying their objects as follows

M € D-(R) < supM < oo,
M € D5(R) < inf M > —o0, and
M e Dg(R) <= supM < oo A inf M > —o0.
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Moreover, Df(R) denotes the full subcategory of complexes with degreewise finitely
generated homology. The notation DE(R) is used for the full subcategory Df(R) N
Dc(R). The symbols DL (R) and DY (R) are defined similarly.

4.2. Derived Hom functor

(4.2.1) Observation. Let M be an R-complex; let 7: P — M and w: Q — M
be semiprojective resolutions of M. By Proposition there is a homotopy
equivalence a: @ — P. Let (: X — Y be a morphism of R-complexes; by Proposi-
tion the induced morphisms Hompg(«, X) and Hompg(«,Y) are also homo-
topy equivalences, and there is a commutative diagram

Hompg (P,()

Hompg(P, X) Hompg(P,Y)
HomR(a,X)JN NJ/HomR(a,Y)
Hom s
Homp(Q, X) 0L(QCM Hompg(Q,Y).

Let M’ be an R-complex with semiprojective resolutions 7’: P’ — M’ and
w':Q — M'; let 3: M’ — M be a morphism. By Proposition there is
a homotopy equivalence o’: Q' — P’. By Proposition there are morphisms
vP: P — P and v9: Q' — Q such that 79" ~ @7’ and @y? ~ Bw’. The upshot
is that the next diagram is commutative up to homotopy.

Hom P,X
Homg(P, X) 20, Homp (P, X)

HomR(a,X)J J{Homg(a’,X)

Hom Q,X
Homp(Q, X) w} Homp(Q', X)

(4.2.2) Definition. For R-complexes M and N the right derived homomorphism

complez, RHompg (M, N), is Hompg(P, N), where P is a semiprojective resolution of

M. By Observation (4.2.1)) this determines RHompg (M, N) uniquely up to quasi-

isomorphism.

(4.2.3) Theorem. For every R-complex M, the right derived Hom functor
RHompg (M, -) is an exact covariant functor (defined up to isomorphism) on D(R).
That is,
(a) to every X € D(R) it associates an R-complex RHomp(M, X) that is unique
up to isomorphism in D(R);
(b) to every morphism «:X —Y in D(R) it associates a morphism
RHompg (M, «): RHompg(M, X) — RHomg(M,Y);
(c) the equality RHompg(M, fa) = RHompg (M, 3) RHompg (M, «) holds for every
pair of morphisms a: X — Y and 5: Y — Z in D(R);
(d) the equality RHomp (M, 1%) = 1RHemr(M.X) Lolds for every X € D(R);
(e) to every exact triangle X — Y — Z — ¥ X it associates an exact triangle
RHompg(M, X) — RHomg(M,Y) — RHomg(M, Z) — YRHompg(M, X).

Proof. Properties (a)-(d) follow from Theorem (2.3.8) in view of Observa-
tion (4.2.1]). It suffices to prove part (e) for distinguished triangles, so the claim

follows from Lemma (2.3.11)). [
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(4.2.4) Theorem. For every R-complex N, the right derived Hom functor
RHompg(-, N) is an exact contravariant functor (defined up to isomorphism) on
D(R). That is,
(a) to every X € D(R) it associates an R-complex RHomp(X, N) that is unique
up to isomorphism in D(R);
(b) to every morphism «: X —Y in D(R) it associates a morphism
RHompg(a, N): RHomg(Y, N) - RHompg(X, N);
(¢) the equality RHompg(Sa, N) = RHomg(«, N) RHompg (8, N) holds for every
pair of morphisms «: X — Y and §: Y — Z in D(R);
(d) the equality RHomp (1%, N) = 1RHomr(X:N) Lolds for every X € D(R);
(e) to every exact triangle X — Y — Z — Y X in D(R) it associates
an exact triangle RHompg(Z, N) — RHompg(Y,N) — RHompg(X,N) —
YRHompg(Z, N).

Proof. Properties (a)-(d) follow from Theorem (2.3.14) in view of Observa-
tion (4.2.1]). It suffices to prove part (e) for distinguished triangles, so the claim

follows from Lemma (2.3.17)). (I

(4.2.5) Observation. The arguments in Observation dualize to show that
a right derived Hom functor can be well-defined up to isomorphism in D(R) by
RHompg (M, N) = Hompg(M,I), where I is a semiinjective resolution of N.

To see that this definition agrees with the one given in Definition , let M
and N be R-complexes, let 7: P —> M be a semiprojective resolution of M and
t: N = I a semiinjective resolution of N.

Further, let 8: M’ — M be a morphism and 7’: P — M’ be a semiprojective
resolution. By Proposition there is a morphism ~v: P’ — P that lifts Sz’
along 7 up to homotopy. The next diagram is commutative up to homotopy.

Hom N
Homp (P, N) om0,

HomR(P,L)J: ~ | Hompg (P’ )
Hompg(v,1) ,
Homp(P,I) ——— Hompg(P', 1)
HomR(ﬂ',I)T: :]HomR(‘n—/,I)

Hom N
Homp (M, I) 2D,

It shows that the two definitions yield the same contravariant functor on D(R). A

similar diagram takes care of the covariant functor.

(4.2.6) Lemma. Let P be an R-module. The following are equivalent.
(i) P is projective.
(i) —inf RHomp(P,T) < 0 for every R-module T'.
(#i) H_1(RHompg(P,T)) = 0 for every R-module T.
Proof. Well-known as H_,,(RHomg(P,T)) = Ext'y (P,T) for m > 0. O

(4.2.7) Lemma. Let I be an R-module. The following are equivalent.

(i) I is injective.
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(it) —inf RHomg(T,I) < 0 for every R-module T.
(4i) H_1(RHomp(T,I)) = 0 for every cyclic R-module T

Proof. Well-known as H_,,(RHomg(7,I)) = Ext'y (T, I) for m > 0. O

BOUNDEDNESS AND FINITENESS

(4.2.8) Lemma. Let M and N be R-complexes. If M € D5(R) and N € D-(R),
then RHomp (M, N) € D(R). More precisely, if inf M = w and sup N = u, then
(a) supRHomp(M,N) < u — w and
(b) Hy—w(RHompg(M, N)) = Hompg(Hy, (M), Hy(N)).

Proof. By Theorem 1’ the complex M has a semifree resolution I —— M
with L, = 0 for v < w. Now RHompg(M, N) ~ Hompg(L, N.,), and the assertions

follow by Lemma (2.3.19)). ([

(4.2.?) Lemma. If M belongs to DY (R) and N € DL(R), then RHompg (M, N) is
in DE(R).

Proof. Set inf M = w and sup N = u. By Theorem the complex M has
a semifree resolution L —— M with L, finitely generated for all v and L, = 0
for v < w. Set N’ = N, then H,(RHompg(M, N)) = H,(Hompg (L, N')) vanishes
for v > u — w by Lemma (4.2.8). To see that each module H,(Hompg(L,N’)) is
finitely generated, fix v € Z and set n = v + w — 2. Now H,(Hompg(L,N")) =
H,(Hompg(L,N’,)), cf. Definition and (2.3.18.1)), and N’ is a bounded
complex with finitely generated homology modules. By Theorem and Re-
mark there is a bounded complex N” of finitely generated modules such
that N ~ N’ : therefore

H,(Hompg(L,N")) = H,(Hompg(L, N’,)) = H,(Hompg (L, N")),
and this module is finitely generated by Lemma (2.3.20)). O

4.3. Derived tensor product functor

(4.3.1) Observation. Let M be an R-complex; let 7: P — M and w: Q — M
be semiprojective resolutions of M. By Proposition there is a homotopy
equivalence a: P — Q. Let (: X — Y be a morphism of R-complexes; by Proposi-
tion the induced morphisms a ® g X and a @ Y are also homotopy equiv-
alences, and there is a commutative diagram

PopX —22  popY

OL®RXJN N\O&@RY

Qop X —22% 0epY.

Let M’ be an R-complex with semiprojective resolutions 7’: P’ — M’ and
w': Q' — M'; let 8: M — M’ be a morphism. By Proposition (3.2.6) there is
a homotopy equivalence o’: P’ — Q’. By Proposition (3.2.5) there are morphisms
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vP: P — P and v¢: Q — Q' such that 7'y ~ B7 and @'y? ~ Bw. The upshot
is that the next diagram is commutative up to homotopy

PorX
P®RXLP/ @r X
0(®RXlN

NJ&’@]}X
Q® X
QRr X Wgﬁ') Q/ ®pr X.
(4.3.2) Definition. For R-complexes M and N the left derived tensor product com-
plex, M ®@% N, is P®g N, where P is a semiprojective resolution of M. By Ob-
servation (4.3.1) this defines M ®% N uniquely up to isomorphism in D(R).

(4.3.3) Theorem. For every R-complex M, the left derived tensor product defines
(up to isomorphism) an exact covariant functor M ®@% - on D(R). That is,

(a) to every X in D(R) it associates an R-complex M ®% X that is unique up to
isomorphism in D(R);

(b) to every morphism «:X —Y in D(R) it associates a morphism
Meha: M X - MehY;

(c) the equality M ®@% fa = (M @% B) (M @% «) holds for every pair of mor-
phisms a: X =Y and 3: Y — Z in D(R);

(d) the equality M @% 1% = 1M®%X holds for every X in D(R);

(e) to every exact triangle X — Y — Z — X X in D(R) it associates an exact
triangle M @% X — M @%Y — M ®% Z — ¥ (M ok X).

Proof. Properties (a)-(d) follow from Theorem (2.4.5) in view of Observa-
tion (4.3.1). It suffices to prove part (e) for distinguished triangles, and in that
case the claim follows from Lemma (2.4.11)). O

(4.3.4) Theorem. For every R-complex N, the left derived tensor product defines
(up to isomorphism) an exact covariant functor - ®% N on D(R). That is,

a) To every X in D(R) it associates an R-complex X ®@% N that is unique up to

(a) Y R
isomorphism in D(R).

b) To every morphism «: X —Y in D(R) it associates a morphism

( v P P
a®EN: X N->Y Q% N.

(c) The equality fa @ N = (B3®% N) (a @% N) holds for every pair of mor-
phisms a: X — Y and 3: Y — Z in D(R).

d) The equality 1X @& N = 1X@&N pholds for every X in D(R).

(d) q Y R Y

(e) To every exact triangle X — Y — Z — Y X in D(R) it associates an exact
triangle X @3 N - Y @4 N — Z @k N — (X ok N).

Proof. Properties (a)-(d) follow from Theorem (2.4.7) in view of Observa-
tion (4.3.1). It suffices to prove part (e) for distinguished triangles, and in that
case the claim follows from Lemma (2.4.12)). O

(4.3.5) Observation. The arguments in Observation (4.3.1)) can be recycled to
show that a left derived tensor product functor can be well-defined up to isomor-
phism in D(R) by M @ gk N = M ®r @, where @ is a semiprojective resolution of
N.



42 4. THE DERIVED CATEGORY 12 Dec 2006

To see that this definition agrees with the one given in Definition (4.3.2)), let M
and N be R-complexes, let m: P — M be a semiprojective resolution of M and
@: Q — N be a semiinjective resolution of N.

Furthermore, let 3: M — M’ be a morphism and 7’: P/ — M’ be a semipro-
jective resolution. By Proposition there is a morphism v: P — P’ that lifts
fBm along ' up to homotopy. The next diagram is commutative up to homotopy.

N
Por N —2""  prg.N

P®Rw1\ﬁ EIP’@RW
T®RQ

Po®rQ——— P ®rQ

W®RQ\N NJ#@RQ
BRRQ

M@rQ—"— M ®rQ

It shows that the two definitions yield the same covariant functor - ®% N on D(R).
A similar diagram, or an application of commutativity (2.5.1)), shows that the two
definitions also define the same covariant functor M @& -.

(4.3.6) Observation. Let M be an R-complex and (: X — Y be a morphism of
R-complexes. Let m: P — M be a semiprojective resolution of M, and let F' be a
semiflat R-complex such that F' ~ M in D(R). By Proposition (4.1.10)) there is a

quasiisomorphism 7: P — F. The next diagram is commutative.

PopX —2"  pPopY

7r®RXJ: ZJVW(@RY
FopX —2" PRy

The vertical maps are quasiisomorphisms by Proposition (3.4.7)).
By Observation (4.3.5) and commutativity (4.4.1) it follow that, if F,G are

semiflat complexes such that M ~ F and N ~ G, then there are isomorphisms
FQrN ~ M@r N ~ M ®rG,

which are natural in N and M, respectively.

(4.3.7) Lemma. Let F' be an R-module. The following are equivalent.
(¢) F is flat.
(ii) supT ®% F < 0 for every R-module T.

(iii) Hi(T ®% F) = 0 for every cyclic R-module T.

Proof. Well-known as H,,(T ®% F) = Tori(T7 F) for m > 0. |

BOUNDEDNESS AND FINITENESS
(4.3.8) Lemma. If M and N belong to D5(R), then also M ®@% N is in Do(R).
More precisely, if inf M = w and inf N = t, then

(a) inf M @% N > w+t and

(b) Hyrt(M @% N) = H, (M) @5 Hi(N).
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Proof. By Theorem 1' the complex M has a semifree resolution L —— M
with L, = 0 for v < w. Now M ®II§ N ~ L ®g N-¢, and the assertions follow by

Lemma (2.4.14]). ([l
(4.3.9) Lemma. If M and N belong to DY (R), then also M ®% N is in DL (R).

Proof. Set inf M = w and inf N = ¢. By Theorem the complexes M and
N have semifree resolutions L —— M and L' —— N with L,, and L/, finitely gen-
erated for all v, L, = 0 for v < w, and L), = 0 for v < t. Now M @2 N~ Lo L',
and the assertions follow by Lemma . |

4.4. Standard (iso)morphisms
STANDARD ISOMORPHISMS
The first map is the (derived tensor product) commutativity isomorphism.
(4.4.1) Theorem. For R-complexes M and N there is an isomorphism in D(R)
Tan: M @% N — N % M,
which is natural in M and N.

Proof. Let P be a semiprojective resolution of M. By Theorem (2.5.1)) there is a
natural isomorphism in C(R)

TPN: P®RN—>g N ®g P.
The claim now follows in view of Observation (4.3.5]). O

The next map is the (derived tensor product) associativity isomorphism.

(4.4.2) Theorem. For R-complexes K, M, and N there is an isomorphism in D(R)
oxmn: (K@% M) % N — K oF (M ®% N),

which is natural in K, M, and N.

Proof. A consequence of Theorem . (I

The next map is the (derived Hom-tensor) adjointness isomorphism.

(4.4.3) Theorem. For R-complexes K, M, and N there is an isomorphism in D(R)
prun: RHomg(K % M, N) = RHomg (K, RHomg(M, N)),

which is natural in K, M, and N.

Proof. A consequence of Theorem . (Il

The next map is the (derived Hom) swap isomorphism.

(4.4.4) Theorem. For R-complexes K, M, and N there is an isomorphism in D(R)
skmn: RHomp (K, RHomg (M, N)) — RHomp (M, RHompg(K, N)),

which is natural in K, M, and N.

Proof. A consequence of Theorem. O
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EVALUATION MORPHISMS

The next map is the (derived) tensor evaluation morphism.

(4.4.5) Theorem. For R-complexes K, M, and N there is a morphism in D(R)
wrmn: RHomp(K, M) ®% N — RHomp(K, M ®F N),
which is natural in K, M, and N. It is an isomorphism under each of the following
conditions
(a) K € D5(R), M € D(R), N € D(R), and fdg N < oo.
(b) K € DY(R) and pdi K < <.

Proof. Choose a semifree resolution L —— K and a semiflat complex F such that
F ~ N. Now wppF is the desired morphism:
Homp (L, M) ®@p F ~M Homg(L, M @r F).

(a): Under the assumptions on K and N, we can assume that F is bounded
above and L is bounded below and degreewise finitely generated; see Theo-

rem ([5.1.9) and Theorem ({3.1.10). After replacing it with a suitable truncation, we
can assume that M is bounded above, and then wy s p is an isomorphism in C(R)

by Theorem (2.5.5)).

(b): Under the assumption on K, we can assume that L is bounded and de-
greewise finitely generated; see Theorem (|3.1.10) and Theorem ([5.1.3]). O

The next map is the (derived) homomorphism evaluation morphism.

(4.4.6) Theorem. For R-complexes K, M, and N there is a morphism in D(R)
HKMN K ®E RHOH]R(M, N) — RHOH]R(RHOHIR(K, ]\4)7 N),

which is natural in K, M, and N. It is an isomorphism under each of the following
conditions

(a) K € DY(R), M € Dc(R), N € D5(R), and idg N < oo.
(b) K € D5(R) and pdg K < oc.

Proof. Similar to the proof of Theorem (2.5.5)). O

EXERCISES

(E 4.4.1) Let M be an R-complex and assume H, (M) = 0 for v # 0.
(a) Suppose M, = 0 for v < 0 and prove that there is a quasiisomor-
phism M —— H(M) in C(R).
(b) Suppose M, = 0 for v > 0 and prove that there is a quasiisomor-
phism H(M) —— M in C(R).
(¢) Conclude that for every complex M’ with amp M’ = 0 there is an
isomorphism M’ ~ H(M’) in D(R).
You may solve (a) and (b) by solving the next exercise.
(E442) Let M = --- - My — My - 0and N =0 — Ny —» Ny — ---
be R-complexes concentrated in non-negative and non-positive degrees,
respectively. Prove that there is an isomorphism of R-modules

Homp(Ho(M),Ho(N)) = Ho(Hompg (M, N)).



12 Dec 2006

CHAPTER 5
Homological Dimensions

5.1. Classical dimensions

PROJECTIVE DIMENSION
(5.1.1) Definition. For an R-complex M the projective dimension pdg M is de-

fined as

3 semiprojective R-complex P such
pdp M = inf { n } .

that P~ M and P, =0 for allv > n

(5.1.2) Remark. Let M be an R-complex and m an integer. It is immediate that
pdg M > sup M
pdp M = —00 <<= M ~0;
pdp X™M = pdp M + m.

(5.1.3) Theorem. Let M be an R-complex and n an integer. The following are
equivalent.

(i) pdg M < n.

(#) inf X —inf RHomg(M, X) < n for every X %0 in D5(R).

(#ii) —inf RHomp(M,T) < n for every R-module T.

() n>sup M and H_(,,41)(RHomg(M,T)) = 0 for every R-module T
) n >

(v > sup M and the module C, (P) is projective for every semiprojective R-
complex P ~ M.

n
n
(vi) n = sup M and for every semiprojective R-complex P ~ M the truncation

P_,, is a semiprojective resolution of M.

(vii) There is a semiprojective resolution P —— M with P, = 0 when v > n or
v < inf M.

Furthermore, there are equalities
pdp M = sup{inf X — inf RHomg(M,X) | X € D5(R) and X %0}
= sup{ — inf RHompg(M,T) | T is an R-module}.

Proof. Similar to the proof of Theorem (5.1.9)). O

INJECTIVE DIMENSION
(5.1.4) Definition. For an R-complex M the injective dimension idg M is defined
as

3 semiinjective R-complex I such
idg M = inf { n } .

that I ~ M and I, =0 for all v < —n

45
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(5.1.5) Remark. Let M be an R-complex and m an integer. It is immediate that
idg M > —inf M,
idpgM = —00 <= M ~0;
idp XM = idg M —m.

(5.1.6) Theorem. Let M be an R-complex and n be an integer. The following are
equivalent.

(i) idpg M <

) —sup X — mfRHornR(X M) < n for every X #0 in D (R).

) —inf RHompg(7T, M) < n for every cyclic R-module T'.

(w) —n <inf M and H_,11)(RHompg(T, M)) = 0 for every cyclic R-module T'.
)

—n < inf M and the module Z_,,(I) is injective for every semiinjective R-
complex I ~ M.

(vi) —n < inf M and for every semiinjective R-complex I ~ M the truncation
I, _, is a semiinjective resolution of M.

(vii) There is a semiinjective resolution I —— M with I, = 0 when v < —n or
v >sup M.

Furthermore, there are equalities
idp M = sup{ —sup X — inf RHomp(X, M) | X € Dc(R) and X #£0}
= sup{ — inf RHompg (T, M) | T is a cyclic R-module }.

Proof. Similar to the proof of Theorem ([5.1.9). O

FLAT DIMENSION
(5.1.7) Definition. For an R-complex M the flat dimension fdg M is defined as

3 semiflat R-complex F such that
fdg M = inf { n }

F~Mand F,=0forallv>n

(5.1.8) Remark. Let M be an R-complex and m an integer. It is immediate that

pdr M > fdp M > sup M;
fdgM = —00 <— M ~0;
f[drX™M = fdg M + m.

(5.1.9) Theorem. Let M be an R-complex and n an integer. The following are
equivalent.

(i) fdr M <

(#) sup X ®R M —sup X < n for every X #0 in D-(R).
(iii) supT ®@% M < n for every cyclic R-module T.
(iv) n>sup M and H,,+1(T ®% M) = 0 for every cyclic R-module T.
(v) n

) n

(vi

> sup M and the module C,,(F) is flat for every semiflat R-complex F' ~ M.

> sup M and for every semiflat R-complex F' ~ M the truncation F,, is
sem1ﬁat and isomorphic to M in D(R).
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(vii) There exists a semiflat R-complex F such that F' ~ M and F, = 0 when
v>norv<inf M.

Furthermore, there are equalities
fdg M = sup{sup X @ M —sup X | X € D(R) and X %0}
=sup{supT ®% M | T is a cyclic R-module}.

Proof. The proof is cyclic; the implications (4 ) == (4ii) and (vii) = (i) are trivial.

(i)==(4i): Choose a semiflat R-complex F' such that F' ~ M and F, = 0 for
all v > n. Set s = sup X; there is an isomorphism X ®% M ~ X, ®% M in D(R);
see Remark . In particular, sup X ®% M =supX_sQ@rF. Forv>n+s
and ¢ € Z, either i > s or v — i > v — s > n, so the module

(Xcs KR F)v == H (Xcs)i XR E}—i
i€z

vanishes. In particular, H,(X.s ®g F) =0 for v >n+ssosupX @2 M <n +s
as desired.

(4ii) = (iv): Apply (4ii) to T = R to get sup M = sup R®@r M < n; the rest
is immediate.

(iv)==(v): Let F be a semiflat R-complex such that F' ~ M. Note that F.,, is
a semiflat R-complex by Corollary and ., ~ C,(F)asn > supM =sup F.
Let T be an R-module. In view of Lemma, the next computation shows that
C,(F) is a flat R-module.

Hy1(T ©F M) = Hya (T @R F)
=Hp1(T ®r Fop)
=H (ST ®g Fon))
=H(T ®pr T "F.,)
= Hy(T ®F Ca(F))

(v)==(vi): Let F be a semiflat R-complex such that F' ~ M. The complexes
F., and ¥"C,(F) are semiflat by Corollary (3.4.9), and by Lemma so is the
kernel B of the morphism F.,, - £"C, (F). Since B is also the kernel of F' — F,,
the complex F_,, is also semiflat; again by Lemma (3.4.8). Because n > sup M =
sup F' there are isomorphisms M ~ F' ~ F_,, in D(R), cf. Remark .

(vi)==(vii): Choose by Theorem (3.1.9)) a semifree resolution L of M with
L, =0 for v < inf M. By Theorem d Corollary the complex L is
semiflat, so L, is the desired complex.

Finally, the equalities follow from the equivalence of (%), (ii), and (7). O

EXERCISES

(E 5.1.1) Let M be an R-module. Show that the semiflat complex F' ~ M con-
structed in the proof of Theorem (5.1.9))((vi) = (vii)) is an ordinary flat
resolution of M.

The next exercise explains why the concept “semiflat resolution of a
complex” has not been introduced.
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(E 5.1.2) Give an example of a complex M of finite flat dimension such that for
any semiflat complex F' ~ M with n = fdg M as described in Theo-

rem ((5.1.9)) (vii) there is no quasiisomorphism F —— M.
Hint: Example (3.4.6]).
(E 5.1.3) (Belongs in Section Show that the equality pdy M = fdg M holds
for M € DY (R), also when R is not local.

5.2. Koszul homology

DEPTH AND WIDTH

(5.2.1) Definition. Let (R, m, k) be a local ring and M an R-complex. The width
of M is

widthg M = inf k @% M.
(5.2.2) Observation. Let (R,m,k) be a local ring and M an R-complex. By
Lemma (2.4.14]) there is an inequality
widthr M > inf M.
If inf M = w > —oo, then equality holds if and only if mH,, (M) # H,(M); in
particular, equality holds by NAK if M is in DL (R).
(5.2.3) Proposition. Let (R,m,k) be a local ring. For R-complexes M and N
there is an equality
widthg M @% N = widthg M + widthg N.
Proof. A straightforward computation that uses associativity (4.4.2), Proposi-
tion (2.1.19)), and Lemma (2.4.14)):
widthg M @% N = inf k @% (M @% N)
= inf (k ®F M) @ N
= inf (k @% M) @F k) % N
=inf (k ®% M) @F (k @% N)
—inf H(k % M) @ H(k @% N)
=infk@% M +infk@% N
= widthg M + widthr N. O
(5.2.4) Definition. Let (R, m, k) be a local ring and M an R-complex. The depth

of M is
depthp M = —sup RHompg(k, M).

(5.2.5) Observation. Let (R,m, k) be a local ring and M an R-complex. By
Lemma (2.3.19) there is an inequality
depthp M > —sup M.

If sup M = s < oo, then equality holds if and only if m is an associated prime of
the top homology module H,(M).
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(5.2.6) Proposition. Let (R,m,k) be a local ring. For R-complexes M and N
there is an equality

depthy RHomp(M, N) = widthg M + depthy N.

Proof. A straightforward computation that uses adjointness (4.4.3), Proposi-
tion (2.1.19]), and Lemma (2.3.19)):
depth RHompg(M, N) = —sup RHompg

—~

k,RHomp(M, N))

k®% M,N)

(k@ M) @ k,N)

= — sup RHomy,(k ®% M, RHompg(k, N))

= — sup Homy, (H(k ®% M), H(RHompg(k, N)))

= —(sup H(RHompg(k, N)) — inf H(k ®% M))

= inf k ®% M — sup RHomg(k, N)

= widthr M + depthp N. O

= —sup RHompg

o~ o~

= —sup RHomp

—~

(5.2.7) Corollary. If M and N are R-modules, M is finitely generated, and
Ext’ (M, N) = 0, then depthy Homp(M, N) = depthy N. O

(5.2.8) Lemma. For R-complexes M € DY (R) and N € D (R) there is an equality:
—sup RHompg (M, N) = inf{ depthp N, + inf M, | p € SpecR}.
Proof. Set s = supRHompg(M,N). For every p € Spec R there is a series of
(in)equalities
—s < depthp, RHomp (M, N),

= depthp RHompg, (Mp, Ny)

= depthp N, + widthp, M,

= depthp Ny +inf M,.

Indeed, the inequality is by Observation (5.2.5)), and equality holds if p is an asso-
ciated prime of Hy(RHompg (M, N)). The equalities are by Lemma (6.1.7)), Propo-

sition (|5.2.6)), and Observation (5.2.2)), respectively. O

(5.2.9) Observation. Let H be a finitely generated R-module and N € D-(R) an
R-complex. By Lemma (5.2.8)) there are equalities

—sup RHompg(H, N) = inf{ depthy N, | p € Suppyp H }
= inf{depthp N, | p D Annp H }
= —sup RHompg(R/ Anng H, N).

(5.2.10) Lemma. If M € D5 (R) and N € D(R), then
sup RHompg (M, N) = sup{ sup RHomg(H,(M),N) —n |n€Z}.

Proof. Set s = sup RHompg(M, N) and ¢t = sup{sup RHomg(H,(M),N) —n |
nezl.
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To prove s < t it suffices by Lemma ll to prove that depthp N, +
inf M, > —t for all p € SpecR. Given p, set w = inf M, and note that because
p € Suppy Hyy (M), Observation (5.2.9)) yields the inequality

deptth N, +inf My, = w + deptth N, > w —sup RHompg(H,, (M), N) > —t.

For the opposite inequality, let n€Z be given. Assume
H(RHomp(H,(M),N)) # 0 and choose by Observation (5.2.9) a prime ideal p
such that —sup RHompg(H, (M), N) = depthy N,. Now

n —sup RHompg(H,, (M), N) > inf M, + depthp N, > —s. O

(5.2.11) Lemma. Let M € DY(R) and N € D5(R) be R-complexes and H be a
finitely generated R-module. There are equalities

(a) inf H@% N =inf R/ Annp H ®% N and

(b) inf M @% N =inf{n +inf H,(M)@% N |neZ}.

Proof. Let E be a faithfully injective R-module.
(a): Set C = R/ Anng H, then
inf H ®@% N = —sup RHomg(H ®@% N, E)
= —sup RHompg(H, RHompg (N, E))
= —sup RHompg(C, RHomp (N, E))
=infC @k N,
by Observation (5.2.9).
(b): A straightforward computation based on Lemma ((5.2.10):
inf M @% N = —sup RHomp(M @% N, E)
= —sup RHompg (M, RHompg (N, E))
= —sup{ sup RHomg(H, (M), RHomg(N,F)) —n|neZ}
= inf{n — sup RHomp(H, (M) ®% N, E) |n € Z}
=inf{n+infH,(M)@E N |necz} 0

AUSLANDER-BUCHSBAUM FORMULA
(5.2.12) Theorem. Let M and N be R-complexes in D (R). If fdg N < oo, then

depthp, M @% N = depthy M —supk @% N
= depthp M + depthyp N — depthy R.

In particular,

depthy N = depthy R — supk @% N.
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Proof. The first equality follows from the computation

depthp M @% N = — sup RHompg(k, M @% N)

—sup (RHomp(k, M) ®F N)

= —sup ((RHomp(k, M) @ k) ®% N)
—sup (RHomp(k, M) ®F (k@% N))
—sup (H(RHompg(k, M)) @ H(k % N))
—(sup RHompg (k, M) 4 sup (k ok N))

= depthy M —supk @% N,

where the first and last equalities use the definition of depth (5.2.4)), the second is
by tensor evaluation (4.4.5)), the fourth is by associativity (4.4.2)), and the fifth is
21.19).

by Proposition (2.1.
Applied to M = R, the first equality in the theorem yields the third,

depthy N = depthy R —supk ®% N,

and the second equality follows. |

(5.2.13) Theorem. Let (R,m, k) be local. If M € DY,(R), then

pdp M = —inf RHomp (M, k) = supk @% M = fdr M.

Proof. By Remark heorem (5.1.9), faithful injectivity of Eg(k), and
Hom-tensor adjointness (2.5.3) there are inequalities
pdp M > fdp M
> sup bk @5 M
= —inf RHomp(k @% M, Eg(k))
= —inf RHompg(M, Hompg(k,Er(k)))
= —inf RHomp(M, k).

Set n = —inf RHomp (M, k). To see that n > pdy M, choose by Theorem (3.1.10)

a semifree resolution L —— M with L, finitely generated for all v. For every
m € Z the covariant functor H,,(Hompg(L, -)) takes finitely generated modules to
finitely generated modules, and it is linear and half-exact. If T is a finitely generated
R-module such that H,,(Hompg(L,T)) = H,,, (RHompg (M, T)) # 0, then it follows
by Lemma that H,,(Hompg(L,k)) = H,,(RHomp (M, k)) # 0. The desired
equality now follows from Theorem . O

(5.2.14) Auslander—Buchsbaum Formula. Let (R, m, k) be a local ring. If N €
DL (R) and pdp N < oo, then

pdrp N = depthp R — depthp V.

Proof. Immediate from Theorem ([5.2.12)) and Theorem ([5.2.13)). (I
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EXERCISES

(5.2.15) Definition. An R-complex M is contractible if the identity 1 is null-
homotopic.

(E 5.2.1) Let (R, m, k) be local. Prove that under suitable conditions on the com-
plexes, the width of RHompg (M, N) can be computed in terms of depth
and width of M, N, and R.

(E 5.2.2) Prove the Hom-vanishing Lemma.
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CHAPTER 6
Supports and Dimensions

6.1. Localization

SUPPORT

(6.1.1) Definition. Let M be an R-complex. For a prime ideal p of R, the local-
ization of M at p is the complex M, = R, ®r M.
The support of M is the set

Supppr M = {p € SpecR | M, #0}.
(6.1.2) Remark. If two R-complexes M and M’ are isomorphic in D(R), then so
are their localizations at any p € Spec R. Indeed,

Mp :Rp®RM2Rp®RM/:M’;
as Ry is a semiflat R-complex. In particular, Suppp M = Suppr M.
(6.1.3) Observation. Let M be an R-complex and p a prime ideal of R. It is clear
that M, is an R,-complex; moreover, there are inequalities
(6.1.3.1) sup M, < sup M and inf M, > inf M.
By flatness of R, over R there is an isomorphism H(M,) = H(M) ®r R, of R,-
complexes, and it follows that
(6.1.3.2) Suppp M = U Suppp Hy (M) = Suppp H(M).

VEZ

In particular, Suppp M is non-empty if and only if M 2 0.

(6.1.4) Lemma. For R-complexes M and N, and p € Spec R there are isomor-
phisms of Ry-complexes

(M®gN), & My®g, Ny, and  (M&jN), ~ M, ®% N,.
Proof. The first isomorphism follows by associativity and commutativ-
ity :

(M ®rN), =Ry ®r (M ®@r N)
o~ (Rp Qr M)®r N
=~ (M, ®g, Ry) ®r N
= Mp ®Rp Np.
The isomorphism in D(R,,) follows from the first one, as the localization of a semiflat

R-complex is a semiflat R,-complex; cf. (E 3.4.1)). a

53
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(6.1.5) Proposition. For R-complexes M and N there is an inclusion
Suppr M ®II§ N C Suppr M N Suppgr NV;
equality holds if both complexes belong to D& (R).
Proof. The inclusion is immediate from the second isomorphism in Lemma .
Suppose M and N are in DL (R). If p is in Suppy M N Suppy N, then the

infima inf M}, = w and inf N, = t are finite. By Lemma (6.1.4]) and Lemma (4.3.8)
there is an isomorphism Hy, (M ®% N),) = H,,(M,) ®g, He(Ny); this module is

non-zero by NAK, so p is in Suppp M ®% N by (6.1.3.2). O

(6.1.6) Lemma. Let M and N be R-complexes and p € Spec R. If
e M is bounded and degreewise finitely generated, or
e N is bounded above, M is bounded below and degreewise finitely generated,

then there is an isomorphism of R,-complexes
Hompg(M, N), = Homp, (M, Np).

Proof. Follows by commutativity (2.5.1]), tensor evaluation (2.5.5), and adjoint-
ness (2.5.3):

M,Hompg, (R, Ny))
= HomRF (M QR Rp,Np)
= Homg, (M, Np). O

(6.1.7) Lemma. Let M € DL(R) and N € D(R) be R-complexes. For every
p € Spec R there is an isomorphism of R,-complexes
RHompg(M,N), ~ RHomg, (M, N,).

Proof. The localization of a semifree R-complex at p is a semifree R,-complex.
The claim now follows from the previous lemma in view of Theorem (3.1.10f) and

Remark (2.2.6). O

HOMOLOGICAL DIMENSIONS

(6.1.8) Observation. Let p be a prime ideal in R. For a semiprojective R-complex
P, the natural isomorphisms of functors on C(R,)

Hompg, (P, -) = Hompg, (P ®g Ry, -) = Homg(P,Homg, (R, -)) = Hompg(P, -)

show that P, is a semiprojective R,-complex. It follows that for every R-complex
M there are inequalities

(6.1.8.1) pdg, My, < pdg M and fdgr, M, < fdgr M.

It is also straightforward to see that localization of a semifree/-flat R-complex at p
yields a semifree/-flat Ry,-complex.
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If I is a bounded above complex of injective R-modules (and hence semiin-
jective), then I, is a bounded above complex of injective Ry-modules, and hence
semiinjective. It follows that for R-complexes M € D(R) there are inequalities

(6.1.8.2) idg, M, <idg M.

By Lemmas (6.1.15) and (6.1.19)), flat and injective dimension can be computed
locally. The next example shows that this fails for projective dimension, even for
modules over a regular ring.

(6.1.9) Example. Let P denote the set of prime numbers. Let M be the Z-
submodule of Q generated by {% | p € P}. For every p € P the module

My = Z(p)% is a free Z,)-module, and My = Q = Zg, so M, is free for every
p€SpecZ={0}U{(p)|peP}, but M is not projective.

(6.1.10) Lemma. Let (R, m, k) be a local ring and M an R-complex in DL(R). If m
is an integer and p a prime ideal such that 7 (My) # 0, then it B vy £,
Proof. Use induction on n = dim R/p.
n=1: Set ' = R/p. By assumption
0# M%‘, (M) = ranky,p) H_m(RHome (k(p), My))
= ranky,,) H_,,(RHompg(R', M)),,
where the second equality uses Lemma (6.1.6) and flatness of R, over R. In par-
ticular, H_,,,(RHompg(R', M)) # 0. Choose an element x € m\ p. The short exact
sequence 0 — R’ - R’ — R'/(x) — 0 yields an exact sequence
H_,,(RHomg(R', M)) - H_,,(RHomg(R', M)) — H_,,_1(RHomg(R'/(z), M)),
x

and it follows by NAK that H_,,,—1 (RHompg(R'/(x), M)) # 0. As Suppy R'/(z) =
{m} it follows by Lemma that also H_,,_1 (RHompg(k, M)) # 0, so up ™! (M),
which is the rank of this k-space, is non-zero.

n > 1: Choose a maximal chain of prime ideals p = po C p1 C -+ C p, =
m. Set S = Ry, and note that M,, belongs to DE(S). Set q = p,, and note
that pg ((Myp,)q) = pg, (Mp) # 0. As dimS/q = 1 the induction base yields
pE T (M,,) # 0, and since dim R/p; = n — 1 it follows by the induction hypothesis
that ujpt" (M) # 0. O

(6.1.11) Lemma. Let (R, m,k) be a local ring and M € DL(R). For every p €
Spec R there is an inequality

depthp M < depthp My + dim R/p.
Proof. Immediate from Definition (5.2.4)) and Lemma (6.1.10). O

(6.1.12) Lemma. Let (R, m,k) be a local ring and M € DL(R). For every p €
Spec R there is an inequality

idp M > idRp Mp + dim R/p
Proof. Immediate from Lemma ((6.1.10)) and Lemma (6.1.19)). O

(6.1.13) Theorem. Let (R,m, k) be a local ring. If M € DL(R), then
idg M = — inf RHompg(k, M).
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Proof. Immediate by Lemmas (6.1.19)) and (6.1.10). O

CHOUINARD FORMULAS

(6.1.14) Definition. Let (R, m, k) be a local ring. For an R-complex M and m € Z
the mth Betti number of M is

BE(M) = rank;, H,(k @ M).
(6.1.15) Lemma. For every R-complex M there is an equality
fdg M = sup{m € Z | Ip € Spec R: B2 (M,) #0}.
Proof. The inequality “>” is immediate as
B (My) = ranky(p) Hon (k(p) ®F, Mp) = ranky () Ho((R/p @3 M),

by Lemma (6.1.4]) and flatness of R, over R.
For the opposite inequality, let n < fdg M be given; it suffices to prove the
existence of an integer m > n and a prime ideal q such that Bl (Mgq) # 0. Set

F(-) = [ Hu(- ®% M),

m>=n
this defines a half-exact functor on R-modules. For every finitely generated R-

module T and every T-regular element z the short exact sequence 0 — T ——
T — T/xzT — 0 induces exact sequences

Hy1 (T/2T @% M) — H, (T @% M) = H (T @% M)
which combine to yield an exact sequence
F(T/xT) — F(T) = F(T).

By Theorem (5.1.9)) there exists a finitely generated R-module T such that F(T') #
0, so by Lemma (A.3]) there is a q € Spec R such that F(R/q)q # 0. Localization

(tensor product) commutes with coproducts, so there is an m > n such that
0 # Hpn(R/q ®F M)q = Hy(k(a) ®F, M),
where the isomorphism is by flatness of R, over R and Lemma (6.1.4)). O
(6.1.16) Theorem. Let M be an R-complex; if f{dgr M < oo, then
fdp M = sup{sup (k(p) @, M,) | p € Spec R }
= sup{ depth R, — depthp M, | p € Spec R }.
(6.1.17) Proof. The first and last equalities below are by Lemma (6.1.15) and
Theorem ([5.2.12)), respectively.
fdg M = sup{m € Z | 3p € Spec R: B (M,) # 0}
=sup{m € Z | Ip € Spec R: H,,(k(p) ®Ep M,)#0}
= sup{sup (k(p) @3, Mp) | p € Spec R}
= sup{ depth R, — depthp My | p € SpecR}. ]
(6.1.18) Definition. Let (R, m, k) be a local ring. For an R-complex M and m € Z
the mth Bass number of M is
pi (M) = rankg H_,,(RHompg(k, M)).
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(6.1.19) Lemma. For every R-complex M € D(R) there is an equality
idp M =sup{m € Z | Ip € Spec R: uf (M) #0}.

b2

Proof. The inequality “>” is immediate as

pg, (My) = ranky ) Hopm (RHompg, (k(p), My))
= rankk(p) H_m(RHOmR(R/p, M))p,
by Lemma (6.1.6) and flatness of R, over R.

For the opposite inequality, let T" be a finitely generated R-module and n an
integer such that H_,,(RHompg (T, M)) # 0. It suffices to prove the existence of a
prime ideal q such that pf (Mg) # 0. The functor F(-) = H_,(RHomg(-, M))
is contravariant, half-exact, and linear, so it follows by Lemma (A.3) that there
exists a prime ideal g such that 0 # F(R/q)q = H_,,(RHomg, (k(q), My)), where
the isomorphism uses flatness of Ry over R and Lemma (6.1.6). O

(6.1.20) Theorem. Let M be an R-complex in D=(R); if idr M < oo, then
idg M = sup{ —inf RHomg, (k(p), M,) | p € Spec R }
= sup{ depth R, — widthg, M, | p € SpecR }.
(6.1.21) Proof. The first equality is by Lemma (6.1.19) and the last one is by
5.2.1):

idp M =sup{m € Z | 3p € Spec R: ufy (M) #0}
=sup{m € Z | 3p € Spec R: H_,,(RHompg, (k(p), M,)) #0}
= sup{ — inf RHomg, (k(p), M,) | p € Spec R }
= sup{ depth R, — depthp M, | p € Spec R }. O

6.2. Formal invariants

(6.2.1) Setup. In this section (R, m, k) is a local ring.

POINCARE SERIES
(6.2.2) Definition. For an R-complex M € DL (R) the Poincaré series is

Pl (t) =) R

€L

(6.2.3) Remark. The Poincaré series of an R-complex M € DL (R) belongs to
Z(|t)), the domain of formal Laurent series with integer coeflicients.

(6.2.4) Observation. Let M be an R-complex in DY (R). By Theorem (5.2.13)

and Observation (5.2.2) the degree and order of the Poincaré series P, (t) are
deg PR (t) =sup{m € Z | BE(M) #0} =pdy M = fdg M and
ord P (t) = inf{m € Z | BE(M) # 0} = inf M.
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(6.2.5) Lemma. For R-complexes M and N in DL, (R) there is an equality of formal
Laurent series

P onn(t) = PR () PR (D).
In particular,
pdr M ®% N = pdp M + pdp N.

Proof. By commutativity , associativity , and Proposition
there are isomorphisms in D(k)
kb (M e% N)~ (M eb k) oF (kek N) ~ H(M ok k) @, H(k @k N).
For every m € Z there are, therefore, equalities
BE(M @% N) = rank;, H,, (k @% (M % N))
= ranky, H,,(H(M ®F k) ®, H(k @5 N))

= Z ranky H; (k ®E M) ranky, H,,,—; (k ®% N)
i€Z

Y BEOBIWN),

i+j=m

and this is the degree m coefficient of the product series P, (t) PR (t).
The statement about projective dimensions follows from Observation (6.2.4).
(]

The next corollary is immediate in view of (E 4.4.1)).

(6.2.6) Corollary. If M and N are finitely generated R-modules with
TorfL (M, N) =0, then pdy M @ N = pdp M + pdp N. 0

BASS SERIES
(6.2.7) Definition. For an R-complex M € DL (R) the Bass series is
(1) = 3 i (M)E
i€z

(6.2.8) Remark. The Bass series of an R-complex M € DL (R) belongs to Z(t),
the domain of formal Laurent series with integer coefficients.
(6.2.9) Observation. Let M be an R-complex in DL (R). By Theorem (6.1.13)
and Definition (5.2.4) the degree and order of the Bass series 1% (t) are

degI¥ (t) =sup{m € Z | yH(M) #0} =idg M and

ord I (t) = inf{m € Z | u (M) # 0} = depthp M.
(6.2.10) Lemma. For R-complexes M € DL (R) and N € DL(R) there is an equal-
ity of formal Laurent series

I 0 () = P (0 X (1),

In particular,
idg RHompg (M, N) =pdy M +idgr N.



12 Dec 2006 6.2. FORMAL INVARIANTS 59

Proof. By adjointness (4.4.3), commutativity (4.4.1), and Proposition (2.1.19)

there are isomorphisms in D(k):
RHompg (k, RHomg(M, N)) ~ RHomp(k ®% M, N)
~ RHomy (k ®% M, RHompg(k, N))
~ Homy (H(k ®% M), HRHomg(k, N))).
In particular, for every m € Z there are equalities
pi (RHomp (M, N)) = rank; H_,,,(RHompg(k, RHompg(M, N)))
= ranky H_,,, (Homy, (H(k ®F M), H(RHompg(k, N))))
= Z ranky H; (k ®% M) rank, H;_,,,(RHompg(k, N))
i€z
= Y BEM)pR(N),
itj=m

and this is the degree m coefficient of the product series Py, (£) IR (t).
The statement about homological dimensions follows from Observations ([6.2.4])

and (6.2.9). 0
The next corollary is immediate in view of (E 4.4.1)).

(6.2.11) Corollary. If M and N are finitely generated R-modules with
Ext’?(M,N) = 0, then idgr Homgz (M, N) = pdg M +idg N. O

(6.2.12) Lemma. Let M and N be R-complexes in DL(R). Ifidg N < oo, then
there is an equality of formal Laurent series:
PRttomp(ae.n) (1) = Ix () IR (£71).
In particular,
pdy RHomg(M,N) =idg M — depthy N and
inf RHomp (M, N) = depthp, M —idg N.
Proof. The next chain of isomorphisms in D(k) are by homomorphism evalua-
tion , adjointness , commutativity , and Proposition .
k @% RHomp (M, N) ~ RHomp(RHomg(k, M), N)
~ RHomy (RHompg(k, M), RHompg(k, N))
~ Homy (H(RHompg(k, M)), HRHompg(k, N)))
For every m € Z this gives equalities:
f(RHomp(M, N))
= ranky, H,, (k ®% RHomp (M, N))
= ranky, H,,,(Hom; (H(RHompg(k, M)), H(RHomg(k, N))))
= rank, H_;(RHomp(k, M)) rank; H_; ., (RHomp(k, N))

i€L

= > pr(M)ug’(N),

1+j=m
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which is the degree m coefficient in the product series I3 (£) I (t~1).
The last two statements follow by Observations (6.2.4) and (6.2.9):

pdg RHomp(M, N) = deg PRuom,, (ar,n) (t)
= deg I¥ (t) + deg IN (t71)
= deg I} (t) — ord I} (t)
=idr M — depthR N,

and
inf RHompg (M, N) = ord PﬁHomR(I\/I,N) (t)

= ord I} (t) + ord I (t71)
= ord I¥ () — deg IR (t)
— depthy, M —idg N. O

(6.2.13) Bass Formula. Let M be an R-complex in DL(R). Ifidg M < oo, then
idg M = depth R — inf M.

Proof. By Lemma (6.2.12)) there are equalities:
inf M = inf RHomp(R, M) = depth R — idg M. O

(6.2.14) Lemma. Let M and N be R-complexes in DL (R). If pdy M < oo, then
there is an equality of formal Laurent series:

PﬁHomR(M,N) (t) = Pﬁ(til) Pﬁ(t)-
In particular,
pdg RHompr(M,N) =pdy N —inf M and
inf RHomp (M, N) = inf N — pd M.
Proof. See (E 6.2.2). O

(6.2.15) Lemma. Let M and N be R-complexes in DL (R). If pdg N < oo, then
there is an equality of formal Laurent series:

MeLEN _
I N () = T () PR,
In particular,
idg M @% N =idg M —inf N and
depthp, M @% N = depthy M — pdp N.
Proof. The next chain of isomorphisms in D(k) are by tensor evaluation (4.4.5),
associativity (4.4.2), and Proposition (2.1.19)).
RHompg(k, M @% N) ~ RHomp(k, M) @% N
~ RHomp(k, M) @F (k@% N)
~ H(RHomg(k, M)) @ H(k @% N)
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For every m € Z this gives equalities:
(M @% N) = rank, H_,,(RHomg(k, M @% N))
= ranky, H_,,(RHompg(k, M)) @, H(k @% N)

= rank, H_;(RHompg(k, M)) rank; H_,+;(k @ N)
i€Z

Y HR(M)BE(N),

i+j=m

which is the degree m coefficient in the product series I3 (£) PR (t~1).
The last two statements follow by Observations (6.2.4) and (6.2.9):

idg M ®% N = deg I ®#N (1)
= deg I} (t) + deg PR (t7)
= degI¥ (t) — ord PE(2)

—idp M — inf N,
and
depthy M @4 N = ord IE5N (¢)
= ord I¥ (t) + ord PR (t71)
= ordI¥ (t) — deg PR (1)
= depthr M — pdr N. ]
EXERCISES

(E 6.2.1) Let M € DY(R). Show that if pdz M < oo, then
B (RHomp(M, R)) = 6%, (M)

for all m € Z.

(E 6.2.2) Prove Lemma ([6.2.14).
(E 6.2.3) Derive the Auslander-Buchsbaum and Bass formulas (5.2.14) and
(6.2.13) from the Chouinard formulas (6.1.16) and (6.1.20).

6.3. Krull dimension
(6.3.1) Definition. The (Krull) dimension of an R-complex M is
dimrp M = sup{dim R/p —inf M, | p € Supprp M }.
(6.3.2) Remark. If M is an R-module, then
dimp M = sup{dim R/p —inf M, | p € Suppp M }
= sup{dim R/p | p € Supprp M }

is the usual Krull dimension.

(6.3.3) Observation. For every R-complex M there are inequalities

(6.3.3.1) —inf M < dimp M < dim R — inf M.
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Indeed, dimg M > sup,{ —inf My } = —inf,{inf M, } = —inf M and dimp M <
sup,{ dim R — inf M, } = dim R — inf M.
It is also clear from the definition and Observation (6.1.3)) that

(6.3.3.2) dimp M = —00 <= Suppp M =0 < H(M)=0.

(6.3.4) Lemma. Let M be an R-complex. For every q € Spec R there is an in-
equality
dimRM > diqu Mq + dim R/q

Proof. A straightforward computation:

dimp, Mq +dim R/q
= sup{ dim Ry /py — inf (Mc,)pq +dim R/q|p € Suppp M and p C q}
< sup{dim R/p —inf M, | p € Suppp M and p C q}
<dimp M. O

(6.3.5) Lemma. For every R-complex M there are equalities
dimp M = dimg H(M) = sup{dimgp H,(M) —n|n € Z}.

Proof. The first equality is immediate from the definition and . For the
second equality, we may assume that H(M) is bounded below and not zero.

“<”: Let p € Suppr H(M) and set n = inf H(M),. Since p is in the support of
the module H,, (M), there is an inequality dim R/p—inf H(M), < dimg H, (M )—n.
The desired inequality follows from this one.

“>7: Let n € Z. If H,,(M) = 0 the inequality

(1) dim R/p —infH(M), > dimp H,, (M) — n
holds for every p € Suppp H(M). If H,,(M) # 0, choose p € Suppp H, (M) such
that dim R/p = dimp H,, (M), then holds as inf H(M), < n. O

COHEN—MACAULAY DEFECT

(6.3.6) Lemma. Let (R,m,k) be local and M be an R-complex in DL(R). If
H(M) # 0, then there is an inequality

dimp M > depthp M.

Proof. Set s = supM and choose p € SupppHs(M) such that dim R/p =
dimp Hs(M). It follows that the maximal ideal of R, is associated to Hy(M,),

so depthp My = —s by Observation lb Lemma (6.1.11) and Lemma 1}

now yield

depthp M < depthp M, + dim R/p = dimg Hy(M) — s < dimp M. O

(6.3.7) Definition. For an R-complex M the Cohen—Macaulay defect is
cmdp M = dimpr M — depthp M.
(6.3.8) Observation. Let M be an R-complex in DL(R). If H(M) # 0, then it

follows from Lemma ([6.3.6) that the Cohen-Macaulay defect is non-negative, i.e.
cmdrp M > 0.
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(6.3.9) Proposition. Let M € DY(R) and N € D5(R) be R-complexes and H a
finitely generated R-module. There are equalities
(a) dimp H @% N = dimg R/ Anng H ®% N and
(b) dimp M ®% N = sup{dimp H,(M) @3 N —n |n € Z}.
Proof. (a): A straightforward computation based on Lemma :
dimg H ®@% N = sup{ dim R/p — inf (H ®% N), | p € Spec R}
= sup{ dim R/p — inf (C @& N), | p € Spec R}
=dimg H ®% N.
(b): A straightforward computation based on Lemma :
dimg M ®@% N = sup{dim R/p — inf (M ®% N), | p € Spec R}
= sup{ dim R/p — inf M, ®%p N, |p € SpecR}
= sup{ dim R/p — inf{ n + inf H,, (M) ®I§p Ny |ne€Z}|peSpecR}
= sup{ dim R/p + sup{ — inf H,,(M,) ®%p N, —n|neZ}|peSpecR}
= sup{ dim R/p — inf H,,(M,) ®%p N, —n|peSpecR, ne€Z}
=sup{dimp H,,(M) %X N —n|nez}. O

EXERCISES
(E 6.3.1) For finitely generated R-modules M and N, prove that
dimp M @z N = dimgp M @% N.

(E 6.3.2) Let (R,m, k) be a local ring. For an R-complex M € DL(R), show that
if (M) # 0, then

depthp M + sup M < dim R.

(E 6.3.3) Let (R, m, k) be a local ring. Under suitable assumptions on M € D(R),
show that
depthp M + widthp M < dim R.

Hint: Consider the complex K ® g M, where K is a Koszul complex on
a system of parameters.

6.4. Small support
(6.4.1) Definition. Let M be an R-complex. The small support of M is the set
suppp M = {p € Spec R | H(k(p) @3 M) # 0}.

(6.4.2) Observation. For every R-complex M and every prime ideal p associativ-

ity (4.4.2)) and Lemma (6.1.4) yield isomorphisms
(6.4.2.1) k(p) ®F M = (R/p @ M), = k(p) @, M,.
In particular,

(6.4.2.2) suppp M = {p € Spec R | Im € Z: BE» (M,) #0},
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and it follows by Lemma (6.1.15) and Remark ([5.1.8]) that
(6.4.2.3) suppp M = < H(M) = 0.

(6.4.3) Lemma. For every R-complex M there is an inclusion of sets suppr M C
Suppy M; equality holds if M € DY(R).
Proof. The inclusion is immediate by . If M € D5(R) and p € SpecR,
then M, € D5 (R,) and H(k(p) ®% My) # 0 by NAK; cf. Observation . 0
(6.4.4) Lemma. Let M and N be R-complexes. There is an equality of sets
suppp M ®§‘3 N = suppp M Nsuppyp N.
Proof. For every p € Spec R there are isomorphisms
k(p) ®F (M @F N) = k(p) ®F, (M, @, Ny)
~ (M, @, k(p)) @) (k(p) ®F, Np)
~ H(M, @, k(p)) ®xp) H(k(p) @, Np),

by (6.4.2.1)), associativity (4.4.2]), commutativity (4.4.1]), and Proposition (2.1.19)).

It follows that for every p € Spec R and every m € Z
Ho (k(p) ©F (M @ N)) = [ Hi(My ©F, k(p)) @k(p) Hini(k(p) ©F, Np)-
i€z
Now the claim follows by . O
FINITENESS OF WIDTH AND DEPTH

(6.4.5) Lemma. Let (R, m, k) be alocal ring and K be the Koszul complex on a set
of generators for m. For an R-complex M, the following conditions are equivalent:

(i) H(k @5 M) = 0;

(i) H(K ®r M) =0;

(iit) HHompg (K, M)) = 0;

(iv) HRHomg(k, M)) = 0.

Proof. (i) <= (#): Let z1,...,2. be a set of generators for m and set K =

K®(x1,...,z.). Note that suppp K = Suppp K = {m }. By Lemma (6.4.4),
H(k@% M)=0 < m¢suppy M < H(K 0% M) =0.

(i) <= (i7): Up to a shift, the complexes K @ g M and Homp(K, M) are
isomorphic. Indeed, for an elementary Koszul complex

Kf(z)=0—R->R-—0
it is clear that Homp(K®(z), R) = £ 'K®(z). By induction,
HomR(KR(acl, ceyZe), R) & HomR(KR(gcl, ceyTe1) R KR(:EE),R)
=~ Homp(K®(x1, ..., 2c 1), Homp(K®(z.), R))
>~ Homp(K®(x1,...,2¢ 1), R) ®r Homp(K"(z.), R)
>yl KRz, .. xe 1) @p TIKE (2,)
=Y K2, ... ),
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where the third isomorphism is tensor evaluation (2.5.5)). It follows, again by (2.5.5]),
that
K KRR M= ZeHOHlR(I(7 R) KRR M= ZeHOHlR(K, M)
(#i) <= (i): If RHompg(k, M) is acyclic, then Homp (K, M) is the same by
(E 6.4.2) as H(K) is a k-vector space. If Hompg (K, M) is acyclic, then so is
RHOHIR(]C, HOI’IIR(K, M)) ~ RHOIHR(]{ QR K, M)
~ RHomp(@ k() M),
=0
whence RHompg(k, M) is acyclic. O

(6.4.6) Theorem. Let (R, m, k) be a local ring. For an R-complex M, the following
conditions are equivalent:

() m € suppp M;

(#) depthp M < oo;
(ii1) widthgp M < co.

Proof. By the definitions (6.4.1)) and (5.2.1)
m e suppp M <= H(k®% M) #0 < widthg M < oo,
and by the previous lemma and Definition
H(k®% M) #0 < H(RHompg(k,M)) #0 <= depthy M < cc. O

EXERCISES

(E 6.4.1) Give an example of an R-complex M and prime ideals p C g such that
p € suppp M but q & supprp M.

(E 6.4.2) Let M and N be R-complexes. Prove that if M € Dg(R), then
sup RHompg (M, N) < sup{sup RHomgr(H,(M),N) —v|veEZ}.

6.5. Intersection results

NEW INTERSECTION THEOREM (WITHOUT PROOF)

(6.5.1) New Intersection Theorem. Let (R, m, k) be a local ring and L =0 —
L, — -+ — Ly — 0 a complex of finitely generated free R-modules. If H(L) # 0
and all the homology modules H, (L) have finite length, then dim R < u.

(6.5.2) Remark. Let (R, m, k) be a Cohen-Macaulay local ring and  a maximal
R-sequence. The module R/(z) has finite length and finite projective dimension.

The next corollary shows that that existence of a module of finite length and
finite projective dimension implies Cohen—Macaulayness of the ring.
(6.5.3) Corollary. Let (R, m,k) be a local ring and M € DL (R) an R-complex. If
M has finite projective dimension, and H(M) # 0 has finite length, then
dim R < pdp M — inf M.

In particular, if there exists an R-module M # 0 of finite length and finite projective
dimension, then R is Cohen—Macaulay.
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Proof. Set ©« = pdp M and w = inf M. By Theorem the complex M
has a semifree resolution L with L, finitely generated for all v, and L, = 0 when
v < w or v > u. Since H(L) = H(M) has finite length, it follows by that
dimR < u—w.

If M is a module, then w = 0 and u = depthy R—depthy M by the Auslander—
Buchsbaum Formula (5.2.14). This implies dim R = depth R as desired. O

The boundedness condition on /N in the next theorem is not necessary. To lift
it takes a different version of tensor evaluation (4.4.5]).

(6.5.4) Theorem. Let (R,m, k) be a local ring. Let M and N be R-complexes in
DL(R). If H(M) # 0 and pdz M < oo, then

emdr N < emdp M @% N.
Proof. First note that
emdr M @% N —ecmdg N = dimg M ®% N — depthy M + depth R — dimg N
= dimp M @% N 4 pdp M — dimr N

by Theorem ([5.2.12)) and the Auslander-Buchsbaum Formula ([5.2.14]). Thus, it is
sufficient to prove the inequality

dimp N < pdg M + dimp M @% N.

This is done in six steps.

1° Suppose R is a catenary domain and N = R. Choose p minimal in Suppp M,
then H(M,) has finite length, and pdp, M, < oo; see . By Corollary ,
there is an inequality dim R, < pd R, M, — inf M,, and because R is a catenary
domain

dim R = dim Ry, + dim R/p < pdgp, M, — inf M, + dim R/p
< pdr M +dimp M,

where the inequalities use (6.1.8.1) and the definition of dimension (6.3.1)).
2° Suppose R is catenary and N = R. Choose p € SpecR such that

dim R = dim R/p. Set R' = R/p and M’ = R’ ®% M. By definition of projec-
tive dimension, pdgp M’ < pdgp M. (Actually, equality holds by Theorem (5.2.13)).)
By definition of dimension, Proposition , and Lemma (4.3.8) there are in-
equalities dimpg M’ = dimg M’ < dimg M. Because R’ is a catenary domain, 1°
yields

dim R =dim R’ < pdp M’ + dimr M' < pdgy M + dimg M.

3AO Suppose ]\Af = R. Let R be the m-adic completion of R, then dim R =
dim R and dimgp R ® g M = dimg M by Lemma 1] and faithful flatness of R.
Moreover, R®@g M is in DE(R) and pdgz R ®r M = pdp M by Theorem (5.2.13]).
By Proposition (|7.1.12f) the ring Ris catenary, so the desired equality follows from
2°.

4° Suppose N = S is a cyclic module. By definition of projective dimen-
sion, pdSM®% S < pdp M and by definition of dimension dim5M®% S <
dimg M ®§‘3 S; see also the argument for 2°. Thus, 3° yields

dimg S = dim S < pdg M ®% S + dimg M @% S < pdp M + dimp M ®% S.
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5° Suppose N is a finitely generated R-module. Set S = R/ Anng N, then
dimg N = dimp S < pdgy M + dimg M % S = pdp M + dimp M @% N

by 4° and Proposition (6.3.9)(a).
6° The general case now follows by Lemma (6.3.5), 5°, and Proposi-

tion (G3.9) (b):
dimp N =sup{dimgH,(N) —n|neZ}

<sup{pdy M +dimg M @5 H,(N) —n|neZ}
=pdp M +dimp M @% N. O

The special case N = R shows that existence of a Cohen—Macaulay complex
M e DfEI (R) of finite projective dimension implies Cohen—Macaulayness of the ring.

(6.5.5) Corollary. Let (R, m,k) be a local ring and M € D5 (R) an R-complex. If
H(M) # 0 and pdr M < oo, then

cmdg M > cmd R. O

(6.5.6) Corollary. Let (R,m,k) be a local ring, and let M # 0 and N be finitely
generated R-modules. If pdy M < oo, then

dimp N < pdg M 4+ dimr M ®r N.
Proof. Immediate from Theorem (6.5.4]) and (E 6.3.1). O
The next two results are special cases of (6.5.6)).

(6.5.7) Corollary. Let (R,m, k) be a local ring, and let M and N be finitely gen-
erated R-modules. If pdr M < oo and Suppgp M NSuppp N = {m}, then

dimp N < pdp M. (Il

(6.5.8) Corollary. Let (R,m,k) be a local ring. If M # 0 is a finitely generated
R-module with pdp M < oo, then

dim R — dimrp M < pdp M. O
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CHAPTER 7
Duality

7.1. Dualizing complexes

(7.1.1) Let (R, m, k) be a local ring and Eg(k) the injective hull of the residue field.
The functor Hompg (-, Er(k)) is exact and faithful; it is called the Matlis duality
functor. It follows that

sup Homp(M,Egr(k)) = —inf M and inf Homp(M,Eg(k)) = —sup M
for every R-complex M. Moreover
Homp(k,Er(k)) =2k  and  Homg(Eg(k),Er(k)) = R.
For M € DL (R), homomorphism evaluation yields an isomorphism
Homp(Homp (M, Er(k)), Er(k)) = M ®f R.

If R is artinian, then there are isomorphisms Hompg(Eg(k),Eg(k)) = R and
M = Homp(Hompg(M,Eg(k)),Er(k)) for every M € DY (R). Moreover, Eg (k) is
finitely generated.

(7.1.2) Definition. For an R-complex M, the assignment r +— r* defines a natural
morphism of R-complexes

Xy R — Hompg(M, M),
called the homothety morphism. The same name is used for the map R —

RHompg(M, M).

(7.1.3) Definition. A complex D € DY (R) is dualizing for R if it has finite injective
dimension and x%: R — RHompg(D, D) is an isomorphism in D(R).

(7.1.4) Remark. A ring R of finite Krull dimension is Gorenstein if and only if R
is dualizing for R.

(7.1.5) Lemma. Let R — S be a ring homomorphism. If S is finitely generated as
module over R, and R has a dualizing complex D, then RHomg(.S, D) is a dualizing
complex for S.

Proof. Let I be a bounded semiinjective resolution of D over R. The complex
Hompg(S,I) is a bounded complex of injective S-modules, in particular semiin-
jective, and the homology modules of RHompg(S, D) ~ Hompg(S,I) are finitely

69
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generated over R and hence over S. The commutative diagram of S-complexes

S
XHom(S,I)

S ——————— Homg(Hompg(S, I), Hompg(S, I))

J: uT/)Hum(s,l)sz

S®rR Homp(Homp(S,I) ®s S, 1)

S®Rxf\: u[

Os1r1

S @r Hompg(I,I) ———— Homg(Homg(S, I), I)
shows that the homothety morphism Xﬁoma( g1y 18 an isomorphism in D(S). O

(7.1.6) Remark. An immediate consequence of this lemma is, that if .S is a homo-
morphic image of a Gorenstein ring of finite Krull dimension, then S has a dualizing
complex. By [3] the converse is also true.

It follows by Cohen’s Structure Theorem that every complete local ring has a
dualizing complex.

(7.1.7) Observation. If D is a dualizing complex for R, then so is X" D for every

n € Z. This is immediate from Lemmas (2.3.10)) and (|2.3.16)).

(7.1.8) Proposition. If D is a dualizing complex for R, then
suppp D = Suppp D = Spec R.

and for every p € Spec R, the complex D, is dualizing for R,.

Proof. Let I be a bounded semiinjective resolution of D over R, then I, is
a bounded semiinjective resolution of D, over R,, and the homology complex
H(D,) = H(D), is degreewise finitely generated over R,. There is a commuta-
tive diagram in D(R)

xﬁ‘;

R, RHompg, (Dy, Dy)

[ ]

L RF®§XS L
Rp ®RR Rp ®R RHOmR(D,D)

~

where the right vertical arrow is by Lemma (6.1.7). It shows that D, is dualizing
for Ry; in particular, H(D,) # 0 and the claim about supports follows. |

(7.1.9) Definition. Let (R,m, k) be a local ring. A dualizing complex D for R is
normalized if sup D = dim R.

(7.1.10) Remark. If (R, m, k) is an artinian local ring, then the injective hull E (k)
is a normalized dualizing complex for R.

(7.1.11) Proposition. Let (R, m,k) be a local ring. If C is a dualizing complex for
R, then the Bass series 1S (t) is a monomial, and for every p € Spec R there is an
equality

depthy C = depthp, Cp + dim R/p.
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Moreover, D = Y4mE=swC js a normalized dualizing complex for R, and the
following hold:

(a) The Bass series 15 (t) is 1; in particular, idg D = 0 = depthp D.
(b) sup D = dim R and inf D = depth R; in particular, amp D = cmdpg R.

Proof. By Lemma (6.2.12) there are equalities of formal Laurent series
C Cry—
1=Pg(t) = PﬁHomR(c,C) (t) =TR(t) IR().

In particular, 0 = ord 15 (¢) I (=) = ord IS (t) — deg IS (t), so IS (t) = ct™ for some
ceNand ne€Z Since, 1 = (ct™)(ct™") = ¢ the coefficient ¢ is 1, and I§(t) is a
monomial. It follows by Lemmas (6.1.11) and (6.1.12)) that there are (in)equalities

idr C = depthp C < depthy Cp + dim R/p <idg, Cp +dim R/p <idp C

for every p € Spec R. This yields the desired equality
(1) depthp C = depthp Cp + dim R/p.

(a): The complex D = LdimE=suwp € j5 dualizing by Observation (7.1.7) and
clearly normalized. The Bass series of D is a monomial, so idg D = depthy D, and
it suffices to prove depthp D = 0. To prove the inequality depthyp D > 0, choose
p € Spec R such that dim R/p = dim R. Now yields

depthp D = depthRF Dy, +dimR > —sup D, +dimR =supD —sup D, > 0,

where the last equality uses that D is normalized. For the opposite inequality, set
d = dim R = sup D and choose q € Assgp Hy(D). Then and Observation (|5.2.5))
yield
depthy D = depthp, Dg +dim R/q = —d + dim R/q < 0.
(b): The first equality holds by definition. The second one follows from (a) and

the Bass Formula (|5.2.14]). O

RINGS WITH DUALIZING COMPLEXES
(7.1.12) Proposition. If R has a dualizing complex, then R is catenary and of

finite Krull dimension.

Proof. For each p € Spec R the complex Y.dim iy —sup Dy D, is a normalized dua-
lizing complex for Ry; cf. Propositions (7.1.8) and (7.1.11). By Lemma (6.1.19),
Remark (5.1.5), and Proposition (7.1.11)) there are (in)equalities

idp D = sup{idg, Dy | p € Spec R }
= sup{idg, (EW™F 5 Pr D) + dim R, —sup D, | p € Spec R }
=sup{dim R, —sup D, | p € SpecR }
> sup{dim R, | p € Spec R} —sup D
=dim R — sup D.

By assumption, idz D and sup D are finite, and hence so is dim R.

To prove that R is catenary, we may assume that it is local. It suffices to show
that there is a function f: Spec R — Ny such that dim Rq/pq = f(q) — f(p) for all
prime ideals p C q in R. For such ideals, Proposition yields equalities

depthp Dq + dim R/q = depthp D = depthy Dy + dim R/p
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and
depthp Dy = depthp, ) (Dq)p, +dim Rq/pq = depthp D, + dim Rq/pq,
which combine to yield

dim R,/pq = dim R/p — dim R/q. O

The next result holds in general, but the proof is easier when a dualizing com-
plex is available.

(7.1.13) Theorem. Assume R has a dualizing complex. Every R-complex of finite
flat dimension has finite projective dimension.

Proof. Let D be a dualizing complex for R. Assume fdgr M < oo, then
n = max{idg D +sup D ®@% M, sup M }

is finite by Theorem 1) Let P ——— M be a semiprojective resolution. Since
n > sup M = sup P, there is a quasi-isomorphism P —— P_,, and it suffices to
prove that the R-module C,,(P) is projective. This is tantamount to showing that
Exth(Cp(P), Cpi1(P)) vanishes. Because n > sup M, the complex ¥ "P.,, is a
projective resolution of C,,(P). Therefore,
Extp (Cp(P), Cny1(P)) = Hoy (Homp (X" Poy, Cpsa (P)))

= H_(n41)(Homp(Pon, Cria (P)))

= H_(41) (RHomg(M, Cpp1(P))),
and it suffices to prove the inequality inf RHomp (M, Cp41(P)) = —n. The mo-
dule C,,11(P) has finite flat dimension, because a truncation P, for some m > n

is a semiflat resolution of M; see Theorem (5.1.9). In particular, tensor evalua-
tion (4.4.5) yields an isomorphism

(1) Cpy1(P) ~ RHomg(D, D) @% Cpyi(P) =~ RHomp(D, D @% Cpy1(P)).
Moreover, for every cyclic R-module T', tensor evaluation (4.4.5)) and Lemma (4.3.8)
yield
—inf RHomg(T, D ®% C,,41(P)) = — inf RHomg (T, D) @% C,,11(P)
< —inf RHompg(T, D);

in particular, idg D ®% C,,41(P) < idg D. Finally, and adjointness (4.4.3) in
combination with this inequality yield

— inf RHompg (M, C,, 41 (P)) = — inf RHompg (M, RHompg(D, D @% C,,1(P)))
= —inf RHomp(D % M, D @k C, .1 (P))
<idg D ®@% Cpy1(P) +sup D @% M
<idg D +sup D @% M
<n. O
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7.2. Duality with respect to a dualizing complex

(7.2.1) Construction. Let M and N be R-complexes. The assignment
m— [ = (1) (m)],
for m € M and ¢ € Hompg(M, N), defines a morphism in C(R)
oM M — Hompg(Hompg(M,N),N),

which is natural in M and N. It is called the biduality morphism for M with respect
to N. The same name and notation is used for the induced morphism

oM. M — RHompg(RHompg(M, N), N)
in the derived category D(R).

The next result is Grothendieck’s duality theorem.

(7.2.2) Theorem. Assume R has a dualizing complex D. For every R-complex
M € DY (R) the biduality morphism

M. M — RHompg(RHompg(M, D), D)
is an isomorphism in D(R).

Proof. Immediate from the commutative diagram

5M

M ———— RHompg(RHomg (M, D), D)

JN '\WGI\/IDD

MLy E
M @% R ——*2, M @% RHomp(D, D),

~

where the right vertical isomorphism is homomorphism evaluation (4.4.6]). O

FORMAL INVARIANTS

(7.2.3) Definition. Let (R, m, k) be a local ring with a normalized dualizing com-
plex D. For an R-complex M, set MT = RHompg (M, D).

(7.2.4) Proposition. Let (R,m,k) be a local ring with a dualizing complex. For
an R-complex M € DY(R) there is an equality of formal Laurent series

:
I§ () =P ().
In particular,
idgMT=pdr M  and  depthy MT = inf M.
(7.2.5) Proof. Immediate from Lemma (6.2.10) and Observation (6.2.9)). O

HOMOLOGICAL DIMENSIONS

(7.2.6) Corollary. Let (R,m,k) be a local ring with a dualizing complex. For an
R-complex M € DY(R),

pdp M < 0o <= idg M'T < 0o and
idg M < 00 <= pdp M' < 0.
Proof. Immediate from Theorem (7.2.2)) and the previous proposition. O
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KRULL DIMENSION AND DEPTH

(7.2.7) Proposition. Let (R,m, k) be a local ring with a dualizing complex. The
next equalities hold for R-complexes M € DL (R):

(a) dimg M = sup MT;
(b) depthr M = inf M*; in particular,
(c) emdg M = amp M.
Proof. (a): Let D be a normalized dualizing complex. The first equality in the

chain below is from Lemma ([5.2.8)), the last two follow by Proposition (7.1.11]) and
the definition of dimension.

sup MT = —inf{depthp Dy +inf M, | p € Spec R }
= sup{ —depthp Dy, —inf M, | p € Spec R }
= sup{ dim R/p — depthp D —inf M, | p € Spec R }
=dimp M

Part (b) follows from Theorem ([7.2.2)) and Proposition (7.2.4)); part (c) follows
from (a) and (b). O

7.3. Applications of dualizing complexes

(7.3.1) Let (R, m, k) be a local ring and Eg(k) the injective hull of the residue field.
There are equalities of supports

suppg Er(k) = Suppgr Er(k) = {m }.
There is always an equality
depthp Homp (M, Eg(k)) = widthg M,
and if M € D-(R), then
widthg Homp (M, Eg(k)) = depthy M.

In particular, widthr Er(k) = depth R.
If M € D5(R), then

deM = idRHOmR(M, ER(k))
If M € DE(R), then
1dRM = deHomR(M,ER(k))

LOCAL DUALITY

(7.3.2) Observation. Let (R, m, k) be a local ring with a dualizing complex D. It
is immediate from Lemma (6.1.7))

suppp Homg (D, Egr(k)) = Suppy Homp (D, Eg(k)) = {m }.
(7.3.3) Lemma. Let (R,m, k) be a local ring and M € D-(R) an R-complex. If D
is a normalized dualizing complex for R, then

depthp M = — sup Homg(D, Er(k)) @% M.
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Proof. By the previous observation and Theorem (6.4.6), depthy M is finite ex-
actly when H(Hompg(D,Eg(k)) ®% M) # 0. We may assume this is the case and
set s = sup Homp(D,Egr(k)) ®% M > —occ. It now follows by Observation (5.2.5),

Theorem , and that

—sup Homg (D, Eg(k)) ®@% M
= depthy Homg (D, Eg(k)) % M
= depthy Homg(D,Eg(k)) + depthp M — depth R
= depthp M. a

(7.3.4) Tt can also be proved that dimg M > — inf Homg (D, Er(k)) ®% M, when
M € D5(R). (This will follow from the Local Duality Theorem, which will be
added to a later version.) It follows that

dimp M > depthp M

for M € D (R) with m € suppy M.

BASS’ QUESTION

(7.3.5) Remark. Let (R, m, k) be a Cohen-Macaulay local ring and  a maximal
R-sequence. The module Homg(R/(z), Er(k)) has finite length and finite injective
dimension; cf. Remark and (7.3.1)). In [I] H. Bass raised the question whether
existence of a finitely generated module of finite injective dimension would imply
Cohen-Macaulayness of the ring.

(7.3.6) Theorem. Let (R, m,k) be a local ring and M € DY (R) an R-complex. If
H(M) # 0 and idr M < oo, then

cmdp R < amp M.

Proof. Since dim R = dim R and depth R = depth fi, we have emd R = cmd R.
Moreover, amp M = ampf{@R M by faithful flatness of ﬁ, and id@ﬁ@R M =
idg M by the Bass Formula . Thus, we may assume R is complete and
let D be a normalized dualizing complex for R. By Theorem and Proposi-
tion we have amp M = cmdg MT. The complex M has finite flat dimension,

and by Lemma (4.2.9) and Theorem (5.1.6)) it belongs to D5 (R). Thus, MT has
5.2.13

finite projective dimension by Theorem (5.2.13), and then cmd R < cmdgr M by

Corollary (6.5.5)). O

The affirmative answer to Bass’ question is a special case of this theorem.

(7.3.7) Corollary. Let (R, m,k) be a local ring. If there exists a finitely generated
R-module M # 0 of finite injective dimension, then R is Cohen—Macaulay. ]

VASCONCELOS’ CONJECTURE

(7.3.8) Observation. Let (R,m,k) be a Cohen-Macaulay local ring and set
d = dim R. Suppose u%(R) = rank;, Extg(k, R) = 1, then also p%(é) =1 by
adjointness and tensor evaluation . Let D be a normalized dualizing
complex for R, by Proposition we have ,Bf(D) = 1. By Proposition

the complex ¥~¢D is isomorphic in D(R) to a module C with B{(C) = 1 and
Homp(C,C) = R. It follows that C'= R, so R, and thereby R, is Gorenstein.
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In [6] Vasconcelos conjectured the next result.

(7.3.9) Theorem. Let (R,m, k) be a local ring and set d = dim R. If u4(R) = 1,
then R is Gorenstein.

Proof. As in Observation (|7.3.8]), we may assume R is complete. Then R has a
normalized dualizing complex D, and it follows by Proposition (7.2.4) that 8%(D) =

1. Take a semifree resolution L —— D with L, finitely generated for all v.

2 oy

(1) oo — Lgyg — 2 Ly 5 Lg_g — -
First note that after splitting off contractible summands, we may assume that
Ly = R and the differentials 9% 1 and Ok are given by matrices with entries in m.

If R is a domain, then either 8£+1 or 9% is the 0-map. Thus, L decomposes as a
direct sum L = Ly, & L,,—1 where n is either d+1 or d. Because R ~ Hompg(L, L)
is indecomposable, one of the summands must vanish. Since Ly # 0 there are only
two possibilities. If 3£+1 =0, then L.441 = 0. This implies that pdy D is finite,
and then R is Gorenstein by Corollary (7.2.6). If 9% = 0, then L.4—1 = 0. This
implies that d < inf D = depth R, see Proposition (|7.1.11)), and then R is Cohen—
Macaulay. In this case Observation shows that R is Gorenstein.

A proof of the general case will be added in a later version. O
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APPENDIX A

Half-exact Functors

(A.1) Lemma. Let F be a half-exact functor on the category of R-modules. If T
is a finitely generated R-module such that F(T) # 0, then there is a prime ideal
p € Suppy T such that F(R/p) # 0.

Proof. Choose a filtration 0 = T, ¢ 1T} C --- C T,_1 C T, = T such that
T;/T;—1 = R/p; for some p; € Spec R. The short exact sequences
0—Tiy —T;— R/p, — 0

induce exact sequences

F(Ti-1) — F(T;) — F(R/pi)
or

F(R/p;) — F(T;) — F(T;-1)
depending on the variance of F. In either case it follows that F(R/p;) # 0 for at
least one i € {1,...,n}. O

(A.2) Lemma. Let (R,m,k) be local. Let F be a covariant linear half-exact functor
on the category of finitely generated R-modules. If F is not the O-functor, then

F(k) # 0.

Proof. Choose a finitely generated R-module T such that F(T) # 0. By the
previous lemma, the set {p € Suppp T | F(R/p) # 0} is non-empty and hence has
a maximal element q. Set C = R/q and choose any element x € R\ q. It follows
from the previous lemma that F vanishes on C'/xC = R/(q + (z)). Application of
F to the short exact sequence

0—C-C—C/zC—0
therefore yields an exact sequence
NAK now implies that « € » \ m and hence g = m. O
(A.3) Lemma. Let F be a half-exact functor on the category of R-modules. As-

sume that to each finitely generated module M and each M -regular element x there
is an exact sequence

F(M/xM) — F(M) = F(M).
If T is a finitely generated R-module such that F(T) # 0, then there is a q €
Suppp T such that F(R/q)q # 0.

Note that this lemma applies if F is half-exact, contravariant, and linear.

7
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Proof. By Lemma the set {p € Suppp T | F(R/p) # 0} is non-empty and
hence has a maximal element q. Set C' = R/q, for every element = € R\ q it follows
from that F vanishes on C'/2C = R/(q+ (x)). By assumption, there are now
exact sequences

0— F(C) X F(O),
so every z € R\ q is F(C)-regular. In particular, the canonical map F(C) — F(C),4
is injective, and the assertion follows. O
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Glossary

For terms that are used but not defined in the text, please see one of the
following standard references: Commutative algebra with a view toward algebraic
geometry [2] by Eisenbud; A first course in noncommutative rings [4] by Lam; and
Categories for the working mathematician [5] by MacLane.

Once completed, this glossary will give brief definitions and precise references
to the above mentioned monographs.

NAK: Nakayama’s lemma; see [4, lem. (4.22)]
noetherian ring: associative ring that satisfies the ascending chain condition;
see [2 sec. 1.4]

semisimple ring: ring over which all modules are projective; see [4, thm. (2.6)
and (2.8)]
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List of Symbols

Bold face page numbers refer to definitions. Eventually, references to [2; 4 [5]
will be added for definitions of the symbols that are not defined in this text.

i

homotopy relation in C(R), 8
quasiisomorphism in C(R), 7
isomorphism in D(R), 36
isomorphism in C(R), 5
coproduct,
product,
finite (co-)product,
|m| degree of an element m, 5
- ®pr - tensor product functor, 16
- ®% - left derived tensor product functor, 41
M ®r N tensor product of the R-complexes M and N, 15
M!  the graded module underlying the complex M, 5
hard truncation above of M at n, 9
hard truncation below of M at n, 9
soft truncation above of M at n, 9
soft, truncation below of M at n, 10

1R

D= w

N
3

n
3

SEEE

V)
3

identity morphism on the complex M, 5
oM differential of the complex M, 5

2 - shift functor, 9
>"M n-fold shift of the complex M, 9

R(M) nth Betti number of the R-complex M, 56

~  biduality morphism for the complex M with respect to N, 72

Ok vy homomorphism evaluation homomorphism for modules K, M, and
N, 2
homomorphism evaluation morphism in C(R) for complexes K, M,
and N, 22
homomorphism evaluation morphism in D(R) for complexes K, M,
and N, 44

wh(M) nth Bass number of the R-complex M, 56

prmN  adjointness homomorphism for modules K, M, and N, 2

adjointness morphism in C(R) for complexes K, M, and N, 19
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OKMN
SKMN
TKMN

XM
WKMN

Coker o
Cone o
Er(k)

Exty (M, N)
H(-)

H(M)

H, (M)
Hompg(-, -)
Hompg (M, N)
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adjointness morphism in D(R) for complexes K, M, and N, 43
associativity homomorphism for modules K, M, and N, 1
associativity morphism in C(R) for complexes K, M, and N, 19
associativity morphism in D(R) for complexes K, M, and N, 43
swap homomorphism for modules K, M, and N, 2

swap morphism in C(R) for complexes K, M, and N, 20

swap morphism in D(R) for complexes K, M, and N, 43
commutativity homomorphism for modules K, M, and N, 1
commutativity morphism in C(R) for complexes K, M, and N, 18
commutativity morphism in D(R) for complexes K, M, and N, 43
homothety morphism of the R-complex M, 69

tensor evaluation homomorphism for modules K, M, and N, 2
tensor evaluation morphism in C(R) for complexes K, M, and N, 21
tensor evaluation morphism in D(R) for complexes K, M, and N, 44

natural numbers,

(= NU {0}), non-negative integers,
rational numbers,

integers,

formal Laurent series with coefficients in Z,

category of R-complexes and their morphisms, 5

derived category of the category of R-modules, 35

full subcategory of D(R) whose objects have finitely generated homo-
logy modules, 37

full subcategory of D(R) whose objects have bounded above homology
complexes, 37

full subcategory of D(R) whose objects have bounded below homology
complexes, 37

full subcategory of D(R) whose objects have bounded homology com-
plexes, 37

homotopy category of R-complexes, 35

annihilator of the R-module M,

the set of associated prime ideals of the R-module M,
boundary subcomplex of M, 6

(=ImdM,), boundaries of M in degree v, 6

cokernel subcomplex of M, 6

(= Cokerd,), 6

cokernel of the map «,

mapping cone of the morphism «, 10

injective envelope of the residue field of the local ring (R, m, k),
mth Ext group of the R-modules M and N,

Homology functor, 8

homology complex of the complex M,

Homology of the complex M in degree v, 6

homomorphism functor, 12

complex of homomorphisms from the R-complex M to N, 11
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12 (t) Bass series of the R-complex M, 58
Ima image of the map «a,
Kera kernel of the map «,
PX.(t) Poincaré series of the R-complex M, 57
R m-adic completion of the local ring (R, m, k),
RHompg(-,-) right derived homomorphism functor, 38
Spec R spectrum of the ring R,
Suppr M support of the R-complex M, 53
Tor® (M, N) mth Tor group of the R-modules M and N,
Z(M) cycle subcomplex of the complex M, 6
Zo(M) (= KerdM), cycles of the complex M in degree v, 6

amp M amplitude of the complex M, 6
cmndr M Cohen—Macaulay defect of the R-complex M, 62
deg f degree of the Laurent series f,
depthp M depth of the R-complex M, 48
dimp M Krull dimension of the R-complex M, 61
fdg M flat dimension of the R-complex M, 46
idg M injective dimension of the R-complex M, 45
inf M infimum of the complex M, 6
lengthp M length of the R-module M,
ord f order of the Laurent series f,
pdp M projective dimension of the R-complex M, 45
ranky V' rank of the k-vector space V,
sup M supremum of the complex M, 6
suppp M small support of the R-complex M, 63
widthg M width of the R-complex M, 48
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adjointness
isomorphism of complexes, 19
isomorphism of complexes in D(R), 43
isomorphism of modules, 2
amplitude, 6
of complex with finite injective dimension
and finitely generated homology, [75]
associativity of tensor product
isomorphism of complexes, 19
isomorphism of complexes in D(R), 43
isomorphism of modules, 1
Auslander—Buchsbaum Formula, @

Bass, Hyman, [75]
Bass Formula,
Bass numbers, 56,
and Gorensteinness of the ring, @ @
and localization, [55]
measure injective dimension,
Bass series, 58
and duality,
degree of ~ measures injective dimension,
of derived Hom complex,
of derived tensor product complex,
order of ~ measures depth, @
Bass’ question, [75]
Betti numbers, 56,
measure flat dimension,
biduality
isomorphism of complexes in D(R),
morphism of complexes, 73
morphism of complexes in D(R), 73
boundary, 6

catenary ring, [7]]

chain map, 11, @ @

homotopic ~s, 11
Cohen’s Structure Theorem,
Cohen—Macaulay defect, 62,
and duality, @
non-negativity of ~, @ @
of complex with finite projective dimen-
sion and finitely generated homology, @

of derived tensor product complex,
commutativity of tensor product

isomorphism of complexes, 18

isomorphism of complexes in D(R), 43

isomorphism of modules, 1
complex, 5

acyclic, 6

bounded, 5

bounded above, 5

bounded below, 5

concentrated in certain degrees, 5

contractible, 52

exact, 6

semiflat, 32

semifree, 25

semiinjective, 30

semiprojective, 28

sub-, 6
connecting homomorphism, 7
contractible complex, 52
cycle, 6

degree
of Bass series,
of element in complex, 5
of homomorphism, 11
of Poincaré series,
depth, 48, @
and duality, @
and localization,
and Matlis duality,
dimension-~ inequality, @
finiteness of ~, [65]
minus supremum is lower bound for ~,
of derived Hom complex, @
of derived tensor product complex, [50]
upper bound for ~,
derived Hom, 38
contravariant functor, @
covariant functor, [3§|
derived Hom complex, 38
finitely generated homology modules of ~,
40)
localization of ~,
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supremum of ~,
derived homomorphism complex, 38, see
also derived Hom complex
derived tensor product, 41
covariant functor,
derived tensor product complex, 41
finitely generated homology modules of ~,
infimum of ~, @
localization of ~,
differential, 5
dimension, 61, [75]
~-depth inequality,
and duality, @
of derived tensor product complex, [63]
of homology complex,
of module of finite projective dimension,
071
of tensor product of modules,
Dold complex,
dualizing complex, 69
existence of,
normalized, @ 70
ring with ~ is catenary of finite Krull di-
mension, [71]

exact complex, 6

flat dimension, 46
and localization, [54]
equals projective dimension for complexes

with finitely generated homology,

is measured by Betti numbers, [56]

flat module, 1

fraction of morphisms, 35

free module, 1

Gorenstein ring, m @ @

Grothendieck’s duality theorem,

Hom, 11
contravariant functor, @
covariant functor,
Hom complex, 11
derived, 38
finitely generated homology modules of ~,
localization of ~, [64]
supremum of,
Hom-tensor adjointness, see adjointness
homomorphism
of complexes, 11
homomorphism complex, 11, see also Hom
complex
homomorphism evaluation
homomorphism of modules, 2
morphism of complexes, 22
morphism of complexes in D(R), 44
homothety, 5
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morphism of complexes, 69
morphism of complexes in D(R), 69
homotopic chain maps, 11
homotopic morphisms, 8
homotopy category, 35
homotopy equivalence, 9

infimum, 6
injective dimension, 45
and duality, [73]
and localization,
and Matlis duality, @
Bass Formula for ~,
is measured by Bass numbers,
of complex with finitely generated homo-
logy, [60]
injective module, 1
isomorphism
of complexes, 6
of complexes in D(R), 36

Krull dimension, 61, see also dimension

Laurent series, [57 [58]

left derived tensor product complex, 41, see
also derived tensor product complex
localization, 53
of derived Hom complex, @
of derived tensor product complex,
of Hom complex,
of tensor product complex, [53]

mapping cone, 10
acyclicity of ~,
Matlis duality, 69, @
module
flat, 1
free, 1
in degree v of a complex, 5
injective, 1
projective, 1
morphism
of complexes, 5, [T1]
homotopy equivalence, 9
identity, 5
mapping cone of ~, 10
null-homotopic, 8

Nakayama’s lemma, 81

New Intersection Theorem,
noetherian ring, 81
null-homotopic morphism, 8

order
of Bass series,
of Poincaré series,

Poincaré series, 57
degree of ~ measures projective dimen-

sion, [B7]
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of derived Hom complex,
of derived tensor product complex,
order of ~ measures infimum, [57]
and duality,
projective dimension, 45
and duality, [T3]
and localization,
and Matlis duality, @
equals flat dimension for complexes with
finitely generated homology, @
of complex of finite flat dimension, @
of complex with finitely generated homo-

logy, [E1]

projective module, 1

quasiisomorphism
has acyclic mapping cone,
in C(R), 7
in K(R), 35

quotient complex, 6

resolution
semifree, 25, see also semifree resolution
semiinjective, 30, see also semiinjective
resolution
semiprojective, 28, see also semiprojec-
tive resolution
right derived homomorphism complex, 38,
see also derived Hom complex

semibasis, 25
the Dold complex has no ~, @
semiflat complex, 32
semifree
complex, 25
is semiprojective, 2§
resolution, 25
existence of ~, 25|
of complex with finitely generated
homology modules and homology
bounded below,
of complex with homology bounded be-
low,
semiinjective
complex, 30
resolution, 30
existence of ~, m
of complex with homology bounded
above,
semiprojective
complex, 28
is semiflat, @
resolution, 28
existence of ~,
semisimple ring, 81
shift of complex, 9
short exact sequence
of complexes, 6
small support, 63
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and finite depth,
and finite width,
of derived tensor product complex,
subset of support, @
subcomplex, 6
support, 53
of derived tensor product complex,
supremum, 6
suspension, see shift
swap
isomorphism of complexes, 20
isomorphism of complexes in D(R), 43
isomorphism of modules, 2

tensor evaluation
homomorphism of modules, 2
morphism of complexes, 21
morphism of complexes in D(R), 44
tensor product, 16
covariant functor, [T6] [I7]
tensor product complex, 16
derived, 41
finitely generated homology modules of ~,
1 S]
infimum of ~,
localization of ~, [63]
truncation
above, 9, 10
below, 9, 10
hard, 9
soft, 10

Vasconcelos, Wolmer V., @
Vasconcelos’ conjecture,

width, 48
and Matlis duality,
finiteness of ~,
infimum is lower bound for ~,
of derived Hom complex,
of derived tensor product complex, [4§]
upper bound for ~,
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