Answer the problems on separate paper. You do not need to rewrite the problem statements on your answer sheets. Work carefully. Do your own work. **Show all relevant supporting steps!**

1. (10) Let $z = -2\sqrt{3}i - 2$ and $w = 4 - 4i$. Write in rectangular form, $a + bi$, and polar form, $r \text{cis} \theta$, each of the following:

 a. $\frac{z^2}{w^3}$

 b. $\left(\frac{z + w}{z + w}\right)^3$

2. (10) Prove Proposition 1.13 d.

3. (22) Give examples of sets in \mathbb{C} with the usual topology:

 a. i) A set A such that $\text{int}(\overline{A \setminus \text{int} A}) = \emptyset$

 ii) A set A such that $\text{int}(\overline{A \setminus \text{int} A}) \neq \emptyset$

 b. i) A set A such that A has only finitely many components

 ii) A set A such that A has countably infinitely many components

 iii) A set A such that A has uncountably many components

 A countable collection $\{A_n\}_{n=1}^{\infty}$ is said to be distinct if $j \neq k \Rightarrow A_j \neq A_k$ for all $j, k \in \mathbb{N}$

 c. i) A countable collection of distinct closed sets $\{G_n\}_{n=1}^{\infty}$ such that

 a) $\bigcup_{n=1}^{\infty} G_n$ is open ($\neq \mathbb{C}$)

 b) $\bigcup_{n=1}^{\infty} G_n$ is closed ($\neq \mathbb{C}$)

 c. $\bigcup_{n=1}^{\infty} G_n$ is neither open nor closed
ii) A countable collection of distinct open sets \(\{ F_n \}_{n=1}^{\infty} \) such that

a) \(\bigcap_{n=1}^{\infty} F_n \) is closed (\(\neq \emptyset \))
b) \(\bigcap_{n=1}^{\infty} F_n \) is open (\(\neq \emptyset \))
c) \(\bigcap_{n=1}^{\infty} F_n \) is neither open nor closed

4. (10) Prove the following proposition: Let \((X, d) \) be a metric space. Let \(f, g : X \to \mathbb{C} \) be uniformly continuous on \(X \). Then, \(f + g \) is uniformly continuous on \(X \).

5. (9) Give examples of sequences \(\{ x_n \}, \{ y_n \} \) in \(\mathbb{C} \) such that

a. \(\lim x_n y_n = L, \lim x_n = M, \lim y_n \) does not exist
b. \(\lim x_n y_n = L, \lim x_n \) does not exist, \(\lim y_n \) does not exist
c. \(\lim \frac{x_n}{y_n} = L, \lim x_n = M, \lim y_n = N, L \neq \frac{M}{N} \)

6. (6) Give examples of distinct sequences \(\{ x_n \} \) in \(\mathbb{C} \) such that

a. \# \(\{ x_n \} \) = 5 (i.e., the sequence has exactly five limit points)
b. the sequence \(\{ x_n \} \) is given by a formula \(x_n = f(n) \), where \(f : \mathbb{N} \to \mathbb{C} \), such that \(x_1 = 1, x_2 = 2, x_3 = 4, x_4 = 8, x_5 = 16 \), but \(x_6 \neq 32 \)
 (i.e., give a closed formula for the function \(f \) defining the sequence \(x_n \)).

7. (8) For \(a, b, c \in \mathbb{C}, a \neq 0 \), show that \(ab = ac \Rightarrow b = c \).

8. (6) Provide a counterexample to each of the following assertions:

a. In a metric space \((X, d) \), if a set \(A \) is closed and bounded, then \(A \) is compact.
b. Let \((X, d), (\Omega, \rho) \) be metric spaces. Let \(f : X \to \Omega \). If \(f \) is uniformly continuous on \(X \), then \(f \) is Lipschitz on \(X \).
9. (20) Classification Problem. Correctly identify whether the following subsets of \(\mathbb{C} \) are: (a) open; (b) closed; (c) connected; (d) polygonally path connected; (e) compact; (f) complete; (g) bounded; (h) region. You do not need to provide a rationale for your classification. Fill out the classification information on the attach table.

A. \(B(0,5) \setminus \bar{E} \) where \(E = \{ z = x + iy : \frac{x^2}{25} + \frac{y^2}{4} < 1 \} \)

B. \(\overline{B(0,5)} \setminus \bar{E} \) where \(E = \{ z = x + iy : \frac{x^2}{25} + \frac{y^2}{4} < 1 \} \)

C. \(B(0,1) \setminus B(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}) \)

D. \(\{ B(0,4) \setminus B(1,1) \} \cap \{ z : \text{Re } z \geq 0 \} \)

E. \(\bigcup_{n=1}^{\infty} l_n \), where each \(l_n = [0, \frac{\text{cis}(\frac{\pi}{2n})}{n}] \)

Classification Table for Problem 9

<table>
<thead>
<tr>
<th></th>
<th>open</th>
<th>closed</th>
<th>connected</th>
<th>polygonally path connected</th>
<th>compact</th>
<th>complete</th>
<th>bounded</th>
<th>region</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>