1. (25 pts) State and prove Schwarz’s Lemma.

2. (25 pts) Give the definition for each of the following:
 a. Let \(f \) have an isolated singularity at \(z = a \). Then the residue of \(f \) at \(z = a \) is . . .
 b. Let \(G \) be a region and let \(f : G \rightarrow \mathbb{R} \). Let \(a \in \partial G \) or \(a = \infty \). Then,
 \[
 \limsup_{z \to a} f(z) = \ldots
 \]
 c. The Poisson kernel \(P_r(\theta) = \ldots \)
 d. A set \(F \subset \mathbb{C} \) is normal . . .
 e. A set \(F \subset \mathbb{C} \) is equicontinuous on a set \(E \subset G \) if . . .

3. (25 pts) Show that exactly four of the roots of \(z^5 + 15z + 1 = 0 \) lie in the annulus \(\text{ann}(0, \frac{3}{2}, 2) \).

4. (25 pts) Let \(G \) be a bounded region in \(\mathbb{C} \).
 a. Let \(\{ f_n \} \subset \mathbb{C} \cap A \) and let \(f \in \mathbb{C} \cap \mathbb{C} \cap A \). Suppose that \(f_n \rightarrow f \) uniformly on \(\partial G \). Show that \(f_n \rightarrow f \) in \(\mathbb{C} \cap \mathbb{C} \).
 b. Give an example of a sequence \(\{ g_n \} \subset \mathbb{C} \cap \mathbb{C} \) and a function \(g \in \mathbb{C} \cap \mathbb{C} \) such that \(g_n \rightarrow g \) uniformly on \(\partial G \) but \(g_n \) does not converge to \(g \) in \(\mathbb{C} \cap \mathbb{C} \).