Differing Payment And Interest Conversion Periods

Example (Exercise 4.1)

Find the accumulated value 18 years after the first payment is made of an annuity on which there are 8 payments of $\$ 2,000$ each made at two-year intervals. The nominal rate of interest convertible semiannually is 7%.

Example (Exercise 4.2)

Find the present value of a ten-year annuity which pays $\$ 400$ at the beginning of each quarter for the first 5 years. increasing to $\$ 600$ per quarter thereafter. The annual effective rate of interest is 12%.

Example (Exercise 4.3)

A sum of $\$ 100$ is placed into a fund at the beginning of every other year for eight years. If the fund balance at the end of eight years is $\$ 520$, find the rate of simple interest earned by the fund.

Example (Exercise 4.4)

An annuity-immediate that pays $\$ 400$ quarterly for the next 10 years costs $\$ 10,000$. Calculate the nominal interest rate convertible monthly earned by this investment.

Example (Exercise 4.8)

The present value of a perpetuity paying 1 at the end of every three years is $125 / 91$. Find i.

Example (Exercise 4.9)

Find an expression for the present value of an annuity on which payments are $\$ 100$ per quarter for five years, just before the first payment is made, if $\delta=0.08$.

Continuous Annuity I

The payment for a continuous annuity is a continuous function $P M(t)$ while the total amount of payments is the area under the curve $P M(t)$.
To find the present and accumulated values of a continuous annuity, let's consider the present and accumulated values of the payments in a time interval $[t, t+d t]$.

Continuous Annuity II

So the present value at $t=0$ of the payments in a time interval $[t, t+d t]$ is given by $P M(t) \frac{1}{a(t)} d t$, and

$$
P V=\int_{0}^{n} \frac{P M(t)}{a(t)} d t
$$

Continuous Annuity III

The accumulated value at $t=n$ is given by

$$
F V=(P V) a(n)=a(n) \int_{0}^{n} \frac{P M(t)}{a(t)} d t
$$

The present and the accumulated values of $P M(t) \equiv 1$ (which is called "continuous payment at the rate of 1 per annum") are denoted by

$$
\bar{a}_{\bar{n}} \quad \text { and } \quad \bar{s}_{\bar{\Pi}}
$$

respectively.

Continuous Annuity IV

Let $a(t)$ be an accumulate function. Then

$$
\begin{gathered}
\bar{a}_{n \mid}=\int_{0}^{n} \frac{1}{a(t)} d t \\
\bar{s}_{\Pi \mid}=\bar{a}_{\bar{n}} a(n)=a(n) \int_{0}^{n} \frac{1}{a(t)} d t
\end{gathered}
$$

Continuous Annuity V

For compound interest with annual effective rate of interest i and the force of interest $\delta=\ln (1+i), a(t)=(1+i)^{t}=e^{\delta t}$. So

$$
\begin{gathered}
\bar{a}_{n \mid}=\int_{0}^{n} \frac{1}{(1+i)^{t}} d t=\int_{0}^{n} e^{-\delta t} d t=\frac{1-e^{-\delta n}}{\delta}=\frac{1-v^{n}}{\delta} . \\
\bar{s}_{n \mid}=\int_{0}^{n}(1+i)^{n-t} d t=\int_{0}^{n}(1+i)^{t} d t=\int_{0}^{n} e^{\delta t} d t=\frac{e^{\delta n}-1}{\delta}=\frac{u^{n}-1}{\delta} .
\end{gathered}
$$

Example (Exercise 4.17)

There is $\$ 40,000$ in a fund which is accumulating at 4% per annum convertible continuously. If money is withdrawn continuously at the rate of $\$ 2400$ per annum, how long will the fund last?

Example (Exam FM Sample Question 21)

Payments are made to an account at a continuous rate of ($8 k+t k$), where $0 \leq t \leq 10$. Interest is credited at a force of interest $\delta_{t}=\frac{1}{8+t}$. After time 10, the account is worth 20,000 .
Calculate k.

Payments Varying in Arithmetic Progression I

In this section we consider the annuities which is increasing or decreasing in a fixed amount.
Increasing Perpetuity-Immediate:
Consider the perpetuity-immediate which pays 1 at the end of the 1 st period, 2 at the end of the 2 nd period, 3 at the end of the 3 rd period, The present value is denoted by,

$$
(l a)_{\infty}
$$

Clearly

Payments Varying in Arithmetic Progression II

So

$$
\begin{aligned}
(l a)_{\infty \mid} & =a_{\infty \mid}+v a_{\infty \mid}+v^{2} a_{\infty \mid}+\cdots \\
& =a_{\infty(}\left(1+v+v^{2}+\cdots\right) \\
& =a_{ळ} \ddot{a}_{\varnothing \mid} \\
& =\frac{1}{i d} .
\end{aligned}
$$

Note that from $i=\frac{d}{v}$ and $d=\frac{i}{u}$ we have

$$
\frac{v}{d}=\frac{1}{i}, \quad \frac{u}{i}=\frac{1}{d}
$$

So

$$
u(l a)_{\varnothing \mid}=\frac{u}{i d}=\frac{1}{d^{2}}, \quad v(l a)_{\infty \mid}=\frac{v}{i d}=\frac{1}{i^{2}} .
$$

Payments Varying in Arithmetic Progression III

Payments Varying in Arithmetic Progression IV

Increasing and Decreasing Annuities:

The annuity which pays $1,2, \ldots, n$ is called increasing annuity, and its values are denoted by

$$
(l a)_{\bar{n}},(I s)_{\bar{\pi}} .
$$

which is equivalent to the perpetuities:

Payments Varying in Arithmetic Progression V

Payments Varying in Arithmetic Progression VI

which equals the payments

Therefore

Payments Varying in Arithmetic Progression VII

$$
\begin{gathered}
(l a)_{\bar{m}}=\frac{1}{i} \ddot{a}_{\bar{n}}-\frac{n}{i} v^{n} . \\
(I s)_{n \mid}=\frac{1}{i} \ddot{s}_{\vec{m}}-\frac{n}{i} .
\end{gathered}
$$

TVM solver:

N	I	PV	PMT	FV	P/Y	C/Y	E/B?
n	1		-1/i	n / i	1	1	BEG
		$\begin{gathered} \Downarrow \\ (l a)_{\bar{n}} \end{gathered}$					
N	1	PV	PMT	FV	P/Y	C/Y	E/B?
n	1	0	-1/i		1	1	BEG
				$\stackrel{\Downarrow}{A}$			
$(I s)_{\bar{n}}=A-\frac{n}{i}$							

Payments Varying in Arithmetic Progression VIII

The annuity which pays $n, n-1, \ldots, 2,1$ is called decreasing annuity, and its values are denoted by

$$
(D a)_{\bar{n} \mid},(D s)_{\bar{n}} .
$$

which is equivalent to the perpetuities:

Payments Varying in Arithmetic Progression IX

0	1	2	3	n-1	n	$\mathrm{n}+1$	$n+2$	$\begin{gathered} n+3 \\ \hline \end{gathered}$
	n	n	n	n	n	n	n	n
\underline{n}		-1	-1	-1	-1	-1	-1	-1
1	$\frac{-1}{i}$		-1	-1	-1	-1	-1	-1
		$\frac{-1}{i}$		-1	-1	-1	-1	-1
					-1	-1	-1	-1
				-1		-1	-1	-1
				i	$\frac{-1}{i}$			

Payments Varying in Arithmetic Progression X

which equals the payments

So

Payments Varying in Arithmetic Progression XI

$$
\begin{aligned}
(D a)_{\bar{m}} & =\frac{n}{i}-\frac{1}{i} a_{\bar{n}} . \\
(D s)_{)_{\bar{m}}} & =u^{n} \frac{n}{i}-\frac{1}{i} s_{n} .
\end{aligned}
$$

TVM solver:

N	I	PV	PMT	FV	P/Y	C/Y	E/B?
n	I		-1/i	0	1	1	BEG
		$\stackrel{\Downarrow}{4}$					

N	I	PV	PMT	FV	P / Y	C / Y	$\mathrm{E} / \mathrm{B} ?$
n	I	$-\mathrm{n} / \mathrm{i}$	$1 / \mathrm{i}$		1	1	BEG
				$\left(\begin{array}{l}\Downarrow \\)_{n}\end{array}\right.$			

Example (Exercise 4.24)

Find the present value of a perpetuity under which a payment of 1 is made at the end of the first year, 2 at the end of the second year, increasing until a payment of n is made at the end of the n-th year, and thereafter payments are level at n per year forever.

Example (Exercise 4.25)

A perpetuity-immediate has annual payments of $1,3,5,7, \ldots$. If the present value of the sixth and seventh payments are equal, find the present value of the perpetuity.

Example (Exercise 4.26)

If X is the present value of a perpetuity of 1 per year with the first payment at the end of the second year and $20 X$ is the present value of a series of annual payments $1,2,3, \ldots$ with the first payment at the end of the third year, find d.

Payment Varying in Geometric Progression I

Example (Exercise 4.28)

Find the present value of a 20 -year annuity with annual payments which pays $\$ 600$ immediately and each subsequent payment is 5% greater than the preceding payment. The annual effective rate of interest is 10.25%.

Payment Varying in Geometric Progression II

Example (Exercise 4.30)

Annual deposits are made into a fund at the beginning of each year for 10 years. The first 5 deposits are $\$ 1000$ each and deposits increase by 5% per year thereafter. If the fund earns 8% effective, find the accumulated value at the end of 10 years.

Payment Varying in Geometric Progression III

Example (Exercise 4.31)

A perpetuity makes payments starting five years from today. The first payment is $\$ 1000$ and each payment thereafter increases by $k \%$ per year. The present value of this perpetuity is equal to $\$ 4096$ when computed at $i=25 \%$. Find k.

Payment Varying in Geometric Progression IV

Example (Exercise 4.32)

An employee currently is aged 40 , earns $\$ 40,000$ per year, and expects to receive 3% annual raises at the end of each year for the next 25 years. The employee decides to contribute 4% of annual salary at the beginning of each year for the next 25 years into a retirement plan. How much will be available for retirement at age 65 if the fund can earn a 5% effective rate of interest?

Payment Varying in Geometric Progression V

Example (Exercise 4.33)

A series of payments is made at the beginning of each year for 20 years with the first payment being $\$ 100$. Each subsequent payment through the tenth year increases by 5% from the previous payment. After the tenth payment, each payment decreases by 5\% from the previous payment. Calculate the present value of these payments at the time the first payment is made using an annual effective rate of 7%.

Example (Exercise 4.37)

A perpetuity has payments at the end of each four-year period. The first payment at the end of four years is 1 . Each subsequent payment is 5 more than the previous payment. It is known that $v^{4}=0.75$. Calculate the present value of this perpetuity.

Example (Exercise 4.38)

A perpetuity provides payments every six months starting today. The first payment is 1 and each payment is 3% greater than the immediately preceding payment. Find the present value of the perpetuity if the effective rate of interest is 8% per annum.

Continuous Varying Annuities I

The present value of the continuous annuity $P M(t)=t$ is denoted by $(\bar{l} \bar{a})_{\bar{n}}$.

$$
(\bar{l} \bar{a})_{\bar{n} \mid}=\int_{0}^{n} t v^{t} d t
$$

Example (Exercise 4.40)

Evaluate

$$
(\bar{l} \bar{a})_{\infty}
$$

if $\delta=0.08$

Example (Exercise 4.43)

A one-year deferred continuous varying annuity is payable for 13 years. The rate of payment at time t is $t^{2}-1$ per annum, and the force of interest at time t is $\frac{1}{1+t}$. Find the present value of the annuity.

