1. Let \(f(x) = 4 + \frac{2x}{x^2 + 3} \). Find and identify each of the following (if they exist):

a. domain of \(f \)
b. intercepts of \(f \)
c. local maximum points of the graph of \(f \)
d. local minimum points of the graph of \(f \)
e. intervals on which the graph of \(f \) is increasing
f. intervals on which the graph of \(f \) is decreasing
g. intervals on which the graph of \(f \) is concave up
h. intervals on which the graph of \(f \) is concave down
i. inflection points of the graph of \(f \)
j. vertical asymptotes to the graph of \(f \)
k. horizontal asymptotes to the graph of \(f \)

Then, incorporating all of the above information into a sketch the graph of \(f \).

2. Do four (4) of the following: Find the following limits (if they exist):

a. \(\lim_{x \to \infty} \frac{(3x - 5)(x + 6)}{(2x + 4)(2x + 1)} \)

b. \(\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} \)

c. \(\lim_{x \to 0} \frac{x^2}{\sin x} \)

d. \(\lim_{x \to 0} x \ln \frac{1}{2x} \)

e. \(\lim_{x \to 0} \frac{1}{\sin x} - \frac{1}{\tan x} \)

3. Find the area the largest rectangle, with base on the \(x \)-axis, which can be inscribed inside the triangle with vertices \((-8,0), (8,0), (0,4)\). See picture.

4. Westel Corporation manufactures telephones and has developed a new cellular phone. Production analysis show that its price must not be set at less than $70. Also, if \(x \) units are sold, then the optimal price is given by the formula \(p(x) = 200 - x \). The total cost for producing \(x \) units is given by the formula \(C(x) = 2500 + 50x \). Find the maximum profit and determine the price that should be charge to achieve that profit.
5. Do four (4) of the following: Find the following indefinite integrals:

a. \[\int (3 + 4x) \, dx \]

b. \[\int \sin x \, dx \]

b. \[\int \sqrt{x} \left(1 - \frac{1}{x^3}\right) \, dx \]

d. \[\int \left(\frac{4}{\sqrt{x}} + \frac{4}{\sqrt{1-x^2}}\right) \, dx \]

e. \[\int (4 + 3x)^2 \, dx \]