Chapter 1

Setting the stage

1.1 Euclidean spaces and vectors

Let \(n \) be a natural number, i.e. \(n = 1, 2, 3, \ldots \). The \(n \)-dimensional Euclidean space is the set of ordered \(n \)-tuples of real numbers. We denote this space by \(\mathbb{R}^n \). Then

\[
\mathbb{R}^n = \{ x = (x_1, x_2, \ldots, x_n) : x_1, x_2, \ldots, x_n \in \mathbb{R} \},
\]

where \(\mathbb{R} \) denotes the set of real numbers. In fact, \(\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \) the Cartesian product of \(\mathbb{R} \). Each element in \(x = (x_1, x_2, \ldots, x_n) \) is called a vector with components \(x_1, x_2, \ldots, x_n \). Other notations for vectors can be bold letters \(\mathbf{x} \) or underlined letters \(\underline{x} \); however we will not use these in this note.

The zero vector of \(\mathbb{R}^n \) is simply \(0 = (0, 0, \ldots, 0) \).

Let \(x = (x_1, x_2, \ldots, x_n) \), \(y = (y_1, y_2, \ldots, y_n) \) be two vectors in \(\mathbb{R}^n \) and \(c \in \mathbb{R} \). We define the following operations:

- **Addition:** \(x + y = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \),
- **Scalar product:** \(cx = (cx_1, cx_2, \ldots, cx_n) \),
- **Dot product:** \(x \cdot y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n \),

The norm (or the length) of \(x \) is

\[
|x| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}.
\]
Denote \(-x = (-1)x = (-x_1, -x_2, \ldots, -x_n)\).

Some immediate properties:

\[
x + y = y + x, (x+y) + z = x + (y+z), c(x+y) = cx+cy, x + (-x) = 0,
\]

(1.3)

\[
|cx| = |c||x|, |−x| = |x|.
\]

(1.4)

Proposition 1.1 (Cauchy-Schwarz’s inequality). For any \(a, b \in \mathbb{R}^n\),

\[
|a \cdot b| \leq |a||b|.
\]

(1.5)

Proof. See text, p.5.

\(\square\)

Example 1.2. For \(n = 2, a = (a_1, a_2), b = (b_1, b_2) \in \mathbb{R}^2\), we have

\[
|a_1b_1 + a_2b_2| \leq \sqrt{a_1^2 + a_2^2} \sqrt{b_1^2 + b_2^2}.
\]

(1.6)

For \(n = 3, a = (a_1, a_2, a_3), b = (b_1, b_2, b_3) \in \mathbb{R}^3\), we have

\[
|a_1b_1 + a_2b_2 + a_3b_3| \leq \sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}.
\]

(1.7)

Proposition 1.3 (The triangle inequality). For any \(a, b \in \mathbb{R}^n\),

\[
|a + b| \leq |a| + |b|.
\]

(1.8)

Consequently,

\[
|a - b| \geq | |a| - |b| |.
\]

(1.9)

Corollary 1.4. For any \(x, y, z \in \mathbb{R}^n\),

\[
|x - y| \leq |x - z| + |z - y|.
\]

(1.10)

\[
|x| \geq | |y| - |x - y| |.
\]

(1.11)

Relation between the norm of \(x\) and that of its components: Let \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n\) and \(M = \max\{|x_1|, |x_2|, \ldots, |x_n|\};\) then

\[
M \leq |x| \leq \sqrt{n}M.
\]

(1.12)
1.2 Subsets of Euclidean space

Let $a \in \mathbb{R}^n$ and $r > 0$. The (open) ball $B(r, a)$ is the set of all points whose distance to a is less than r,

$$B(r, a) = \{x \in \mathbb{R}^n : |x - a| < r\}. \quad (1.13)$$

We can also define the closed ball

$$B'(r, a) = \{x \in \mathbb{R}^n : |x - a| \leq r\}. \quad (1.14)$$

Let S be a subset of \mathbb{R}^n. Then the complement of S in \mathbb{R}^n is S^c, the set of all points in \mathbb{R}^n that are not in S:

$$S^c = \mathbb{R}^n \setminus S = \{x \in \mathbb{R}^n : x \notin S\}. \quad (1.15)$$

Example 1.5. If $S = B(r, a)$, then $S^c = \{x \in \mathbb{R}^n : |x - a| \geq r\}$. If $S = B'(r, a)$, then $S^c = \{x \in \mathbb{R}^n : |x - a| > r\}$.

Definition 1.6. Let S be a subset of \mathbb{R}^n and $x \in \mathbb{R}^n$.

x is called an interior point of S if there is $r > 0$ such that $B(r, x) \subset S$.

We denote the set of interior points of S by S^{int}:

$$S^{\text{int}} = \{x \in \mathbb{R}^n : \exists r > 0, B(r, x) \subset S\}. \quad (1.16)$$

x is called a boundary point of S every ball centered at x intersect both S and S^c, i.e.,

$$\forall r > 0, B(r, x) \cap S \neq \emptyset \text{ and } B(r, x) \cap S^c \neq \emptyset. \quad (1.17)$$

We denote by ∂S the set of all boundary points of S called the boundary of S:

$$\partial S = \{x \in \mathbb{R}^n : \forall r > 0, B(r, x) \cap S \neq \emptyset \text{ and } B(r, x) \cap S^c \neq \emptyset\}. \quad (1.18)$$

The closure of S is $\bar{S} = S \cup \partial S$.

S is a neighborhood of x if x is an interior point of S.

Definition 1.7. Let S be a subset of \mathbb{R}^n.

S is called open if it contains none of its boundary points: $S \cap \partial S = \emptyset$.

S is called closed if it contains all of its boundary points: $\partial S \subset S$.

Note: \mathbb{R}^n and the empty set \emptyset are both open and closed.

Two sets A and B are said to be disjoint if $A \cap B = \emptyset$.

Proposition 1.8. Let S be a subset of \mathbb{R}^n. Then

a. S and its complement S^c have the same boundary: $\partial S = \partial (S^c)$.

b. $S^{\text{int}}, \partial S, (S^c)^{\text{int}}$ are mutually disjoint, i.e., $S^{\text{int}} \cap \partial S, (S^c)^{\text{int}} \cap S^{\text{int}}, \partial S \cap (S^c)^{\text{int}}$ are empty sets.

c. $\mathbb{R}^n = S^{\text{int}} \cup \partial S \cup (S^c)^{\text{int}}$.

Consequently, every point $x \in \mathbb{R}^n$ belongs to exactly one of the following sets $S^{\text{int}}, \partial S, (S^c)^{\text{int}}$.

We also have $S \subset S^{\text{int}} \cup \partial S$, hence $\bar{S} = S^{\text{int}} \cup \partial S$, therefore

Proposition 1.9. $(\bar{S})^c = (S^c)^{\text{int}}$.

Proposition 1.10. Suppose $S \subset \mathbb{R}^n$.

a. S is open \iff every point of S is an interior point of S \iff $S = S^{\text{int}}$.

b. S is closed \iff S^c is open.

Proposition 1.11. (i) If S_1 and S_2 are both open (or closed), so are $S_1 \cup S_2$ and $S_1 \cap S_2$.

(ii) If $\{S_\alpha\}_{\alpha \in I}$ is a family of open sets, then $\bigcup_{\alpha \in I} S_\alpha$ is open.

(iii) If $\{S_\alpha\}_{\alpha \in I}$ is a family of closed sets, then $\bigcap_{\alpha \in I} S_\alpha$ is closed.
1.3 Limits and continuity

Let n and k be two natural numbers. Let f be a function from \mathbb{R}^n to \mathbb{R}^k, $a \in \mathbb{R}^n$ and $L \in \mathbb{R}^k$. We say the limit of $f(x)$ as x approaches a is L if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}^n : 0 < |x - a| < \delta \implies |f(x) - L| < \varepsilon.$$ \hspace{1cm} (1.19)

Notation:

$$\lim_{x \to a} f(x) = L.$$ \hspace{1cm} (1.20)

Proposition 1.12. The limit $\lim_{x \to a} f(x)$, if exists, is unique.

Some equivalent statements of (1.19):

- If $a = (a_1, a_2, \ldots, a_n)$, then we have $\lim_{x \to a} f(x) = L$ if and only if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : 0 < |x - a| < \max\{|x_1 - a_1|, |x_2 - a_2|, \ldots, |x_n - a_n|\} < \delta \implies |f(x) - L| < \varepsilon.$$ \hspace{1cm} (1.21)

- If $f = (f_1, f_2, \ldots, f_k)$ and $L = (L_1, L_2, \ldots, L_k)$, where each f_j is a function from \mathbb{R}^n to \mathbb{R} then

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a} f_j(x) = L_j \text{ for all } j = 1, 2, \ldots, k.$$ \hspace{1cm} (1.22)

Example 1.13. See text, p. 14, 15.

Proposition 1.14. Let $f, g: \mathbb{R}^n \to \mathbb{R}^m$, $a \in \mathbb{R}^n$ and

$$\lim_{x \to a} f(x) = L, \quad \lim_{x \to a} g(x) = K.$$ \hspace{1cm} (1.23)

Then

(i) $\lim_{x \to a} (f + g)(x) = L + K$.

In the case $m = 1$, we have

(ii) $\lim_{x \to a} (fg)(x) = LK$.

(iii) If $L \neq 0$, then

$$\lim_{x \to a} \frac{g(x)}{f(x)} = \frac{K}{L}.$$
Remark 1.15. We have
\[
\lim_{x \to a} = L \text{ if and only if } \lim_{x \to a} |f(x) - L| = 0. \tag{1.24}
\]
When \(L = 0\), it becomes
\[
\lim_{x \to a} f(x) = 0 \text{ if and only if } \lim_{x \to a} |f(x)| = 0. \tag{1.25}
\]

Proposition 1.16 ("squeezing property"). Let \(f, g, h : \mathbb{R}^n \to \mathbb{R}\) satisfying \(g(x) \leq f(x) \leq h(x)\) for all \(x \in \mathbb{R}^n\). Suppose \(a \in \mathbb{R}^n\) and
\[
\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L \in \mathbb{R}^m.
\]
Then \(\lim_{x \to a} f(x) = L\).

Proposition 1.17. Let \(f : \mathbb{R}^n \to \mathbb{R}, a \in \mathbb{R}^n\) and \(\lim_{x \to a} f(x) = L\).

(i) If \(f(x) \leq M\) for all \(x \in B(r, a)\) for some \(r > 0\) then \(L \leq M\).

(ii) If \(f(x) \geq m\) for all \(x \in B(r, a)\) for some \(r > 0\) then \(L \geq m\).

Definition 1.18. Let \(a \in \mathbb{R}^n\), we say \(f\) is continuous at \(a\) if
\[
\lim_{x \to a} f(x) = f(a), \tag{1.26}
\]
equivalently,
\[
\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R}^n : |x - a| < \delta \implies |f(x) - L| < \varepsilon. \tag{1.27}
\]

Let \(U\) be a subset of \(\mathbb{R}^n\). We say \(f\) is continuous on \(U\) if \(f\) is continuous at every point \(a\) of \(U\).

Proposition 1.19. Let \(U \subset \mathbb{R}^n\) and \(f, g : \mathbb{R}^n \to \mathbb{R}^m\) be continuous on \(U\). Then \((f + g)\) and \((f \cdot g)\) are continuous on \(U\).

In the case \(m = 1\), we have \((fg)\) is continuous on \(U\) and \((f/g)\) is continuous on \(V = U \setminus g^{-1}(\{0\}) = \{x \in U : g(x) \neq 0\}\).

Theorem 1.20. Let \(f : \mathbb{R}^n \to \mathbb{R}^k, g : \mathbb{R}^k \to \mathbb{R}^m,\) and \(U \subset \mathbb{R}^n\). If \(f\) is continuous on \(U\) and \(g\) is continuous on \(f(U)\) then \(g \circ f\) is continuous on \(U\).

Theorem 1.21. Let \(f : \mathbb{R}^n \to \mathbb{R}^m\) be continuous and \(U\) be a subset of \(\mathbb{R}^m\). If \(U\) is open (resp. closed), then \(f^{-1}(U)\) is open (resp. closed).
1.4 Sequences

Let A be a non-empty set. A sequence in A is a function $f : \mathbb{N} \to A$, that is, for all $k \in \mathbb{N}$, $x_k = f(k) \in A$. Notation $\{x_k\}$, $\{x_k\}_1^\infty$, $\{x_k\}_{k=1}^\infty$, . . .

Definition 1.22. Let $\{x_k\}$ be a sequence in \mathbb{R}^n and $L \in \mathbb{R}^n$. We say $\{x_k\}$ converges to the limit L if

$$\forall \varepsilon > 0, \exists K \in \mathbb{N}, \forall k \in \mathbb{N} : k > K \implies |x_k - L| < \varepsilon.$$ \hspace{1cm} (1.28)

Notation:

$$\lim_{k \to \infty} x_k = L.$$

In this case, we say the sequence is *convergent*, otherwise the sequence is *divergent*.

In the case $m = 1$ we have the following two definitions

$$\lim_{k \to \infty} x_k = \infty \iff \forall M > 0, \exists K \in \mathbb{N}, \forall k \in \mathbb{N} : k > K \implies x_k > M,$$ \hspace{1cm} (1.29)

$$\lim_{k \to \infty} x_k = -\infty \iff \forall M > 0, \exists K \in \mathbb{N}, \forall k \in \mathbb{N} : k > K \implies x_k < -M.$$ \hspace{1cm} (1.30)

If $\lim_{k \to \infty} x_k = \infty$ or $-\infty$ then $\{x_k\}$ is divergent.

Limits of sequences have similar properties to those of limits of functions.

Theorem 1.23. Suppose $S \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$. Then x belongs to the closure of S if and only if there is a sequence in S converging to x.

Corollary 1.24. Let S be a subset of \mathbb{R}^n. Then S is closed if and only if for every sequence $\{x_k\}$ in S which converges to $a \in \mathbb{R}^n$, we have $a \in S$.

Theorem 1.25. Let $S \subset \mathbb{R}^n$, $f : S \to \mathbb{R}^m$ and $a \in S$. Then the following are equivalent

a. f is continuous at a.

b. For any sequence $\{x_k\}$ in S that converges to a, the sequence $\{f(x_k)\}$ converges to $f(a)$.
Let \(\{x_k\}_{k=1}^\infty \) be a sequence. Let \(k_j \) be a strictly increasing function from \(\mathbb{N} \) to \(\mathbb{N} \), that is, \(k_j \in \mathbb{N} \) for all \(j \in \mathbb{N} \) and \(k_j > k_l \) whenever \(j > l \). Note that the latter property is equivalent to \(k_{j+1} > k_j \) for all \(j \in \mathbb{N} \). Then the sequence \(\{x_{k_j}\}_{j=1}^\infty \) is called a subsequence of \(\{x_k\} \).

Lemma 1.26. Let \(k_j \) be a strictly increasing function from \(\mathbb{N} \) to \(\mathbb{N} \). Then \(k_j \geq j \) for all \(j \in \mathbb{N} \).

Proposition 1.27. Let \(\{x_k\}_{k=1}^\infty \) be a convergent sequence in \(\mathbb{R}^n \). Then any subsequence \(\{x_{k_j}\}_{j=1}^\infty \) of \(\{x_k\} \) is convergent and

\[
\lim_{j \to \infty} x_{k_j} = \lim_{k \to \infty} x_k.
\]
1.5 Complete\textit{s}e\textit{ness}

Let $S \subset \mathbb{R}$ and $c \in \mathbb{R}$.

- c is an \textit{upper bound} of S if $\forall x \in S, x \leq c$.

- S is said to be \textit{bounded (from) above} if it has an upper bound.

- c is a \textit{lower bound} of S if $\forall x \in S, x \geq c$.

- S is said to be \textit{bounded (from) below} if it has a lower bound.

- We say S is \textit{bounded} if it is bounded above and below, equivalently there are $m, M \in \mathbb{R}$ such that $m \leq x \leq M$ for all $x \in S$, or equivalently, there is $C > 0$ such that $|x| \leq C$ for all $x \in S$.

- A \textit{least upper bound} of S, called $\sup S$, is an upper bound of S and is smallest among the all upper bounds of S.

- A \textit{greatest lower bound} of S, called $\inf S$, is a lower bound of S and is largest among the all lower bounds of S.

Note that if $\sup S$ (or $\inf S$) exists then it is unique.

Let $A \subset B \subset \mathbb{R}$. Then

$$\sup A \leq \sup B, \quad \inf B \leq \inf A.$$ \hfill (1.31)

Let $A \subset \mathbb{R}$. Let $B = \{-x : x \in A\}$. If $\sup A$ (resp. $\inf A$) exists then

$$\inf B = -\sup A \quad (\text{resp. } \sup B = -\inf A).$$ \hfill (1.32)

\textbf{Proposition 1.28.} Let $S \subset \mathbb{R}$. Then

$$a = \sup S \iff \begin{cases} (i) \ \forall x \in S, x \leq a, \\ (ii) \ \forall \varepsilon > 0, \exists x_0 \in S : a - \varepsilon < x_0. \end{cases}$$

$$a = \inf S \iff \begin{cases} (i) \ \forall x \in S, x \geq a, \\ (ii) \ \forall \varepsilon > 0, \exists x_0 \in S : x_0 < a + \varepsilon. \end{cases}$$
Remark 1.29. From Proposition 1.28 we see that if \(a = \sup S \) or \(a = \inf S \) then there is a sequence in \(S \) converging to \(a \).

The Completeness Axiom. Let \(S \) be a non-empty subset of \(\mathbb{R} \) which is bounded above, then \(\sup S \) exists.

Corollary 1.30. Let \(S \) be a non-empty subset of \(\mathbb{R} \) which is bounded below, then \(\inf S \) exists.

Definition 1.31. Let \(\{ x_k \} \) be a sequence in \(\mathbb{R} \).

- \(\{ x_k \} \) is increasing if \(x_k \geq x_j \) whenever \(k > j \), or equivalently, \(x_{k+1} \geq x_k \) for all \(k \).

- \(\{ x_k \} \) is decreasing if \(x_k \leq x_j \) whenever \(k > j \), or equivalently, \(x_{k+1} \leq x_k \) for all \(k \).

- \(\{ x_k \} \) is monotone if it is increasing or decreasing.

- \(\{ x_k \} \) is bounded above if the set \(\{ x_k : k \in \mathbb{N} \} \) is bounded above, that is, there is \(M \in \mathbb{R} \) such that \(x_k \leq M \) for all \(k \).

- \(\{ x_k \} \) is bounded below if the set \(\{ x_k : k \in \mathbb{N} \} \) is bounded below, that is, there is \(m \in \mathbb{R} \) such that \(x_k \geq m \) for all \(k \).

- \(\{ x_k \} \) if bounded if it is bounded above and below, equivalently, there is \(C > 0 \) such that \(|x_k| < C \) for all \(k \).

Theorem 1.32. Every bounded monotone sequence in \(\mathbb{R} \) is convergent. More precisely,

(i) If \(\{ x_k \} \) is increasing and bounded above then

\[
\lim_{k \to \infty} x_k = \sup \{ x_k : k \in \mathbb{N} \}. \tag{1.33}
\]

(ii) If \(\{ x_k \} \) is decreasing and bounded below then

\[
\lim_{k \to \infty} x_k = \inf \{ x_k : k \in \mathbb{N} \}. \tag{1.34}
\]
1.5. COMPLETENESS

Theorem 1.33 (The nested interval theorem). Let \(I_k = [a_k, b_k] \) for \(k \in \mathbb{N} \), \(a_k, b_k \in \mathbb{R}, a_k \leq b_k \), be a sequence of intervals that satisfy

(a) \(I_1 \supset I_2 \supset I_3 \supset \ldots \), that is, \(I_k \supset I_{k+1} \) for all \(k \).

(b) \(\lim_{k \to \infty} (b_k - a_k) = 0 \).

Then \(\bigcap_{k=1}^{\infty} I_k = \{c\} \) for some \(c \in \mathbb{R} \).

Using the nested interval theorem, we can prove

Theorem 1.34. Every bounded sequence in \(\mathbb{R} \) has a convergent subsequence.

As a consequence, we have

Theorem 1.35. Every bounded sequence in \(\mathbb{R}^n \) has a convergent subsequence.

Proposition 1.36. Let \(\{x_k\} \) be a convergent sequence in \(\mathbb{R}^n \). Then

(a) \(\{x_k\} \) is bounded.

(b) roughly speaking, \((x_k - x_j) \to 0 \) as \(k, j \to \infty \); more precisely,

\[
\forall \varepsilon > 0, \exists K \in \mathbb{N}, \forall k \in \mathbb{N}, \forall j \in \mathbb{N} : [(k > K) \land (j > K)] \implies |x_k - x_j| < \varepsilon.
\]

(1.35)

Definition 1.37. A sequence in \(\mathbb{R}^n \) is called a Cauchy sequence if it satisfies (1.35).

Proposition 1.38. Let \(\{x_k\} \) be a Cauchy sequence in \(\mathbb{R}^n \). Then it is bounded.

If, in addition, it has a convergent subsequence \(\{x_{k_j}\}_{j=1}^{\infty} \) then \(\{x_k\} \) itself is convergent and \(\lim_{k \to \infty} x_k = \lim_{j \to \infty} x_{k_j} \).

Combining Theorem 1.35, Propositions 1.36 and 1.38, we obtain

Theorem 1.39. A sequence in \(\mathbb{R}^n \) is convergent if and only if it is Cauchy.
1.6 Compactness

Definition 1.40. A subset in \mathbb{R}^n is called *compact* if it is closed and bounded.

Theorem 1.41 (The Bozano-Weierstrass Theorem). Let S be a subset of \mathbb{R}^n. Then the following are equivalent

(a) S is compact

(b) Every sequence in S has a subsequence converging to a point which belongs to S.

The relation between compact sets and continuous functions:

Theorem 1.42. Let $S \subset \mathbb{R}^n$ be compact and $f : S \to \mathbb{R}^m$ be continuous. Then $f(S)$ is compact (as a subset of \mathbb{R}^m).

Corollary 1.43. Let $S \subset \mathbb{R}^n$ be compact and $f : S \to \mathbb{R}^m$ be continuous.

Definition 1.44. Let $S \subset \mathbb{R}^n$, $f : S \to \mathbb{R}$, and $a \in S$.

- $f(a)$ is the *maximum* (largest value) of f on S if $f(a) \geq f(x)$ for all $x \in S$.
- $f(a)$ is the *minimum* (smallest value) of f on S if $f(a) \leq f(x)$ for all $x \in S$.

Theorem 1.45 (The Extreme Value Theorem). Let $S \subset \mathbb{R}^n$ be compact and $f : S \to \mathbb{R}^m$ be continuous. Then there are $a, b \in S$ such that $f(a)$ is the maximum value of f on S and $f(b)$ is the minimum value of f on S.
1.7. CONNECTEDNESS

1.7 Connectedness

Let S be a subset of \mathbb{R}^n.

- S is disconnected if there are non-empty sets S_1 and S_2 such that

$$S = S_1 \cup S_2, \quad S_1 \cap \bar{S}_2 = \emptyset, \quad S_2 \cap \bar{S}_1 = \emptyset. \quad (1.36)$$

We call the above pair (S_1, S_2) a disconnection of S. (Note: they are not unique.)

- S is connected if it is NOT disconnected.

Theorem 1.46. The connected subsets of \mathbb{R} are the intervals, i.e.,

$$[a, b], [a, b], (a, b], (a, b), [c, \infty), (c, \infty), (\infty, c), (\infty, c].$$

Proof. Skipped (see text). \qed

Notes: S is an interval in \mathbb{R} if and only if

$$\forall x, y \in S, \forall z \in \mathbb{R} : x < z < y \implies z \in S. \quad (1.37)$$

Theorem 1.47. If $S \subset \mathbb{R}^n$ is connected and $f : S \to \mathbb{R}^m$ is continuous, then $f(S)$ is connected.

Proof. Proof by Contraposition: $f(S)$ being disconnected implies S being disconnected.

Suppose $f(S)$ is disconnected then it has a disconnection (U_1, U_2). Let $S_1 = f^{-1}(U_1) = \{x \in S : f(x) \in U_1\}$ and $S_2 = f^{-1}(U_2) = \{x \in S : f(x) \in U_1\}$. Then S_1, S_2 are not empty and $S_1 \cup S_2 = S$. Suppose $S_1 \cap \bar{S}_2 \neq \emptyset$, then there is $x_0 \in S_1 \cap \bar{S}_2$. There is a sequence $\{x_k\}$ in S_2 such that $x_k \in S_2$, $x_k \to x_0$ as $k \to \infty$. Since f is continuous at $x_0 \in S$: $\lim_{k \to \infty} f(x_k) = f(x_0)$. Note that $f(x_k) \in U_2$, then $f(x_0) \in \bar{U}_2$. But we also have $x_0 \in S_1$ which implies $f(x_0) \in U_1$, therefore $f(x_0) \in U_1 \cap \bar{U}_2$. This contradicts the fact that $U_1 \cap \bar{U}_2 = \emptyset$. Thus $S_1 \cap \bar{S}_2 = \emptyset$. Similarly, $S_2 \cap \bar{S}_1 = \emptyset$. Hence S is disconnected. \qed
Corollary 1.48 (The intermediate value theorem). Suppose S is connected and $f : S \to \mathbb{R}$ is continuous. If $a, b \in S$, $t \in \mathbb{R}$ and $f(a) < t < f(b)$, then there is $c \in S$ such that $f(c) = t$.

Proof. We have $f(S)$ is a connected subset of \mathbb{R}, hence it is an interval. Since $f(a), f(b) \in f(S)$, then we have the whole interval $[f(a), f(b)]$ is contained in $f(S)$. Therefore $t \in f(S)$, which means that there is $c \in S$ such that $t = f(c)$. \square

Definition 1.49. A set $S \subset \mathbb{R}^n$ is said to be arcwise connected (or pathwise connected) if any two points in S can be joined by a continuous curve in S, that is for any $a, y \in S$, there is a continuous function $g : [0, 1] \to S$ such that $g(0) = a$ and $g(1) = b$.

Theorem 1.50. If S is arcwise connected, then S is connected.

Proof. Let S be arcwise connected. Suppose S is disconnected. Let (S_1, S_2) be a disconnection of S. There are $a \in S_1$ and $b \in S_2$. Since S is arcwise connected there is a continuous function $f : [0, 1] \to S$ such that $f(0) = a$ and $f(1) = b$. Note that $T = f([0, 1])$ is connected. Let $T_1 = S_1 \cap T$ and $T_2 = S_2 \cap T$. Then T_1, T_2 are non-empty sets (containing a, b respectively.). We have $T_1 \cap \bar{T}_2 \subset S_1 \cap \bar{S}_2 = \emptyset$, hence $T_1 \cap \bar{T}_2 = \emptyset$. Similarly, $T_2 \cap \bar{T}_1 = \emptyset$. Therefore, T is disconnected, contradiction. Conclusion: S is connected. \square

Let $a, b, c \in S$. If there is a continuous curve in S connecting a and b, and one connecting b and c, then there is one connecting a and c (transitive relation). Indeed, let $f, g : [0, 1] \to S$ such that $f(0) = a, f(1) = b$ and $g(0) = b, g(1) = c$. Then let $h : [0, 1] \to S$,

$$h(t) = \begin{cases} f(2t) & \text{if } 0 \leq t < 1/2, \\ g(2(1-t)) & \text{if } 1/2 \leq t \leq 1. \end{cases}$$

(Verify the continuity of h at $1/2$ using left and right limits.)
Example 1.51. Balls, spheres in \(\mathbb{R}^3 \) and disks, circles in \(\mathbb{R}^2 \) are arcwise-connected, hence connected.

Example 1 p.34 in the text. In \(\mathbb{R}^2 \), let \(a = (-1,0), b = (1,0) \) and \(S_1 = B(1,a), S_2 = B(1,b) \). Let \(S = S_1 \cup S_2 \) and \(T = S_1 \cap \bar{S}_2 \). Then \(S \) is disconnected. Since every point in \(T \) can be connected to the origin \((0,0) \in T\), we have \(T \) is arcwise connected, hence connected.

Note: A connected set is not necessarily arcwise connected. See text p.37 for an example of a set in \(\mathbb{R}^2 \) which is connected but NOT arcwise-connected.

Theorem 1.52. If \(S \) is connected and open, then \(S \) is arcwise connected.

Proof. Let \(S \) be open and connected. Let \(a \) be a fixed point in \(S \). We will prove that we can connect \(a \) to any other points of \(S \), hence showing that \(S \) is arcwise connected.

Set \(S_1 = \{ x \in S : x \text{ is joined by a continuous curve in } S \} \).

Claim: \(S_1 = S \). Then \(S \) is arcwise connected.

Proof of the claim: Suppose \(S_1 \neq S \). Then \(S_2 = S \setminus S_1 \) is not empty and \(S = S_1 \cup S_2 \). Note: \(S_1 \neq \emptyset \) and \(S_1 \cap S_2 = \emptyset \). We now show that \(S_1 \cap \bar{S}_2 \) and \(S_2 \cap \bar{S}_1 \) are empty.

Let \(x \in S_1 \), \(S \) being open implies there is a ball \(B(r,x) \subset S \), \(r > 0 \). For every \(y \in B \), there is a curve from \(a \) to \(x \) then \(x \) to \(y \), hence \(y \in S_1 \). Therefore \(B(1,x) \) is a subset of \(S_1 \). Thus \(x \notin \bar{S}_2 \). We then have \(S_1 \cap \bar{S}_2 = \emptyset \).

Let \(x \in S_2 \), there is a ball \(B = B(r,x) \subset S \). Suppose \(x \in \bar{S}_1 \) then there is \(y \in B \cap S_1 \), hence we can find a continuous curve in \(S \) from \(a \) to \(y \) then \(y \) to \(x \). Thus \(x \in S_1 \), which is absurd since \(x \notin S_1 \) \((S_1 \cap S_2 = \emptyset) \). Hence \(x \notin \bar{S}_1 \), therefore \(S_2 \cap \bar{S}_1 = \emptyset \).

We have proved \((S_1,S_2)\) is a disconnection of \(S \), which is impossible since \(S \) is connected. Therefore the claim is true and the proof of the theorem is complete. \qed
1.8 Uniform continuity

Let $S \subset \mathbb{R}^n$ and $f : S \to \mathbb{R}^m$ be continuous. We have

$$\forall x \in S, \forall \varepsilon > 0, \exists \delta > 0, \forall y \in S : |y - x| < \delta \implies |f(x) - f(y)| < \varepsilon. \quad (1.38)$$

The above δ in general depends on x, ε. In some cases, δ is independent of x, then roughly speaking, the rate $f(y)$ approaches $f(x)$ as y approaches x is controlled uniformly on the whole domain S.

Definition 1.53. A function $f : S \to \mathbb{R}^m$ is uniformly continuous on S if

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in S, \forall y \in S : |y - x| < \delta \implies |f(x) - f(y)| < \varepsilon. \quad (1.39)$$

Example 1.54. The function $f(x) = x^2$ is not uniformly continuous on $(0, \infty)$. Suppose it is, let $\varepsilon > 0$, then there is $\delta > 0$ such that for any $x, y \in (0, \infty)$ and $\delta > 0$, we have

$$|y^2 - x^2| = |y - x||y + x| < \varepsilon.$$

Take $y = x + \delta$ then $2\delta x < \varepsilon$. So $\delta < \varepsilon/(2x)$ which goes to zero as x goes to infinity which is a contradiction since δ is a fixed positive number.

Example 1.55. The function $f(x) = \sin x$ is uniformly continuous on \mathbb{R}. Indeed, by the Mean Value Theorem (next chapter), $|f(x) - f(y)| = |x - y||\cos z| \leq |x - y|$, where $z \in [x, y]$ or $[y, x]$. We can take $\delta = \varepsilon$ in (1.39).

Example 1.56. The function $f(x) = x^2$ is uniformly continuous on every bounded subsets of \mathbb{R}. Suppose there is $M > 0$ such that $|x| \leq M$ for all $x \in S$. Then for any $x, y \in S$.

$$|f(x) - f(y)| = |x - y||x + y| \leq 2M|x - y|.$$

We can take $\delta = \varepsilon/(2M)$ in (1.39). *Note:* We can use the Mean Value Theorem as well.

Theorem 1.57. Suppose S is compact and $f : S \to \mathbb{R}^m$ is continuous. Then f is uniformly continuous.
1.8. **UNIFORM CONTINUITY**

Proof. By contradiction. Suppose f is not uniformly continuous, then

$$\exists \varepsilon_0 > 0, \forall \delta > 0, \exists x, y \in S : |x - y| < \delta \text{ and } |f(x) - f(y)| \geq \varepsilon_0. \quad (1.40)$$

Take $\delta = 1/k \to 0$. There are sequences $\{x_k\}, \{y_k\}$ in S such that

$$|x_k - y_k| < \frac{1}{k}, \quad |f(x_k) - f(y_k)| \geq \varepsilon_0. \quad (1.41)$$

Since S is compact, there exist convergent subsequences $\{x_{k_j}\}, \{y_{k_j}\}$ whose limits belong to S. By the first property of (1.41), we have

$$\lim_{j \to \infty} x_{k_j} = \lim_{j \to \infty} y_{k_j} = x_0 \in S.$$

Since f is continuous at x_0, $\lim_{j \to \infty} |f(x_{k_j}) - f(y_{k_j})| = |f(x_0) - f(x_0)| = 0$ which contradicts the second property in (1.41). We conclude that f must be uniformly continuous.