Math 2345-Spring 2020 Business Statistics

Professor: Dr. Kathleen GilliamOffice: Math 117BEmail: kathleen.gilliam@ttu.eduOffice Hours: MWF 11:20 am to 11:50 pm and 2:00 pm to 3:30 pm

Teaching Assistants: See announcements for full details on TA's

WEB Site: <u>http://www.math.ttu.edu/~xgilliam</u> Prerequisites: Math 13xx with at least grade of C. Textbook: "Modern Business Statistics" (6e, by Anderson, Sweeney, Williams, Camm, and Cochran)

Civility in the Classroom: Students are expected to assist in maintaining a classroom environment that is conducive to learning. In order to assure that all students have an opportunity to gain from time spent in class, troublesome behavior will not be tolerated. At a minimum, this includes using cellular phones, making offensive remarks, reading newspapers, sleeping or engaging in any other form of distraction.

Honesty: Any acts of scholastic dishonesty such as cheating, plagiarism, and collusion are not allowed.

Daily Homework, On-line Homework and Quizzes: Daily Homework will be assigned from the textbook. There will be 9 in-class multiple choice quizzes and 8 on-line Homework sets based on the daily Assignments. For the quizzes, the two lowest quiz scores will be dropped and the remaining scores will be worth 15% of the final grade. For the on-line Homework, you have up to three chances to attempt the questions and the best score will be recorded. Note that the Homework deadline is at 11:59 pm of the due dates. The Homework assignment due dates are made available well in advance. You will also be reminded of these due dates as the time approaches. There is no acceptable excuse for contacting me after the due date. My advice is don't wait until the last minute to turn in the on-line Homework. The best six on-line Homework scores will be worth 10% of the final grade.

On-line Homework (MindTap):

- 1. Login to Blackboard (Allow pop-ups).
- 2. Find the course.
- 3. Follow the prompts to register your MindTap Course.

Tests: There will be three midterms and a **Comprehensive** final. For each test you need to bring an orange scantron sheet, pencils, and a calculator. Each of the three midterms will be worth 20% and the final exam will be worth 15%.

Make-up Exams and Quizzes: Requests for make-ups will be granted **ONLY** when accompanied by a letter from an appropriate university official, i.e. the Dean of Students. In all other cases, no make-up will be given, and the procedures outlined in this syllabus will be followed. **There are no exceptions to this rule.**

Grading Policies: Grades will be assigned based on your overall course average:90%-100%A80%-89.9%B70%-79.9%C60%-69.9%D59.9% and belowF

Lectures: The schedule below indicates the daily topics to be covered in class, the due dates for the dates for the exams and quizzes.

Math 2	345 Calendar (Spring 2020)	
Date	Material Covered Description	Text Readings (Homework)
Jan. 15	Introduction	Ch 1 (pg27-29: #4, #6, #8, #10)
Jan. 17	Presenting Data Part 1 (Categorical)	Ch 2.1,2.4 (pg45: #2, #4)
Jan. 22	Presenting Data Part 2 (Quantitative)	Ch 2.2, 2.3 (pg62: #14, #16)
Jan.24	About on-line Homework and Quiz 1	
Jan. 27	Measure of Location and Variability	Ch 3.1, 3.2 (pg122-123: #2, #4; pg132: #24)
Jan. 29	Distribution Shapes and Boxplot	Ch 3.3, 3.4 (pg149: #46, #48)
Jan. 31	Coefficient of Correlation	
Feb. 3	Basic Probability and Conditional Proba	bility Ch 4.2-4.4 (pg201: #22, pg208: #32)
Feb. 5	More Probabilities and Quiz 2	
Feb. 7	Discrete Random Variable and Its Appli	cations Ch 5.1-3 (pg237-238: #10, #14, #16)
Feb.10	Binomial Distribution	Ch 5.5 (pg263-265: #32, #34, #42)
Feb.12	Normal Distribution	Ch 6.2 (pg303-305: #10, #12, #18, #22)
Feb.14	Normal Distribution (Cont.) and Quiz 3	Ch 6.2
Feb.17	Summary and Review for EX1	
Feb.19	Wednesday	Exam 1 (Ch1-Ch6)
Feb.21	Sampling Distributions	Ch7.1-7.6 (pg342-343: #16, #20, #24
		pg348:#28)
Feb.24	Confidence Interval for Mean	Ch 8.1-8.2 (pg371-372: #2, #10;
		pg381: #14, #16)
Feb.26	Confidence Interval for Proportion	Ch 8.4 (pg391: #32, #36)
Feb. 28	Intro. Hypothesis Tests and Quiz 4	Ch 9.1-9.2 (pg410: #2, #4, pg413: #8)
Mar. 2	Hypotheses Testing for a Single Mean	Ch 9.3-9.4 (pg427: #10, #12
		pg435-436: #24, #26)
Mar. 4	Hypotheses Testing for a Single Proport	ion Ch 9.5 (pg442: #36, #38)
Mar.6	Hypotheses Testing for two Means and	Ouiz 5 Ch 10.1
Mar. 9	Hypotheses Testing for two Means (con	t.) Ch 10.2-3 (pg465-467: #2.#4: pg476: #10)
Mar.11	Hypotheses Testing for two Proportions	Ch 10.3-10.4 (pg483: #20: pg493: #29. #34)
Mar.13	Some Remarks of Testing and Ouiz 6	en 1018 1011 (pg 1051 m20, pg 1501 m25, m8 1)
Mar. 23	Review for EX2	
Mar. 25	5 Wednesday	Exam 2 (CH7-CH10)
	U U	
Mar. 27	Chi-Square Test for proportions	Ch 12.3 (pg554-555: #17, #18, #20)
Mar.30	Linear Regression Model	Ch 14.1-3 (pg631: #2; pg643: #16, #18)
Apr. 1	Testing and Interval Estimation	Ch 14.5 (pg655: #26)
Apr. 3	Interval Estimation for Linear Model	Ch 14.5 (page 661: #32, #36)
Apr. 6	Some remarks and Ouiz 7	
Apr.8	Intro to Multiple Regression	Ch 15.1-3 (pg715-716; #1, #4; pg722; #14)
Apr. 10	Testing for Multiple Regression	Ch 15.4-5 (ng729: #20: ng750: #46)
Apr.15	Some remarks and Quiz 8	en 1011 e (pg/2)1 //20, pg/201 // 10)
Apr 17	Intro to Xhar and R Charts	Ch 19 1-2 $(n\sigma 931: \#2, \#4)$
Anr 20	Intro P Chart	Ch 19.2 ($n\sigma 932$ · #8)
Anr 77	Remarks and Ouiz 9	On 17.2 (PG) 52. (10)
Apr 24	Review for EX3	
Anr 27	Mondav Ex	am 3 (CH12, CH14, Ch15, and Ch19)
r·- #/	1, LOHANJ LA	

Apr. 29 Intro to Time-Series Analysis

May 1 Review for the final (1) May 4 Review for the final (2)

Final Exam 12:00 MWF Section: Friday, May 8, 1:30 PM—4:00 PM, Room: Chemistry 049 1:00 MWF Section: Thursday, May 7, 1:30PM—4:00PM, Room: Chemistry 049

On-line Homwork Schedules							
ASSIGNMENT # (Starting)	CHAPTERS	DUE DATES					
Assignment 1 (Jan. 15)	Introduction to Using Aplia	Jan. 31					
Assignment 2 (Jan. 27)	Ch 3 Numerical Measures	Feb. 7					
Assignment 3 (Feb. 7)	Ch 5 Discrete Distribution	Feb. 17					
Assignment 4 (Feb. 12)	Ch 6 Normal Distribution	Feb. 21					
Assignment 5 (Feb. 24)	Ch 8 Confidence Interval	Mar. 6					
Assignment 6 (Feb. 28)	Ch 9 Hypotheses Testing	Mar. 23					
Assignment 7 (Mar. 30)	Ch14 Linear Regression	Apr. 13					
Assignment 8 (Apr. 8)	Ch15 Multiple Regression	Apr. 27					

Disabled Students: Please advice me of your condition and provide a letter of verification as soon as possible. I will make necessary accommodation.

Student absence for Observance of Religious Holy Day: Please advice me of your absence prior to the event and I will make necessary accommodation.

Student learning outcomes and assessment: Students will learn the meanings of, and computational procedures related to, the elementary statistical concepts used for making decisions in business and economics. In particular, students will

- 1. Appreciate the role of statistics in business decision making.
- 2. Understand the need to be wary of statistical claims, common pitfalls in sampling, and misrepresentation of conclusions.
- 3. Understand the meanings of various statistical measures, including the mean, median, mode, standard deviation, variance, and quartiles.
- 4. Become familiar with various graphical representations of data and learn to recognize misleading graphs.
- 5. Develop proficiency in real-word probability problems.
- 6. Understand the concept of a probability distribution and real-world problems, involving the binomial and normal distributions.
- 7. Understand and apply the Central Limit Theorem.
- 8. Compute and interpret confidence intervals.
- 9. Conduct and interpret hypothesis tests.
- 10. Understand linear regression models.
- 11. Understand the construction and use of control charts.
- 12. Understand the based concepts of time series.

Printing the Class Notes: Please print the class notes prior to the classes. The notes are available in PDF format on the class website through the box that says **Class Handouts**:

http://www.math.ttu.edu/~xgilliam/classes/m2345/math_2345.htm

Numerical Descriptive Measures: eq3.1: Sample Mean: $\overline{X} = \frac{\sum X_i}{n}$ eq3.2: Population Mean: $\mu = \frac{\sum X_i}{N}$ eq3.5 Location of the Percentile: $L_p = \frac{p}{100}(n+1)$ eq3.6: Interquartile Range: $Q_3 - Q_1$ eq3.7: Population Variance: $\sigma^2 = \frac{\sum (X_i - \mu)^2}{N}$ eq3.8: Sample Variance: $S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$ eq3.9: Sample Standard Deviation: $S = \sqrt{\frac{\sum (X_i - \overline{X})^2}{n-1}} = \sqrt{Variance}$ eq3.10: Population Standard Deviation: $\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{n}} = \sqrt{Variance}$ eq3.11: Coefficient of Variation: $CV = \frac{S}{\overline{X}} * 100\%$ eq3.12: Z Score: $Z_i = \frac{X_i - \overline{X}}{S}$

Basic Probability:

eq4.1: Combination $C_n^N = \frac{N!}{n!(N-n)!}$ eq4.5: The Complement: $P(A) = 1 - P(A^c)$ eq4.6: Addition Law: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ eq4.7: Conditional Probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$ eq4.13: If two events are independent, then $P(A \cap B) = P(A)P(B)$

Discrete Random Variable: eq5.4: Mean: $\mu = E(X) = \sum xf(x)$ eq5.5: Variance: $\sigma^2 = \sum (X_i - \mu)^2 f(x)$ Standard Deviation: $\sigma = \sqrt{\sum (X_i - \mu)^2 f(x)}$

Bionomial Distribution:
eq5.10: Combination:
$$\binom{n}{x} = \frac{n!}{X!(n-X)!}$$

eq5.12: $f(x) = \binom{n}{x} p^X (1-p)^{n-X}$
eq5.13: mean: $E(X) = \mu = np$
eq5.14: Variance: $\sigma^2 = np (1-p)$

Normal Distribution:

eq6.2: Density Function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(X-\mu)^2/(2\sigma^2)}$$

eq6.3: Converting to the Standard Normal:

$$Z = \frac{X - \mu}{\sigma}$$

Sampling Distribution: eq7.1: Expected Value of \overline{X} : $E(\overline{X}) = \mu$ eq7.2 Standard Deviation of \overline{X} : $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$ eq7.4: Expected Value of \overline{p} : $E(\overline{p}) = p$ eq7.6: Standard Deviation of \overline{p} : $\sigma_{\overline{p}} = \sqrt{\frac{p(1-p)}{n}}$ Interval Estimation:

eq
8.1: 100(1 – α)% Confidence Interval (CI) for Mean (σ known): $\overline{X} \pm Z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$

eq8.2: $100(1 - \alpha)$ % CI for Mean (σ unknown):

$$\overline{X} \pm t_{\alpha/2} \frac{S}{\sqrt{n}}$$

eq8.6:
$$100(1 - \alpha)\%$$
 CI for Proportion:

$$\overline{p} \pm Z_{\alpha/2} \sqrt{\frac{\overline{p} \left(1 - \overline{p}\right)}{n}}$$

Testing: eq9.1: The test statistic for mean μ (σ know): $Z_{cal} = \frac{\overline{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$ eq9.2: The test statistic for Mean μ (σ unknown): $t_{cal} = \frac{\overline{X} - \mu_0}{\frac{S}{\sqrt{n}}}$ with (n-1) degrees of freedom. eq9.4: The test statistic for proportion p: $Z_{cal} = \frac{\overline{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$ eq10.5: Test statistic for mean difference $\mu_1 - \mu_2$ (σ_1, σ_2 known): $Z_{cal} = \frac{(\overline{X_1} - \overline{X_2}) - D_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ eq10.8: Test statistic for Mean difference $\mu_1 - \mu_2$ (σ_1, σ_2 unknown): $t_{cal} = \frac{(\overline{X_1} - \overline{X_2}) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ (with eq10.7: $df = \frac{(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2})^2}{\frac{1}{n_1-1}(\frac{s_1^2}{n_1})^2 + \frac{1}{n_2-1}(\frac{s_2^2}{n_2})^2}$ eq10.9: Test statistic for mean difference (matched samples): $t_{cal} = \frac{\overline{d} - \mu_d}{\frac{S_d}{\sqrt{n}}}$ (with (n - 1) degrees of freedom) eq10.16: Test statistic for the difference between two proportions $p_1 - p_2$: $Z_{cal} = \frac{(\overline{p_1} - \overline{p}_2)}{\sqrt{\overline{p}(1 - \overline{p})(\frac{1}{n_1} + \frac{1}{n_2})}$, where eq 10.15: $\overline{p} = \frac{n_1\overline{p_1} + n_2\overline{p_2}}{n_1 + n_2}$

Note: two-tailed test: $p - value = 2P(Z > |Z_{cal}|);$ upper,one-tail test: $p - value = P(Z > Z_{cal});$ lower, one-tail test: $p - value = P(Z < Z_{cal}).$ $Z_{0.05} = 1.645, \ Z_{0.025} = 1.96, \ Z_{0.005} = 2.58.$

Math 2345 EXAM # 3 Formula Sheet

 χ^2 Test: eq12.5: The test stat: $\chi^2 = \sum_i \sum_j \frac{(f_{ij} - e_{ij})^2}{e_{ij}}$, where $e_{ij} = \frac{(Row \ i \ Total)(Column \ j \ Total)}{Total \ sample \ size}$

 $\begin{array}{l} \textbf{Simple Linear Regression:} \\ eq14.4: Estimated Simple Regression Equation: <math>\hat{y} = b_0 + b_1 x \\ eq14.6: The Slope b_1 = \displaystyle\frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} \\ eq14.6: The Slope b_1 = \displaystyle\frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sum(x_i - \bar{x})^2} \\ eq14.7: The Y-intercept: <math>b_0 = \bar{y} - b_1 \bar{x} \\ eq14.8: Sum of squares Due to Error: <math>SSE = \sum(y_i - \hat{y})^2 \\ eq14.9: Total sum of squares Due to Begression: <math>SSR = \sum(\hat{y}_i - \bar{y})^2 \\ eq14.10: Sum of Squares Due to Regression: <math>SSR = \sum(\hat{y}_i - \bar{y})^2 \\ eq14.10: Sum of Squares Due to Regression: <math>SSR = \sum(\hat{y}_i - \bar{y})^2 \\ eq14.10: Sum of Squares Due to Regression: <math>SSR = \sum(\hat{y}_i - \bar{y})^2 \\ eq14.11: Relationship Among SST,SSR, and SSE: <math>SST = SSR + SSE \\ eq14.12: Coefficient of determination: <math>r^2 = \frac{SSR}{SST} \\ eq14.15: Mean Square Error: <math>s^2 = MSE = \frac{SSE}{n-2} \\ eq14.16: Standard error of the estimate: <math>s = \sqrt{\frac{SSE}{n-2}} \\ eq14.18: Estimated Standard Deviation of <math>b_1: s_{b_1} = \frac{s}{\sqrt{\sum(x_i - \bar{x})^2}} \\ eq14.19: t Test Statistic <math>t_{cal} = \frac{b_1}{S_{b_1}}$ with (n-2) degrees of freedom \\ eq14.20: Mean Square Regression: $MSR = \frac{SSR}{\#indvar}$ eq14.21: F Test Statistic: $F = \frac{MSR}{MSE} \\ eq14.24: 100(1 - \alpha)\%$ CI for $E(y^*): \hat{y}^* \pm t_{\alpha/2} s_{\bar{y}^*}$ where $(eq14.23:) s_{\bar{y}^*} = s\sqrt{\frac{1}{n} + \frac{(x^* - \bar{x})^2}{\sum(x_i - \bar{x})^2}} \\ Note: 100(1 - \alpha)\%$ CI for $B_1: b_1 \pm t_{\alpha/2} s_{b_1}$

Multiple Linear Regression:

eq15.3: Estimated multiple regression equation: $\hat{y} = b_0 + b_1 X_1 + b_2 X_2 + ... + b_p X_p$ eq15.8: Multiple Coefficient of Determination: $R^2 = \frac{SSR}{SST}$ eq15.9: Adjusted Multiple Coefficient of Determination: $R_a^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1}$ eq15.15: t test Statistic: $t_{cal} = \frac{b_i}{s_{b_i}}$ with (n-p-1) degrees of freedom. Note: $100(1 - \alpha)\%$ CI for B_i : $b_i \pm t_{\alpha/2} s_{b_i}$

Control Charts: Xbar :and R Chart eq19.1: Standard Error of the Mean: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ \bar{x} Chart for standard deviation known: eq19.2: $UCL = \mu + 3\sigma_{\bar{x}}$ eq19.3: $LCL = \mu - 3\sigma_{\bar{x}}$ eq19.4: Overall Sample Mean: $\bar{x} = \frac{\bar{x}_1 + \bar{x}_2 + \dots + \bar{x}_k}{k}$ eq19.5: Average Range: $\bar{R} = \frac{R_1 + R_2 + \dots + R_k}{k}$ eq19.8: Control limits For an \bar{x} Chart for standard deviation unknown: $\bar{x} \pm A_2\bar{R}$ Control limits for an R chart: eq19.14: $UCL = \bar{R}D_4$ eq19.15: $LCL = \bar{R}D_3$

Control Chart: p Chart

eq19.16: Standard Error of the Proportion: $\sigma_{\bar{p}} = \sqrt{\frac{p(1-p)}{n}}$ Control Limits for a *p* Chart: eq19.17: $UCL = p + 3\sigma_{\bar{p}}$ eq19.18: $LCL = p - 3\sigma_{\bar{p}}$

Math 2345 Formulas After EXAM # 3

Time Series Chapter: eq17.1: Moving Average Forecast of order k:

$$F_{t+1} = \frac{\sum(most \ recent \ k \ data \ values)}{k} = \frac{y_t + y_{t-1} + \dots + y_{t-k+1}}{k}$$

eq17.2: Exponentially Smoothed Forecast

$$F_{t+1} = \alpha Y_t + (1 - \alpha)F_t$$

TABLE 19.3FACTORS FOR \bar{x} AND R CONTROL CHARTS

Observations					
in Sample, n	<i>d</i> ₂	A ₂	<i>d</i> ₃	D_3	D_4
2	1.128	1.880	0.853	0	3.267
3	1.693	1.023	0.888	0	2.574
4	2.059	0.729	0.880	0	2.282
5	2.326	0.577	0.864	0	2.114
6	2.534	0.483	0.848	0	2.004
7	2.704	0.419	0.833	0.076	1.924
8	2.847	0.373	0.820	0.136	1.864
9	2.970	0.337	0.808	0.184	1.816
10	3.078	0.308	0.797	0.223	1.777
11	3.173	0.285	0.787	0.256	1.744
12	3.258	0.266	0.778	0.283	1.717
13	3.336	0.249	0.770	0.307	1.693
14	3.407	0.235	0.763	0.328	1.672
15	3.472	0.223	0.756	0.347	1.653
16	3.532	0.212	0.750	0.363	1.637
17	3.588	0.203	0.744	0.378	1.622
18	3.640	0.194	0.739	0.391	1.608
19	3.689	0.187	0.734	0.403	1.597
20	3.735	0.180	0.729	0.415	1.585
21	3.778	0.173	0.724	0.425	1.575
22	3.819	0.167	0.720	0.434	1.566
23	3.858	0.162	0.716	0.443	1.557
24	3.895	0.157	0.712	0.451	1.548
25	3 931	0153	0 708	0.459	1 541

Source: Reprinted with permission from Table 27 of ASTM STP 15D, ASTM Manual on Presentation of Data and Control Chart Analysis, Copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428.

Appendix B Tables

TABLE 3 CHI-SQUARE DISTRIBUTION

Entries in the table give χ_{α}^2 values, where α is the area or probability in the upper tail of the chi-square distribution. For example, with 10 degrees of freedom and a .01 area in the upper tail, $\chi_{.01}^2 = 23.209$.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Degrees	Area in Upper Tail									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	of Freedom	.995	.99	.975	.95	.90	.10	.05	.025	.01	.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	.000	.000	.001	.004	.016	2.706	3.841	5.024	6.635	7 879
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	.010	.020	.051	.103	.211	4.605	5.991	7 378	9 210	10 597
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	.072	.115	.216	.352	.584	6.251	7.815	9.348	11 345	12 838
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	.207	.297	.484	.711	1.064	7.779	9.488	11,143	13 277	14 860
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	.412	.554	.831	1.145	1.610	9.236	11.070	12.832	15.086	16.750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	.676	.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18 548
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18 475	20 278
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	1.344	1.647	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21,666	23 589
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26 757
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28,300
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.736	27.688	29,819
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31,319
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30,191	33.409	35.718
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796 23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558 25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645 28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994 29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.3	21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932	41,401
23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558 25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645 28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994 29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335	22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
249.88610.85612.40113.84815.65933.19636.41539.36442.98045.5582510.52011.52413.12014.61116.47334.38237.65240.64644.31446.9282611.16012.19813.84415.37917.29235.56338.88541.92345.64248.2902711.80812.87814.57316.15118.11436.74140.11343.19546.96349.6452812.46113.56515.30816.92818.93937.91641.33744.46148.27850.9942913.12114.25616.04717.70819.76839.08742.55745.72249.58852.335	23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44,181
2510.52011.52413.12014.61116.47334.38237.65240.64644.31446.9282611.16012.19813.84415.37917.29235.56338.88541.92345.64248.2902711.80812.87814.57316.15118.11436.74140.11343.19546.96349.6452812.46113.56515.30816.92818.93937.91641.33744.46148.27850.9942913.12114.25616.04717.70819.76839.08742.55745.72249.58852.335	24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
2611.16012.19813.84415.37917.29235.56338.88541.92345.64248.2902711.80812.87814.57316.15118.11436.74140.11343.19546.96349.6452812.46113.56515.30816.92818.93937.91641.33744.46148.27850.9942913.12114.25616.04717.70819.76839.08742.55745.72249.58852.335	25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
2711.80812.87814.57316.15118.11436.74140.11343.19546.96349.6452812.46113.56515.30816.92818.93937.91641.33744.46148.27850.9942913.12114.25616.04717.70819.76839.08742.55745.72249.58852.335	26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994 29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335	27	11.808	12.878	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335	28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.994
	29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.335

STANDARD NORWAL DISTRIBUTION: Table values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.9	.00005	.00005	.00004	.00004	.00004	.00004	.00004	.00004	.00003	.00003
-3.8	.00007	.00007	.00007	.00006	.00006	.00006	.00006	.00005	.00005	.00005
-3.7	.00011	.00010	.00010	.00010	.00009	.00009	.00008	.00008	.00008	.00008
-3.6	.00016	.00015	.00015	.00014	.00014	.00013	.00013	.00012	.00012	.00011
-3.5	.00023	.00022	.00022	.00021	.00020	.00019	.00019	.00018	.00017	.00017
-3.4	.00034	.00032	.00031	.00030	.00029	.00028	.00027	.00026	.00025	.00024
-3.3	.00048	.00047	.00045	.00043	.00042	.00040	.00039	.00038	.00036	.00035
-3.2	.00069	.00066	.00064	.00062	.00060	.00058	.00056	.00054	.00052	.00050
-3.1	.00097	.00094	.00090	.00087	.00084	.00082	.00079	.00076	.00074	.00071
-3.0	.00135	.00131	.00126	.00122	.00118	.00114	.00111	.00107	.00104	.00100
-2.9	.00187	.00181	.00175	.00169	.00164	.00159	.00154	.00149	.00144	.00139
-2.8	.00256	.00248	.00240	.00233	.00226	.00219	.00212	.00205	.00199	.00193
-2.7	.00347	.00336	.00326	.00317	.00307	.00298	.00289	.00280	.00272	.00264
-2.6	.00466	.00453	.00440	.00427	.00415	.00402	.00391	.00379	.00368	.00357
-2.5	.00621	.00604	.00587	.00570	.00554	.00539	.00523	.00508	.00494	.00480
-2.4	.00820	.00798	.00776	.00755	.00734	.00714	.00695	.00676	.00657	.00639
-2.3	.01072	.01044	.01017	.00990	.00964	.00939	.00914	.00889	.00866	.00842
-2.2	.01390	.01355	.01321	.01287	.01255	.01222	.01191	.01160	.01130	.01101
-2.1	.01786	.01743	.01700	.01659	.01618	.01578	.01539	.01500	.01463	.01426
-2.0	.02275	.02222	.02169	.02118	.02068	.02018	.01970	.01923	.01876	.01831
-1.9	.02872	.02807	.02743	.02680	.02619	.02559	.02500	.02442	.02385	.02330
-1.8	.03593	.03515	.03438	.03362	.03288	.03216	.03144	.03074	.03005	.02938
-1.7	.04457	.04363	.04272	.04182	.04093	.04006	.03920	.03836	.03754	.03673
-1.6	.05480	.05370	.05262	.05155	.05050	.04947	.04846	.04746	.04648	.04551
-1.5	.06681	.06552	.06426	.06301	.06178	.06057	.05938	.05821	.05705	.05592
-1.4	.08076	.07927	.07780	.07636	.07493	.07353	.07215	.07078	.06944	.06811
-1.3	.09680	.09510	.09342	.09176	.09012	.08851	.08691	.08534	.08379	.08226
-1.2	.11507	.11314	.11123	.10935	.10749	.10565	.10383	.10204	.10027	.09853
-1.1	.13567	.13350	.13136	.12924	.12714	.12507	.12302	.12100	.11900	.11702
-1.0	.15866	.15625	.15386	.15151	.14917	.14686	.14457	.14231	.14007	.13786
-0.9	.18406	.18141	.17879	.17619	.17361	.17106	.16853	.16602	.16354	.16109
-0.8	.21186	.20897	.20611	.20327	.20045	.19766	.19489	.19215	.18943	.18673
-0.7	.24196	.23885	.23576	.23270	.22965	.22663	.22363	.22065	.21770	.21476
-0.6	.27425	.27093	.26763	.26435	.26109	.25785	.25463	.25143	.24825	.24510
-0.5	.30854	.30503	.30153	.29806	.29460	.29116	.28774	.28434	.28096	.27760
-0.4	.34458	.34090	.33724	.33360	.32997	.32636	.32276	.31918	.31561	.31207
-0.3	.38209	.37828	.37448	.37070	.36693	.36317	.35942	.35569	.35197	.34827
-0.2	.42074	.41683	.41294	.40905	.40517	.40129	.39743	.39358	.38974	.38591
-0.1	.46017	.45620	.45224	.44828	.44433	.44038	.43644	.43251	.42858	.42465
-0.0	.50000	49601	49202	48803	48405	48006	47608	47210	46812	46414

NODMAL DISTDIDUTION, Table Val-DEA 4. 4L I FFT 6 41 CT

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.										
Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.50000	.50399	.50798	.51197	.51595	.51994	.52392	.52790	.53188	.53586
0.1	.53983	.54380	.54776	.55172	.55567	.55962	.56356	.56749	.57142	.57535
0.2	.57926	.58317	.58706	.59095	.59483	.59871	.60257	.60642	.61026	.61409
0.3	.61791	.62172	.62552	.62930	.63307	.63683	.64058	.64431	.64803	.65173
0.4	.65542	.65910	.66276	.66640	.67003	.67364	.67724	.68082	.68439	.68793
0.5	.69146	.69497	.69847	.70194	.70540	.70884	.71226	.71566	.71904	.72240
0.6	.72575	.72907	.73237	.73565	.73891	.74215	.74537	.74857	.75175	.75490
0.7	.75804	.76115	.76424	.76730	.77035	.77337	.77637	.77935	.78230	.78524
0.8	.78814	.79103	.79389	.79673	.79955	.80234	.80511	.80785	.81057	.81327
0.9	.81594	.81859	.82121	.82381	.82639	.82894	.83147	.83398	.83646	.83891
1.0	.84134	.84375	.84614	.84849	.85083	.85314	.85543	.85769	.85993	.86214
1.1	.86433	.86650	.86864	.87076	.87286	.87493	.87698	.87900	.88100	.88298
1.2	.88493	.88686	.88877	.89065	.89251	.89435	.89617	.89796	.89973	.90147
1.3	.90320	.90490	.90658	.90824	.90988	.91149	.91309	.91466	.91621	.91774
1.4	.91924	.92073	.92220	.92364	.92507	.92647	.92785	.92922	.93056	.93189
1.5	.93319	.93448	.93574	.93699	.93822	.93943	.94062	.94179	.94295	.94408
1.6	.94520	.94630	.94738	.94845	.94950	.95053	.95154	.95254	.95352	.95449
1.7	.95543	.95637	.95728	.95818	.95907	.95994	.96080	.96164	.96246	.96327
1.8	.96407	.96485	.96562	.96638	.96712	.96784	.96856	.96926	.96995	.97062
1.9	.97128	.97193	.97257	.97320	.97381	.97441	.97500	.97558	.97615	.97670
2.0	.97725	.97778	.97831	.97882	.97932	.97982	.98030	.98077	.98124	.98169
2.1	.98214	.98257	.98300	.98341	.98382	.98422	.98461	.98500	.98537	.98574
2.2	.98610	.98645	.98679	.98713	.98745	.98778	.98809	.98840	.98870	.98899
2.3	.98928	.98956	.98983	.99010	.99036	.99061	.99086	.99111	.99134	.99158
2.4	.99180	.99202	.99224	.99245	.99266	.99286	.99305	.99324	.99343	.99361
2.5	.99379	.99396	.99413	.99430	.99446	.99461	.99477	.99492	.99506	.99520
2.6	.99534	.99547	.99560	.99573	.99585	.99598	.99609	.99621	.99632	.99643
2.7	.99653	.99664	.99674	.99683	.99693	.99702	.99711	.99720	.99728	.99736
2.8	.99744	.99752	.99760	.99767	.99774	.99781	.99788	.99795	.99801	.99807
2.9	.99813	.99819	.99825	.99831	.99836	.99841	.99846	.99851	.99856	.99861
3.0	.99865	.99869	.99874	.99878	.99882	.99886	.99889	.99893	.99896	.99900
3.1	.99903	.99906	.99910	.99913	.99916	.99918	.99921	.99924	.99926	.99929
3.2	.99931	.99934	.99936	.99938	.99940	.99942	.99944	.99946	.99948	.99950
3.3	.99952	.99953	.99955	.99957	.99958	.99960	.99961	.99962	.99964	.99965
3.4	.99966	.99968	.99969	.99970	.99971	.99972	.99973	.99974	.99975	.99976
3.5	.99977	.99978	.99978	.99979	.99980	.99981	.99981	.99982	.99983	.99983
3.6	.99984	.99985	.99985	.99986	.99986	.99987	.99987	.99988	.99988	.99989
3.7	.99989	.99990	.99990	.99990	.99991	.99991	.99992	.99992	.99992	.99992
3.8	.99993	.99993	.99993	.99994	.99994	.99994	.99994	.99995	.99995	.99995
3.9	.99995	.99995	.99996	.99996	.99996	.99996	.99996	.99996	.99997	.99997

10	Upper-Tail Areas										
Degrees of Freedom	0.25	0.10	0.05	0.025	0.01	0.005					
1	1.0000	3.0777	6.3138	12.7062	31.8207	63.6574					
2	0.8165	1.8856	2.9200	4.3027	6.9646	9.9248					
3	0.7649	1.6377	2.3534	3.1824	4.5407	5.8409					
4	0.7407	1.5332	2.1318	2.7764	3.7469	4.6041					
5	0.7267	1.4759	2.0150	2.5706	3.3649	4.0322					
6	0.7176	1.4398	1.9432	2.4469	3.1427	3.7074					
7	0.7111	1.4149	1.8946	2.3646	2.9980	3.4995					
8	0.7064	1.3968	1.8595	2.3060	2.8965	3.3554					
9	0.7027	1.3830	1.8331	2.2622	2.8214	3.2498					
10	0.6998	1.3722	1.8125	2.2281	2.7638	3.1693					
11	0.6974	1.3634	1.7959	2.2010	2.7181	3 1058					
12	0.6955	1.3562	1.7823	2.1788	2.6810	3 0545					
13	0.6938	1.3502	1.7709	2.1604	2.6503	3 0123					
14	0.6924	1.3450	1.7613	2.1448	2.6245	2 9768					
15	0.6912	1.3406	1.7531	2.1315	2.6025	2.9467					
16	0.6901	1 3368	1 7450	2 1100	2 5025	2.0209					
17	0.6892	1 3334	1.7455	2.1199	2.3633	2.9208					
18	0.6884	1 3304	1.7341	2.1098	2.5009	2.8982					
19	0.6876	1.3277	1.7341	2.1009	2.5524	2.8/84					
20	0.6870	1 3253	1.7291	2.0950	2.5395	2.8609					
20	0.0070	1.3233	1.7247	2.0800	2.3280	2.8453					
21	0.6864	1.3232	1.7207	2.0796	2.5177	2.8314					
22	0.6858	1.3212	1.7171	2.0739	2.5083	2.8188					
23	0.0855	1.3195	1.7139	2.0687	2.4999	2.8073					
24	0.0848	1.31/8	1./109	2.0639	2.4922	2.7969					
23	0.0844	1.3103	1.7081	2.0595	2.4851	2.7874					
26	0.6840	1.3150	1.7056	2.0555	2.4786	2.7787					
27	0.6837	1.3137	1.7033	2.0518	2.4727	2.7707					
28	0.6834	1.3125	1.7011	2.0484	2.4671	2.7633					
29	0.6830	1.3114	1.6991	2.0452	2.4620	2.7564					
30	0.6828	1.3104	1.6973	2.0423	2.4573	2.7500					
31	0.6825	1.3095	1.6955	2.0395	2.4528	2.7740					
32	0.6822	1.3086	1.6939	2.0369	2.4487	2.7385					
33	0.6820	1.3077	1.6924	2.0345	2.4448	2.7333					
34	0.6818	1.3070	1.6909	2.0322	2.4411	2.7284					
35	0.6816	1.3062	1.6896	2.0301	2.4377	2.7238					
36	0.6814	1.3055	1.6883	2.0281	2.4345	2.7195					
37	0.6812	1.3049	1.6871	2.0262	2.4314	2.7154					
38	0.6810	1.3042	1.6860	2.0244	2.4286	2.7116					
39	0.6808	1.3036	1.6849	2.0227	2.4258	2.7079					
40	0.6807	1.3031	1.6839	2.0211	2.4233	2.7045					
41	0.6805	1.3025	1.6829	2.0195	2 4208	2 7012					
42	0.6804	1.3020	1.6820	2.0181	2.4185	2 6981					
43	0.6802	1.3016	1.6811	2.0167	2.4163	2.6951					
44	0.6801	1.3011	1.6802	2.0154	2.4141	2.6923					
45	0.6800	1.3006	1.6794	2.0141	2.4121	2.6896					
46	0.6799	1,3022	1,6787	2 0120	2 4102	2 6970					
47	0.6797	1.2998	1.6779	2.0129	2.4083	2.08/0					
48	0.6796	1,2994	1.6772	2 0106	2.4065	2.0840					
			1.0772	2.0100	2.4000	2.0822					

continued

	Upper-Tail Areas									
Degrees of Freedom	0.25	0.10	0.05	0.025	0.01	0.005				
49	0.6795	1.2991	1.6766	2.0096	2.4049	2.6800				
50	0.6794	1.2987	1.6759	2.0086	2.4033	2.6778				
51	0.6793	1.2984	1.6753	2.0076	2.4017	2.6757				
52	0.6792	1.2980	1.6747	2.0066	2.4002	2.6737				
53	0.6791	1.2977	1.6741	2.0057	2.3988	2.6718				
54	0.6791	1.2974	1.6736	2.0049	2.3974	2.6700				
55	0.6790	1.2971	1.6730	2.0040	2.3961	2.6682				
56	0.6789	1.2969	1.6725	2.0032	2.3948	2.6665				
57	0.6788	1.2966	1.6720	2.0025	2.3936	2.6649				
58	0.6787	1.2963	1.6716	2.0017	2.3924	2.6633				
59	0.6787	1.2961	1.6711	2.0010	2.3912	2.6618				
60	0.6786	1.2958	1.6706	2.0003	2.3901	2.6603				
61	0.6785	1.2956	1.6702	1.9996	2.3890	2.6589				
62	0.6785	1.2954	1.6698	1.9990	2.3880	2.6575				
03 64	0.6782	1.2951	1.6694	1.9983	2.3870	2.6561				
65	0.0783	1.2949	1.0090	1.9977	2.3860	2.6549				
05	0.0785	1.2947	1.0080	1.9971	2.3831	2.0530				
66	0.6782	1.2945	1.6683	1.9966	2.3842	2.6524				
67	0.6781	1.2943	1.6679	1.9960	2.3833	2.6512				
60	0.6781	1.2941	1.6672	1.9955	2.3824	2.6501				
70	0.6780	1.2939	1.6669	1.9949	2.3810	2.6490				
70	0.6790	1.2006	1.0009	1.9944	2.3808	2.0479				
71	0.6780	1.2936	1.6662	1.9939	2.3800	2.6469				
72	0.6779	1.2934	1.0003	1.9955	2.3793	2.6459				
74	0.6778	1 2931	1.6657	1.9950	2.378	2.0449				
75	0.6778	1.2929	1.6654	1.9921	2 3771	2 6430				
76	0.6777	1 2028	1 6652	1 0017	2.3764	2.6421				
70	0.6777	1 2926	1.6649	1.9917	2.3758	2.0421				
78	0.6776	1.2925	1.6646	1.9908	2.3751	2 6403				
79	0.6776	1.2924	1.6644	1.9905	2.3745	2.6395				
80	0.6776	1.2922	1.6641	1.9901	2.3739	2.6387				
81	0.6775	1.2921	1.6639	1,9897	2,3733	2 6379				
82	0.6775	1.2920	1.6636	1.9893	2.3727	2.6371				
83	0.6775	1.2918	1.6634	1.9890	2.3721	2.6364				
84	0.6774	1.2917	1.6632	1.9886	2.3716	2.6356				
85	0.6774	1.2916	1.6630	1.9883	2.3710	2.6349				
86	0.6774	1.2915	1.6628	1.9879	2.3705	2.6342				
87	0.6773	1.2914	1.6626	1.9876	2.3700	2.6335				
88	0.6773	1.2912	1.6624	1.9873	2.3695	2.6329				
89	0.6773	1.2911	1.6622	1.9870	2.3690	2.6322				
90	0.6772	1.2910	1.6620	1.9867	2.3685	2.6316				
91	0.6772	1.2909	1.6618	1.9864	2.3680	2.6309				
92	0.6772	1.2908	1.6616	1.9861	2.3676	2.6303				
93	0.6771	1.2907	1.6614	1.9858	2.3671	2.6297				
94	0.6771	1.2906	1.6612	1.9855	2.3667	2.6291				
95	0.6771	1.2905	1.6611	1.9853	2.3662	2.6286				
96	0.6771	1.2904	1.6609	1.9850	2.3658	2.6280				
97	0.6770	1.2903	1.6607	1.9847	2.3654	2.6275				
98	0.6770	1.2902	1.6606	1.9845	2.3650	2.6269				
99	0.6770	1.2902	1.6604	1.9842	2.3646	2.6264				
100	0.0770	1.2901	1.0002	1.9840	2.3642	2.6259				
110	0.6767	1.2893	1.6588	1.9818	2.3607	2.6213				
120	0.6765	1.2886	1.6577	1.9799	2.3578	2.6174				
00	0.6745	1.2816	1.6449	1.9600	2.3263	2.5758				