EXAM

Exam 3
Take Home Exam

Math 2350-02, Summer II 2008

August 1, 2008

• This is a Takehome Exam. You may discuss the problems with others, but write up your own solutions.

• If not otherwise instructed, you can use a calculator to do the integrals, but state exactly what you used the calculator to compute.

• You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).

• This exam has 8 problems. There are 360 points total.

Good luck!
Problem 1. Find the critical points of the function

\[f(x, y) = x^2 + y^3 + 6xy + 24y. \]

Classify each of the critical points as a relative maximum, relative minimum, or a saddle point.

Problem 2. Use Lagrange Multipliers to find the max and min of the function \(f(x, y) = xy + z \) on the sphere \(x^2 + y^2 + z^2 = 3 \).

Problem 3. Let \(D \) be the region in the \(xy \)-plane bounded by the curve \(y = 1 - x^2 \) and the line \(x + y = 1 \).

A. Find an interated integral for computing

\[\int \int_D y \, dA \]

where the order of integration is \(dy \, dx \) (i.e., integrate first with respect to \(y \) and then with respect to \(x \)). Don’t evaluate the integral yet.

B. Find an interated integral for computing

\[\int \int_D y \, dA \]

where the order of integration is \(dx \, dy \) (i.e., integrate first with respect to \(x \) and then with respect to \(y \)). Don’t evaluate the integral yet.

C. Evaluate one of the integrals above by hand computation.

Problem 4. Consider the iterated integral

\[\int_0^2 \int_0^{x^2} f(x, y) \, dy \, dx. \]

Sketch the region of integration and find an equivalent integral with the order of integration reversed.

Problem 5. Let \(D \) be the region in the first quadrant bounded by the coordinate axes and the circle \(x^2 + y^2 = a^2 \). Find the centroid of \(D \), and the moment of inertia of \(D \) for rotation about the \(y \)-axis.
Problem 6. Let D be the solid in the first octant bounded by the coordinate planes and the plane $2x + 2y + z = 2$.

A. Find an iterated integral for calculating the volume of D where the first integration is with respect to z. Don’t evaluate the integral yet.

B. Find an iterated integral for calculating the volume of D where the first integration is with respect to y. Don’t evaluate the integral yet.

C. Evaluate one of the integrals above by hand computation.

Problem 7. Let D be the solid bounded by the cone $z = \sqrt{x^2 + y^2}$ and the plane $z = 2$. Use cylindrical coordinates to evaluate

$$\iiint_D x^2 z \, dV.$$

Problem 8. Let D be the solid bounded by the sphere $x^2 + y^2 + z^2 = a^2$. Use spherical coordinates to evaluate the integral

$$\iiint_D z^2 \, dV.$$