Do all eight problems.

1. State and prove Schwarz’s Lemma.

2. Find a conformal, one-to-one map f from $\mathbb{D} = \{z : |z| < 1\}$ onto

 $G = \{w : \text{Im } w < \pi/2\} \setminus \{w : w \leq -1\}$

 such that $f(0) = 1$.

3. Evaluate the integral

 $$\int_0^{2\pi} \frac{d\theta}{1 + \sin^2 \theta}$$

4. Prove the reflection principle: If $H = \{z \in \mathbb{C} : \text{Im } z > 0\}$, and if f is a continuous function on \overline{H}, analytic on H and if f is real on the real axis, then f can be analytically extended from H to all of \mathbb{C}.

5. A function f is said to satisfy the Lipschitz condition on \mathbb{C} if there exists a positive constant M such that

 $$|f(z_1) - f(z_2)| \leq M \cdot |z_1 - z_2|$$

 for all $z_1, z_2 \in \mathbb{C}$.

 Find all entire functions that satisfy the Lipschitz condition on \mathbb{C}.

6. Suppose $f(z) = \sum_{n=0}^{\infty} a_n (z-c)^n$ has the property that the series $\sum_{n=0}^{\infty} f^{(n)}(c)$ converges. Show that f is an entire function.

7. Classify [type (and order where applicable)] all of the isolated singularities of the following functions (including any isolated singularities at the point at ∞):

 a) $f(z) = \frac{\sin^2 z}{z^4}$

 b) $f(z) = \sin \left(\frac{1}{z} \right) + \frac{1}{z^2(z-1)}$

 c) $f(z) = \csc z - \frac{1}{z}$

8. Let w_1 and w_2 be distinct points in \mathbb{C} and let L be the perpendicular bisector of the line segment connecting them. Describe the image of L under the map

 $$F(z) = \frac{z - w_1}{z - w_2}.$$