young = age < 45
slim = bmi < 22.0
if young and slim:
 risk = 'low'
elif young and not slim:
 risk = 'medium'
elif not young and slim:
 risk = 'medium'
elif not young and not slim:
 risk = 'high'

5.5 You Learned About Booleans: True or False?

In this chapter, you learned the following:

• Python uses Boolean values, True and False, to represent what is true and what isn’t. Programs can combine these values using three operators: not, and, and or.

• Boolean operators can also be applied to numeric values. 0, 0.0, the empty string, and None are treated as False; all other numeric values and strings are treated as True. It is best to avoid applying Boolean operators to non-Boolean values.

• Relational operators such as “equals” and “less than” compare values and produce a Boolean result.

• When different operators are combined in an expression, the order of precedence from highest to lowest is arithmetic, relational, and then Boolean.

• if statements control the flow of execution. As with function definitions, the bodies of if statements are indented, as are the bodies of elif and else clauses.

5.6 Exercises

Here are some exercises for you to try on your own. Solutions are available at http://pragprog.com/titles/gwpy2/practical-programming.

1. What value does each expression produce? Verify your answers by typing the expressions into Python.
 a. True and not False
 b. True and not false (Notice the capitalization.)
 c. True or True and False
 d. not True or not False
 e. True and not 0
2. Variables x and y refer to Boolean values.
 a. Write an expression that produces True iff both variables are True.
 b. Write an expression that produces True iff x is False.
 c. Write an expression that produces True iff at least one of the variables is True.

3. Variables full and empty refer to Boolean values. Write an expression that produces True iff at most one of the variables is True.

4. You want an automatic wildlife camera to switch on if the light level is less than 0.01 lux or if the temperature is above freezing, but not if both conditions are true. (You should assume that function turn_camera_on has already been defined.)

 Your first attempt to write this is as follows:
   ```python
   if (light < 0.01) or (temperature > 0.0):
       if not ((light < 0.01) and (temperature > 0.0)):
           turn_camera_on()
   ```

 A friend says that this is an exclusive or and that you could write it more simply as follows:
   ```python
   if (light < 0.01) != (temperature > 0.0):
       turn_camera_on()
   ```

 Is your friend right? If so, explain why. If not, give values for light and temperature that will produce different results for the two fragments of code.

5. In Section 3.1, Functions That Python Provides, on page 31, we saw built-in function abs. Variable x refers to a number. Write an expression that evaluates to True if x and its absolute value are equal and evaluates to False otherwise. Assign the resulting value to a variable named result.

6. Write a function named different that has two parameters, a and b. The function should return True if a and b refer to different values and should return False otherwise.

7. Variables population and land_area refer to floats.
 a. Write an if statement that will print the population if it is less than 10,000,000.
b. Write an if statement that will print the population if it is between 10,000,000 and 35,000,000.

c. Write an if statement that will print “Densely populated” if the land density (number of people per unit of area) is greater than 100.

d. Write an if statement that will print “Densely populated” if the land density (number of people per unit of area) is greater than 100, and “Sparsely populated” otherwise.

 a. Write a `convert_temperatures(t, source, target)` function to convert temperature `t` from source units to target units, where source and target are each one of "Kelvin", "Celsius", "Fahrenheit", "Rankine", "Delisle", "Newton", "Réaumur", and "Rømer" units.

 Hint: On the Wikipedia page there are eight tables, each with two columns and seven rows. That translates to an awful lot of if statements—at least 8 * 7—because each of the eight units can be converted to the seven other units. Possibly even worse, if you decided to add another temperature scale, you would need to add at least sixteen more if statements: eight to convert from your new scale to each of the current ones and eight to convert from the current ones to your new scale.

 A better way is to choose one canonical scale, such as Celsius. Your conversion function could work in two steps: convert from the source scale to Celsius and then from Celsius to the target scale.

 b. Now if you added a new temperature scale, how many if statements would you need to add?

9. Assume we want to print a strong warning message if a pH value is below 3.0 and otherwise simply report on the acidity. We try this if statement:

   ```python
   >>> ph = 2
   >>> if ph < 7.0:
   ...     print(ph, "is acidic.")
   ...     elif ph < 3.0:
   ...         print(ph, "is VERY acidic! Be careful.")
   ...   2 is acidic.
   ```
This prints the wrong message when a pH of 2 is entered. What is the problem, and how can you fix it?

10. The following code displays a message(s) about the acidity of a solution:

```python
ph = float(input("Enter the ph level: "))
if ph < 7.0:
    print("It's acidic!")
elif ph < 4.0:
    print("It's a strong acid!")
```

a. What message(s) are displayed when the user enters 6.4?
b. What message(s) are displayed when the user enters 3.6?
c. Make a small change to one line of the code so that both messages are displayed when a value less than 4 is entered.

11. Why does the last example in Section 5.4, Remembering the Results of a Boolean Expression Evaluation, on page 92, check to see whether someone is light (that is, that person’s BMI is less than the threshold) rather than heavy? If you wanted to write the second assignment statement as heavy = bmi >= 22.0, what change(s) would you have to make to the code?