This is a Take Home Exam. It is due on Wednesday, August 8, by Noon.

You must show enough work to justify your answers. Unless otherwise instructed, give exact answers, not approximations (e.g., $\sqrt{2}$, not 1.414).

You may discuss the problems with other people, but write up the solutions by yourself.

You will have to use a calculator. In particular, you can use the calculator to do matrix algebra, dot products, and find the RREF of a matrix. Say what you are computing with the calculator and give the result. If there are any questions on when it is legal to use a calculator, ask me.

This exam has 8 problems. There are 410 points total.

Good luck!
Problem 1. The matrix

\[A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \]

is invertible. Use row operations to express \(A \) as a product of elementary matrices. You can use a calculator to do the row operations, but you’ll have to show each row operation.

Problem 2. Consider the vectors

\[
\begin{align*}
\mathbf{v}_1 &= \begin{bmatrix} 2 \\ 2 \\ 1 \\ 2 \end{bmatrix}, \\
\mathbf{v}_2 &= \begin{bmatrix} -1 \\ -1 \\ 2 \\ 1 \end{bmatrix}, \\
\mathbf{v}_3 &= \begin{bmatrix} -2 \\ -3 \\ 0 \\ -3 \end{bmatrix}, \\
\mathbf{v}_4 &= \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \\
\mathbf{v}_5 &= \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix}.
\end{align*}
\]

Let \(S \subset \mathbb{R}^5 \) be defined by

\[S = \text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5). \]

A. Find a basis for \(S \). What is the dimension of \(S \)?

B. Consider the vectors

\[
\begin{align*}
\mathbf{w}_1 &= \begin{bmatrix} 9 \\ 6 \\ 1 \\ 8 \end{bmatrix}, \\
\mathbf{w}_2 &= \begin{bmatrix} 3 \\ -1 \\ -1 \\ 2 \end{bmatrix}.
\end{align*}
\]

Determine if each of these vectors is in \(S \). If the vector is in \(S \), write it as a linear combination of the basis vectors for \(S \) you found in the first part.

Problem 3. In this problem, we’re working in the vector space

\[P_3 = \{ ax^2 + bx + c \mid a, b, c \in \mathbb{R} \}, \]

the space of polynomials of degree less than three. Let \(\mathcal{U} \) be the basis of \(P_3 \) given by

\[\mathcal{U} = [x^2 \ x \ 1]. \]

Let \(T : P_3 \to P_3 \) be the linear transformation defined by

\[T(p(x)) = p'(x) + 2p(x). \]

Find \([T]_{\mathcal{U}\mathcal{U}} \), the matrix of \(T \) with respect to the basis \(\mathcal{U} \).
Problem 4. Let \(\mathcal{U} = [u_1 \ u_2] \) be the basis of \(\mathbb{R}^2 \), where
\[
\begin{align*}
 u_1 &= \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \\
 u_2 &= \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\end{align*}
\]

A. Find the change of basis matrices \(S_{\mathcal{E}\mathcal{U}} \) and \(S_{\mathcal{U}\mathcal{E}} \), where \(\mathcal{E} \) is the standard basis of \(\mathbb{R}^2 \).

B. If \(v = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \), find \([v]_{\mathcal{U}}\), the coordinates of \(v \) with respect to \(\mathcal{U} \).

C. If \([w]_{\mathcal{U}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}\), find \(w \).

D. Let \(T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be the linear transformation that satisfies
\[
\begin{align*}
 T(u_1) &= 2u_1 + 3u_2, \\
 T(u_2) &= u_1 - u_2.
\end{align*}
\]

Find \([T]_{\mathcal{U}\mathcal{U}}\), the matrix of \(T \) with respect to \(\mathcal{U} \), and \([T]_{\mathcal{E}\mathcal{E}}\), the matrix of \(T \) with respect to \(\mathcal{E} \).

Problem 5. Let
\[
 A = \begin{bmatrix} -4 & 3 \\ -2 & 3 \end{bmatrix}
\]

Find the characteristic polynomial and the eigenvalues of \(A \). (Do not find any eigenvectors.)
Problem 6. In each part, you are given a matrix A and its eigenvalues. Find a basis for each of the eigenspaces of A and determine if A is diagonalizable. If so, find a diagonal matrix D and an invertible matrix P so that $P^{-1}AP = D$.

A. The matrix is

$$A = \begin{bmatrix} 11 & -3 & -3 \\ 9 & -1 & -3 \\ 27 & -9 & -7 \end{bmatrix}$$

and the eigenvalues are -1 and 2.

B. The matrix is

$$A = \begin{bmatrix} -4 & -1 & 4 \\ -6 & -2 & 7 \\ -6 & -1 & 6 \end{bmatrix}$$

and the eigenvalues are -1 and 2.

C. The matrix is

$$A = \begin{bmatrix} -3 & 2 & 2 \\ -1 & 5 & -4 \\ -2 & 2 & 1 \end{bmatrix}$$

and the eigenvalues are -1, $2 + i$ and $2 - i$.

Problem 7. Consider the three vectors

$$v_1 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}.$$

Apply the Gram-Schmidt Process to these vectors to produce an orthonormal basis of \mathbb{R}^3.

3
Problem 8. Let S be the subspace of \mathbb{R}^4 spanned by the vectors

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}.$$

A. Find an orthonormal basis for S.

B. Find an orthonormal basis for S^\perp.

C. Determine if each of the following vectors is in S by computing inner products.

$$w_1 = \begin{bmatrix} -1 \\ -1 \\ -3 \\ 2 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 3 \\ 4 \\ 2 \\ 4 \end{bmatrix}.$$