15 Jan 1.1
Critical Ideas: distance on a number line, absolute value, distance in a plane, trigonometry, solving trigonometric equations

Terms/Definitions: real numbers, real number line, absolute value, distance, interval notation, bounded interval, open interval, half-open interval, closed interval, absolute value equation property, tolerance, absolute error, horizontal change, vertical change, midpoint, analytical geometry, graph of an equation, unit circle, completing the square, degree, radian

Facts/Rules/Theorems: order properties (tricotomy law, transitive law of inequality, additive law of inequality, multiplicative law of inequality), absolute value formula, distance formula on real number line, properties of absolute value, intervals (inequality notation, interval notation, graphical representation), theorem: distance formula in the plane, midpoint formula, standard form for the equation of a circle

Supplementary Problems: 1.1: every other odd 1-45

20 Jan 1.2/1.3
Critical Ideas: slope of a line, forms for the equation of a line, parallel and perpendicular lines, definition of a function, functional notation, domain of a function, composition of functions, graph of a function, classification of functions

Terms/Definitions: inclination, slope, angle of inclination, parallel, perpendicular, function, image, domain, range, onto function, one-to-one function, bounded function, variables, dependent variable, independent variable, evaluate, difference quotient, piecewise-defined function, domain convention, undefined, equal functions, hole, composite function, graph, vertical line test, y-intercept, x-intercept, symmetry, symmetric with respect to the y-axis, even function, symmetric with respect to the origin, odd function, polynomial function, degree, leading coefficient, constant term, constant function, linear function, quadratic function, cubic function, quartic function, rational function, power function, algebraic function, transcendental function, trigonometric functions, exponential functions, logarithmic functions

Facts/Rules/Theorems: formula for the slope of a line, formula for the angle of inclination of a line, forms of the equation of a line (standard form, slope-intercept form, point-slope form, two-intercept form, horizontal line, vertical line), slope criteria for parallel and perpendicular lines, rule for equality of two functions, rules for finding the y-intercepts and x-intercept(s) of a function, test for y-axis symmetry of the graph of a function, test for origin symmetry of the graph of a function
<table>
<thead>
<tr>
<th>Date</th>
<th>Section</th>
<th>Critical Ideas</th>
<th>Terms/Definitions</th>
<th>Facts/Rules/Theorems</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Jan</td>
<td>1.4</td>
<td>inverse functions, criteria for existence of an inverse f^{-1}, graph of f^{-1}, inverse trigonometric functions, inverse trigonometric identities</td>
<td>inverse of f, one-to-one function, horizontal line test, strictly increasing, strictly decreasing, strictly monotonic, reference triangle</td>
<td>theorem a strictly monotonic function has an inverse, procedure for finding the graph of the inverse of a function, graphs of $\sin^{-1} x$, $\tan^{-1} x$, inversion formulas for trigonometric functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Jan</td>
<td>2.1</td>
<td>informal computation of limits, one-sided limits, limits that do not exist, formal definition of a limit</td>
<td>limit of a function, right-hand limit, left-hand limit, diverge, tend to infinity, divergence by oscillation, epsilon-delta definition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29 Jan</td>
<td>2.2</td>
<td>computations with limits, using algebra to find limits, limits of piecewise-defined functions, two special trigonometric limits</td>
<td>squeeze rule</td>
<td>basic properties and rules for limits (constant rule, limit of x rule, multiple rule, sum rule, difference rule, product rule, quotient rule, power rule), theorem limit of a polynomial function, theorem limit of a rational function (where defined), theorem limits of trigonometric functions (where defined), theorem special limits ($\lim_{x \to 0} \frac{\sin x}{x} = 1$, $\lim_{x \to 0} \frac{\cos x - 1}{x} = 0$)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
03 Feb 2.3
Critical Ideas
- intuitive notion of continuity, definition of continuity, continuity theorems, continuity on an interval, the intermediate value theorem

Terms/Definitions
- continuous at a point \(x = c \), discontinuity, continuous from the right at \(a \), continuous from the left at \(a \), continuous on the open interval \((a, b)\), continuous on the half-open interval \([a, b)\), continuous on the half-open interval \((a, b]\), continuous on the closed interval \([a, b]\), suspicious point, intermediate value property, root

Facts/Rules/Theorems
- **Theorem** continuity theorem (polynomials, rational functions, trigonometric functions, inverse trigonometric functions are continuous (where defined)), **Theorem** properties of continuous functions (scalar multiples, sums and differences, products, quotients (where defined), compositions (where defined) of continuous functions are again continuous functions), **Theorem** intermediate value theorem, **Theorem** root location theorem

Supplementary Problems
- 2.3: every other odd 1-41

05 Feb 2.4
Critical Ideas
- exponential functions, logarithmic functions, natural exponential and logarithmic functions, continuous compounding of interest

Terms/Definitions
- completeness property, exponential function with base \(b \), logarithm of \(x \) to the base \(b \), exponent to the base \(b \), natural exponential base, natural exponential function, natural logarithm, common logarithm, continuous compounding of interest, present value, principal, interest rate, future value

Facts/Rules/Theorems
- **Theorem** properties of exponential functions (equality rule, inequality rules, product rule, quotient rule, power rules), **Theorem** properties of logarithmic functions (equality rule, inequality rules, product rule, quotient rule, power rule, inversion rules, special values), **Theorem** basic properties of natural logarithm \((\ln 1 = 0, \ln e = 1, e^{\ln x} = x)\), \(\ln e^y = y \), \(b^x = e^{\ln b} \), **Theorem** change of base \((\log_b x = \frac{\ln x}{\ln b})\)

Supplementary Problems
- 2.4: every other odd 1-61

10 Feb 3.1
Critical Ideas
- tangent lines, the derivative, relationship between the graphs of \(f \) and \(f' \), existence of derivatives, continuity and differentiability, derivative notation

Terms/Definitions
- secant line, slope of tangent line, difference quotient, derivative of \(f \), differentiate \(f \) at \(x \), \(f \) differentiable at \(x \)

Facts/Rules/Theorems
- formula for the slope of a tangent line to \(y = f(x) \) at \(x = x_0 \), formula for the derivative
of a function \(f \) at \(x \) (\(\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) \)), theorem formula for the equation of a tangent line to \(y = f(x) \) at \(x = x_0 \), theorem differentiability implies continuity,

Supplementary Problems 3.1: every other odd 5-61

12 Feb 3.2
Critical Ideas derivative of a constant function, derivative of a power function, procedural rules for finding derivatives, higher-order derivatives

Terms/Definitions first derivative of \(f \), second derivative of \(f \), third derivative of \(f \), nth derivative

Facts/Rules/Theorems theorem constant rule, theorem power rule, theorem basic procedural rules (constant multiple, sum rule, difference rule, linearity rule, product rule, quotient rule)

Supplementary Problems 3.2: every other odd 1-49

17 Feb 3.3
Critical Ideas derivatives of the sine and cosine functions, differentiation of the other trigonometric functions, derivatives of exponential and logarithmic functions

Terms/Definitions

Facts/Rules/Theorems theorem trigonometric functions \((\sin x)' = \cos x \), \((\cos x)' = -\sin x \), theorem other trigonometric functions, theorem natural exponential function \((e^x)' = e^x \), theorem natural logarithm function \((\ln x)' = \frac{1}{x} \)

Supplementary Problems 3.3: every other odd 1-53

19 Feb 3.4
Critical Ideas average and instantaneous rate of change, introduction to mathematical modeling, rectilinear motion (modeling in physics), falling body problem

Terms/Definitions average rate of change of \(y \) with respect to \(x \), instantaneous rate of change, relative rate of change, mathematical modeling, abstraction, velocity, acceleration, speed, advancing, retreating, accelerating, decelerating, position, falling body problem

Facts/Rules/Theorems

Supplementary Problems 3.4: every other odd 5-61
<table>
<thead>
<tr>
<th>Date</th>
<th>Section</th>
<th>Critical Ideas</th>
<th>Terms/Definitions</th>
<th>Facts/Rules/Theorems</th>
<th>Supplementary Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 Feb</td>
<td>3.5</td>
<td>introduction to the chain rule, extended derivative formulas, justification of the chain rule</td>
<td>horizontal tangent line</td>
<td>theorem: chain rule (([f(g(x))]' = f'(g(x))g'(x))), extended power rule (([u^n]' = n u^{n-1} u')), extended trigonometric rules, extended exponential and logarithmic rules</td>
<td>3.5: every other odd 5-61</td>
</tr>
<tr>
<td>26 Feb</td>
<td>3.6</td>
<td>general procedure for implicit differentiation, derivative formulas for the inverse trigonometric functions, logarithmic differentiation</td>
<td>explicitly defined function, implicitly defined function, implicit differentiation, logarithmic differentiation</td>
<td>theorem: differentiation rules for inverse trigonometric functions, theorem: differentiation of exponential and logarithmic functions with base (b)</td>
<td>3.6: every other odd 1-57</td>
</tr>
<tr>
<td>02 Mar</td>
<td>3.7</td>
<td>related rate problems, general situation, specific situation</td>
<td></td>
<td></td>
<td>3.7: every other odd 1-45</td>
</tr>
<tr>
<td>04 Mar</td>
<td>3.8</td>
<td>tangent line approximation, the differential, error propagation, marginal analysis in economics, the Newton-Raphson method for approximating roots</td>
<td>linear approximation, linearization, incremental approximation formula, differential of (x), differential of (y), propagation of error, error in measurement, propagated error, relative error, percentage error, marginal cost, marginal revenue, demand function</td>
<td>differential rules (linearity rule, product rule, quotient rule, power rule, trigonometric rules, exponential and logarithmic rules, inverse trigonometric rules)</td>
<td>3.8: every other odd 1-49</td>
</tr>
<tr>
<td>Date</td>
<td>Section</td>
<td>Critical Ideas</td>
<td>Terms/Definitions</td>
<td>Facts/Rules/Theorems</td>
<td>Supplementary Problems</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>09 Mar</td>
<td>4.1</td>
<td>extreme value theorem, relative extrema, absolute extrema, optimization</td>
<td>optimization problems, absolute maximum, absolute minimum, absolute extrema, extreme values, relative maximum, relative minimum, relative extrema, critical number of (f), critical point on the graph of (f)</td>
<td>theorem extreme value of a continuous function on ([a,b]), theorem critical number theorem</td>
<td>4.1: every other odd 1-13; every other odd 21-57</td>
</tr>
<tr>
<td>11 Mar</td>
<td>4.2</td>
<td>Rolle’s theorem, statement and proof of the mean value theorem, the zero-derivative theorem</td>
<td></td>
<td>theorem Rolle’s theorem, theorem mean value theorem, theorem zero-derivative theorem, theorem constant difference theorem</td>
<td>4.2: every other odd 5-41</td>
</tr>
<tr>
<td>23 Mar</td>
<td>4.3</td>
<td>increasing and decreasing functions, the first-derivative test, concavity and inflection points, the second derivative test, curve sketching using the first and second derivatives</td>
<td>strictly increasing on an interval, strictly decreasing on an interval, monotonic, relative maximum, relative minimum, not an extremum, concave up, concave down, inflection point of a graph, second-order critical number, first-order critical number, diminishing returns</td>
<td>theorem monotone function theorem, first derivative test, second derivative test</td>
<td>4.3: every other odd 5-49</td>
</tr>
<tr>
<td>25 Mar</td>
<td>4.4</td>
<td>limits to infinity, infinite limits, graphs with asymptotes, vertical tangents and cusps, a general graphing strategy</td>
<td>limits to infinity, infinite limits, vertical asymptote, horizontal asymptote, vertical tangent, cusp, extent, symmetry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
30 Mar **4.5**

Critical Ideas

- a rule to evaluate indeterminate forms, indeterminate forms $0/0$ and $4/4$, other indeterminate forms, special limits involving e^x and $\ln x$

Terms/Definitions

- indeterminate forms

Facts/Rules/Theorems

- **Theorem** l’Hôpital’s rule ($0/0$, $4/4$), other indeterminate forms (1^4, $0\quad 4$, 0^0, 4^{-4}), **Theorem** limits involving exponentials and logarithms ($\lim_{x \to 0} \frac{\ln x}{x^n} = -\infty$, $\lim_{x \to 0} \frac{\ln x}{x^n} = 0$, $\lim_{x \to 0} \frac{e^{kx}}{x^n} = \infty$)

Supplementary Problems

- **4.5**: every other odd 1-53

01 Apr **4.6**

Critical Ideas

- optimization procedure, Fermat’s principle of optics and Snell’s law

Terms/Definitions

- optimization problems, optimization, evt convention, Fermat’s principle of optics, Snell’s law of refraction, relative index of refraction

Facts/Rules/Theorems

Supplementary Problems

- **4.6**: 7, 9, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 24, 26

06 Apr **4.7**

Critical Ideas

- economics: maximizing profit and marginal analysis, business management: an inventory model and optimal holding time, physiology: concentration of a drug in the bloodstream and optimal angle for vascular branching

Terms/Definitions

- discrete functions, marginal analysis, demand function, total revenue, total profit, marginal cost, marginal revenue, average cost, Poiseuille’s resistance to flow law

Facts/Rules/Theorems

Supplementary Problems

- **4.7**: every other odd 1-29

08 Apr **5.1**

Critical Ideas

- reversing differentiation, antiderivative notation, antidifferentiation formulas,
applications, area as an antiderivative

Terms/Definitions
antiderivative, slope field, direction field, indefinite integral of \(f \), indefinite integration, constant of integration, area function

Facts/Rules/Theorems
theorem any two antiderivatives of a function differ by a constant, **theorem** basic integration rules [constant multiple rule, sum rule, difference rule, linearity rule, constant rule (\(\int 0 \, du = 0 + c \)), power rule (\(\int u^n \, du = \frac{u^{n+1}}{n+1} + c, \ n \neq -1 \)), exponential rule (\(\int e^u \, du = e^u + c \)), logarithm rule, (\(\int \frac{1}{u} \, du = \ln |u| + c \)), trigonometric rules, inverse trigonometric rules], **theorem** area as an antiderivative

Supplementary Problems
5.1: odd 1-29; odd 41-51

13 Apr 5.2
Critical Ideas
area as the limit of a sum, the general approximation scheme, summation notation, area using summation notation

Terms/Definitions
summation notation, sigma notation, index of summation, dummy variable

Facts/Rules/Theorems
theorem basic rules for summation (constant term rule, sum rule, scalar multiple rule, linearity rule, dominance rule)

Supplementary Problems
5.2: odd 1-27; odd 39-43

15 Apr 5.3
Critical Ideas
Riemann sums, the definite integral, area as an integral, properties of the definite integral, distance as an integral

Terms/Definitions
partition, Riemann sum, norm of partition, regular partition, \(f \) is integrable on \([a,b]\), definite integral of \(f \) from \(a \) to \(b \), integrand, interval of integration, lower limit of integration, upper limit of integration, total distance traveled, net distance, net displacement

Facts/Rules/Theorems
theorem integrability of a continuous function \(f \) on \([a,b]\), **theorem** properties of definite integrals (linearity rule, dominance rule, subdivision rule)

Supplementary Problems
5.3: odd 1-29

20 Apr 5.4/5.5
Critical Ideas
the first fundamental theorem of calculus, the second fundamental theorem of calculus, substitution with indefinite integrals, substitution with definite integrals
Terms/Definitions
dummy variable

Facts/Rules/Theorems

Theorem: the first fundamental theorem of calculus

\[\int_a^b f(x) \, dx = F(b) - F(a) \]

Theorem: the second fundamental theorem of calculus

[let \(G(x) = \int_a^x f(t) \, dt \) for \(x \in [a,b] \), then \(G'(x) = f(x) \)]

Supplementary Problems

5.4: every other odd 1-57; 5.5: every other odd 1-41

22 Apr 5.6
Critical Ideas

introduction and terminology, direction fields, separable differential equations, modeling exponential growth and decay, orthogonal trajectories, modeling fluid flow through an orifice, modeling the motion of a projectile: escape velocity

Terms/Definitions
differential equation, solution, general solution, solved, slope field, direction field, separable, exponential change, growth, decay, carbon dating, orthogonal trajectory, isotherms, velocity potential curves, escape velocity

Facts/Rules/Theorems

Supplementary Problems

5.6: every other odd 1-33; odd 43-51

27 Apr 5.7
Critical Ideas

mean value theorem for integrals, modeling average value of a function

Terms/Definitions

average value, trapezoid rule, Simpson’s rule, natural logarithm, inversion formulas

Facts/Rules/Theorems

Theorem: mean value theorem for integrals

\[\frac{1}{b-a} \int_a^b f(x) \, dx = f(c) \quad (b-a) \text{ for some } c \in (a,b) \]

Supplementary Problems

5.7: every other odd 1-33

29 Apr 5.8/5.9
Critical Ideas

approximation by rectangles, trapezoid rule, Simpson’s rule, error estimation, natural logarithm as an integral, geometric interpretation, the natural exponential function

Terms/Definitions

Facts/Rules/Theorems

trapezoid rule, Simpson’s rule, error estimate in trapezoid rule \(|E| \leq \frac{(b-a)^3}{12n^2} M \)
error estimate in Simpson’s rule (\(| E \leq \frac{(b-a)^5}{180n^4} K \)), **theorem** properties of natural logarithm function defined as \(\ln x = \int_1^x \frac{1}{t} \, dt \), properties of exponential function defined as inverse of natural logarithm function

Supplementary Problems
5.8: odd 1-25; **5.9:** 2, 3