Definition. Let G be a region and let $\alpha = a + bi = (a, b) \in G$. A function $g : G \to \mathbb{R}$ is differentiable at α if there exist constants A and B and functions $\varepsilon_1, \varepsilon_2 : G \to \mathbb{R}$ which are continuous at α with $\varepsilon_1(a, b) = \varepsilon_2(a, b) = 0$ such that

$$g(x, y) = g(a, b) + (x - a)[A + \varepsilon_1(x, y)] + (y - b)[B + \varepsilon_2(x, y)]$$

If g is differentiable at α, we will define $g_x(a, b) = A$ and $g_y(a, b) = B$.

Proposition. Let G be a region and let $\alpha = a + bi = (a, b) \in G$. Suppose that $u, v : G \to \mathbb{R}$ such that u, v are (continuously) differentiable at α and that u, v satisfy the Cauchy-Riemann equations at α. Then, $f = u + iv$ is (continuously) differentiable at α.

Proof. Since u, v are differentiable at α, there exist functions $\varepsilon_r : G \to \mathbb{R}$, $r = 1, 2, 3, 4$, which are continuous at α with $\varepsilon_r(a, b) = 0$, $r = 1, 2, 3, 4$, such that

$$u(x, y) = u(a, b) + (x - a)[u_x(a, b) + \varepsilon_1(x, y)] + (y - b)[u_y(a, b) + \varepsilon_2(x, y)] \quad (1)$$

$$v(x, y) = v(a, b) + (x - a)[v_x(a, b) + \varepsilon_3(x, y)] + (y - b)[v_y(a, b) + \varepsilon_4(x, y)] \quad (2)$$

If in (1) we replace $u_y(a, b) = -v_x(a, b) = i \cdot v_x(a, b)$ and in (2) we replace $v_y(a, b) = u_x(a, b)$ and then multiply (2) by i and add the result to (1) we obtain (after a rearrangement)

$$f(z) - f(\alpha) = (z - \alpha)[u_x(a, b) + i v_x(a, b) + w(z)]$$

where

$$w(z) = \frac{x - a}{z - \alpha} \left[\varepsilon_1(x, y) + i\varepsilon_3(x, y) \right] + \frac{y - b}{z - \alpha} \left[\varepsilon_2(x, y) + i\varepsilon_4(x, y) \right].$$

Since $|w(z)| \leq |\varepsilon_1(x, y)| + |\varepsilon_2(x, y)| + |\varepsilon_3(x, y)| + |\varepsilon_4(x, y)|$, then

$$\lim_{z \to \alpha} \frac{f(z) - f(\alpha)}{z - \alpha} = \lim_{z \to \alpha} (u_x(a, b) + i v_x(a, b) + w(z)) = u_x(a, b) + i v_x(a, b)$$
since \(\lim_{z \to \infty} w(z) = 0 \).