Answer the problems on separate paper. You do not need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. **Show all relevant supporting steps!**

1. Determine the radius of convergence of each of the following series:

 a. \(\sum_{n=1}^{\infty} n^2 (2z-i)^n \)

 b. \(\sum_{n=1}^{\infty} \frac{z^n}{(3+i^n)^n} \)

2. Let \(G \) be a region in \(\mathbb{C} \) and let \(f : G \to \mathbb{C} \). Prove that if both \(f \) and \(\overline{f} \) are analytic on \(G \), then \(f \) is constant on \(G \).

3. Show that for all complex \(z \) the following hold:

 a. \(\cosh^2 z - \sinh^2 z = 1 \)

 b. \(\cos 2z = \cos^2 z - \sin^2 z \)

4. Let \(f(z) = z^{1-i} \). Identify and sketch the image of the line segment \((0, i)\) under \(f \).

5. Let \(M \) be the Möbius transformation which maps \(1+i, 0, 1-i \) to \(\frac{i}{i-1}, \frac{1}{2}, \frac{i}{i+1} \), resp. Find a formula for \(M \) and identify images of the unit quarter discs under \(M \), i.e., the images of \(D_1, D_2, D_3, D_4 \), where the unit quarter disc \(D_j \) is given by \(D_j = Q_j \cap B(0,1) \). See figure.